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Introduction
The dynamic range of survival within many cancer types can be 
broad, as many features influence tumor aggressiveness. 
Molecular subtyping efforts for many cancers have yielded dis-
tinctions between those which are more or less lethal, but strat-
ification in this regard generally does not provide accurate 
survival classification at the individual patient level. As such, 
there would be high value in predicting survival for each patient 
using routinely collected clinical and/or pathological features.

The advent and application of machine learning over the 
past decade have enabled the development of survival classifi-
ers trained on input data sets containing potentially predictive 
features. Through this, the relative importance of any given 
predictor can be quantified and thereby suggestive of its 

saliency for prognostication. This triaging of information can 
be beneficial when it is infeasible to collect a large number of 
clinical data points that do not necessarily inform the actual 
management or expectations of the patient’s disease. In addi-
tion, over the past decade, massive biomarker data sets of meth-
ylation, gene expression, or mutational status have demonstrated 
enormous promise as inputs for machine learning algorithms,1-3 
but these modes of tumor profiling are not yet integrated into 
the vast majority of clinical workflows and therefore do not 
offer a scalable or resource-efficient approach for prognostica-
tion in its current state.

Although prior studies have leveraged publicly available 
databases to model prognosis for individual cancer types, few 
have systematically employed the same techniques on multiple 
cancer types to predict overall survival (OS) outcomes at vary-
ing time points.3,4 This precludes a direct comparison of the 
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most predictive features across various malignancies. We there-
fore orient this investigation first toward the prediction of OS 
for each of 16 different cancer types, using routinely used clini-
cal and histopathological data. In doing so, we aim to provide a 
pragmatic classification blueprint compatible with most clini-
cal oncology data collection workflows.

Unsurprisingly, clinical features alone resulted in a bottle-
neck of prediction performance for many cancer types, and we 
further inquired whether the addition of more complex biomo-
lecular information could enhance survival classification. As 
such, we incorporated bulk RNA sequencing data from The 
Cancer Genome Atlas (TCGA) to evaluate whether gene 
expression patterns could confer any additional value. This 
study provides a thorough look at the contributions of clinical, 
pathological, and, later, gene expression data in predicting OS, 
providing guidance in areas where clinical features are already 
strong predictors and where more complex biomolecular infor-
mation may be needed.

Methods
Patient cohort

Data were extracted from a total of 8608 patients across 16 dif-
ferent cancer types (bladder urothelial carcinoma, renal clear 
cell carcinoma, uterine corpus endometrial carcinoma, pancre-
atic adenocarcinoma (PAAD), breast invasive carcinoma 
(BRCA), lung squamous cell carcinoma, hepatocellular carci-
noma, papillary thyroid carcinoma (THCA), colorectal adeno-
carcinoma, cutaneous melanoma, glioblastoma multiforme 
(GBM), head and neck squamous cell carcinoma (HNSC), 
stomach/gastric adenocarcinoma (STAD), lung adenocarci-
noma, prostate adenocarcinoma, and serous adenocarcinoma) 
from publicly available studies by TCGA on cBioPortal.5

The inclusion criteria for TCGA patients/samples are as fol-
lows: primary untreated tumor, frozen and sufficiently sized 
resection samples, and sufficient percentage of tumor nuclei 
(60% as a general guideline, although exceptions were made for 
cancer types with low neoplastic cellularity).6 As such, neoadju-
vant therapies were not provided to patients in our cohort. 
Adjuvant therapies (delivered after treatment or surgery), on the 
contrary, were administered to most patients, but the type, dose, 
and length of such treatments were highly variable depending on 
the cancer type and not completely annotated for each patient.

Features used for classif ication

Our data set included clinical and pathological features (which 
varied by cancer type), as well as unnormalized gene counts 
from bulk RNA-seq (HTSeq-Counts). We excluded clinical 
features that were missing in more than 40% of patients or 
functionally served as proxies for OS (“Disease Free Status,” 
“Overall Survival Status,” etc). Missing predictive data were 
imputed using 3 different imputation techniques: XGBoost’s 
built-in imputation, mean/median, and K-nearest neighbors 

(KNN). The primary outcomes were 1- and 3-year OS from 
the date of diagnosis. The full list of clinicopathological fea-
tures used in this study has been provided in Supplementary 
Table 1.

Classif ication of survival using clinical data alone

Random forest and XGBoost models leveraging a variety of 
imputation methods were derived from clinical training data 
for each cancer type. Specifically, a sequential feature selection 
strategy was used: beginning with an empty set of clinical fea-
tures, the next most informative feature was added until 15 
clinical features were appended. A maximum of 15 features was 
chosen to optimize for parsimony.

The analysis was performed using an 80/20 split, in which 
80% of patients were reserved for training and the remaining 
20% for validation using 5-fold cross-validation. A grid search 
on 2 different machine learning models (XGBoost, Random 
Forest) and 3 different imputation methods (KNN, mean/
median, XGBoost’s built-in imputation) was performed for 
each of the 16 cancer types; a total of 80 models were ulti-
mately evaluated. Analyses were performed using open-source 
libraries (scikit-learn, xgboost, mlxtend) in Python 3.7. The 
performances of these classifiers were then evaluated by predic-
tion accuracy and area under the receiver operating curve 
(AUROC).

Differential gene expression analysis

Differential gene expression analyses were performed on the fol-
lowing subsets of patients: > vs <1 year STAD, > vs <1-year 
GBM, and > vs <3-year ovarian serous carcinoma (OV). These 
specific cancer types were chosen because clinicopathological 
features were insufficient to generate strong model performance. 
As such, we reasoned they would stand to benefit the most from 
the addition of other biomolecular features. Genes with an 
adjusted P value (false discovery rate) of less than .005, with the 
exception of an adjusted P value threshold of less than .001 for 
OV to generate a more parsimonious list, were inputted as addi-
tional features for survival classification for STAD (at 1 year), 
GBM (at 1 year), and OV (at 3 years).

Classif ication of survival using clinical and bulk 
transcriptomic data

XGBoost (with sequential feature selection) was performed on 
the differentially expressed genes to augment prediction of 
STAD survival at 1 year, GBM at 1 year, and OV at 3 years. 
This was carried out for up to 25 genes.

Cox regression analysis for OS and disease-free 
survival

Cox proportional-hazards analyses were conducted for both 
OS and disease-free survival (DFS) for all 16 cancer types 
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using the top clinical features identified by our machine learn-
ing approach.

Results
Classif ication of OS for each of 16 cancer types 
using clinicopathological features
Cancer prognostication is commonly performed at the 5-year 
mark, but we sought to define appropriate time points 

for survival classification using primarily clinicopathological 
features in our specific cohort of TCGA patients. As such, we 
evaluated the proportion of patients in each cancer type either 
alive or deceased/censored at 1, 3, and 5 years (Figure 1A). This 
revealed a well-balanced proportion of patients with either out-
come at 1 year, but became progressively skewed toward death 
or censorship at years 3 and 5 for most cancers (Figure 1A). Our 
results are consistent with markedly poor prognoses for certain 

Figure 1.  Survival prediction scores derived from clinicopathological features. (A) Stacked proportion bar plots of gene expression profiles of patients 

who survived less than or greater than 1 year, 3 years, and 5 years. (B) Heat maps depicting survival prediction scores of 1-year OS and 3-year OS using 5 

different machine learning models: (1) XGBoost’s built-in imputation and XGBoost, (2) imputation with median and XGBoost, (3) imputation with median 

and Random Forest, (4) imputation with K-nearest neighbors and XGBoost, and (5) imputation with K-nearest neighbors and Random Forest.
OS indicates overall survival.
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cancer types such as pancreatic cancer, GBM, and STAD, each 
of which had fewer than 10% of patients alive after 5 years in 
our cohort. We therefore decided to focus our classification 
analysis at the 1- and 3-year mark to preclude inflated model 
performance that could conceivably result from skewing predic-
tions toward 1 outcome at year 5 (eg, deceased/censored)

In total, we assessed 8608 patient tumor samples across 16 
cancer types from TCGA (Table 1). As many values for predic-
tive features were incompletely annotated, we carried out 
imputation strategies such as KNN, median, and the built-in 
XGBoost imputation function that leverages sparsity-aware 
split finding. Using these imputed and nonimputed data sets, 
we then evaluated the performance of our classification models 
with a cross-validated 80-20 train-test split, separately for each 
of the 16 cancer types at 1 and 3 years. This analysis was carried 
out separately for each cancer type as opposed to a one-size-
fits-all approach, given that there are many features that are not 
uniformly annotated across malignancies. We used both pre-
diction accuracy and AUROC to evaluate model performance

As a whole, we noticed a large variance across cancer types 
in the capacity of clinicopathological features to predict patient 
survival at 1 year and 3 years (Figure 1B). At both time points, 
OS for skin cutaneous melanoma (SKCM 1-year OS: 
AUROC = 0.83; 3-year OS: AUROC = 0.84), liver hepatocel-
lular carcinoma (LIHC 1-year OS: AUROC = 0.78; 3-year 
OS: AUROC = 0.81), and pancreatic ductal adenocarcinoma 
(PAAD 1-year OS: AUROC = 0.75; 3-year OS: AUROC = 0.88) 
could be effectively classified, whereas that for GBM (1-year 
OS: AUROC = 0.68; 3-year OS: AUROC = 0.68), OV (1-year 
OS: AUROC = 0.67; 3-year OS: AUROC = 0.68), and BRCA 
(1-year OS: AUROC = 0.69; 3-year OS: AUROC = 0.69) con-
sistently could not. Other cancers such as STAD were predict-
able at the 3-year time point but not at 1 year. We initially 
posited that the strong model performance for a highly lethal 
cancer such as pancreatic could be explained by the skewing of 
patients toward 1 outcome, but this does not explain why the 
model does not perform similarly well for other aggressive can-
cers such as GBM. Upon further examination, however, we 
observed that cancers devoid of well-annotated clinical or 
pathological markers (eg, GBM) had less predictable outcomes 
relative to those with organ/disease-specific features such as 
liver fibrosis and albumin levels (eg, LIHC) (Supplementary 
Tables 2 and 3). This suggests that cancer types with currently 
hard-to-predict survival times may benefit from a prognostica-
tion standpoint from the collection of additional putative clini-
cal or pathological correlates. Finally, for some cancer types, we 
noted significant discrepancies between accuracy and AUROC, 
the latter of which factors in both the sensitivity and the speci-
ficity of the model. Thyroid cancer, for instance, contains the 
most accurate 1-year survival prediction model but only the 
10th best performing model by AUROC. Similarly, GBM is 
the most accurately predicted cancer for 3-year survival but 
exhibits poor performance by AUROC (rank: 13/16).

Orthogonal assessment of prognostic features using 
Cox proportional-hazards models

In addition to our machine learning approach, we conducted 
univariate Cox proportional-hazards analyses on each of the 16 
cancer types to orthogonally assess the impact of prognostic 
features on both OS (Supplementary Tables 4 and 5) and DFS 
(Supplementary Tables 6 and 7). We included variables that 
have well-established prognostic implications (eg, basal-like/
triple-negative subtype for breast cancer) and many other fea-
tures that have been more seldom discussed, including those 
which were prioritized by our aforementioned machine learn-
ing algorithms. Indeed, our analyses revealed several clinico-
pathological features which greatly influence OS in their 
respective patient cohorts. Patients with breast cancer harbor-
ing the basal-like molecular subtype (often ER−, PgR−, 
HER2−),7 as expected, were associated with poorer OS: hazard 
ratio = 1.55; 95% confidence interval = 1.08-2.23; P < .05. 
Further of note, we observed that stage IV/T4a for colorectal, 
lymph node stage N3 for melanoma, and age at diagnosis for 
GBM were the most prominent associated features with poor 
survival (Supplementary Tables 4 and 5). Overall, our study 
provides a thorough map of prognostic features using both 
machine learning methods and Cox proportional-hazards 
models.

Integration of molecular data to enhance survival 
classif ication for poor-performing cancers

Given the poor performance of our models for cancer types 
such as GBM, STAD, and OV, we posited that addition of 
more complex biomolecular features with continuous input 
values could enhance our ability to prognose patients where 
clinicopathological features were insufficient. This may become 
increasingly relevant as commercially available transcriptomic 
profiling or targeted gene expression panels are integrated into 
clinical oncology workflows. Targeted gene expression panels 
facilitate multiplexed measurements of expression of select 
genes without having to perform whole transcriptome (WTX) 
sequencing and are anticipated to enter clinical oncology work-
flows.8 Unlike targeted mutation profiling, which often has a 
binarized outcome, gene expression panels can provide dynamic 
information on tissue subtypes and states and can form the 
basis of more complex and quantitative predictive models.

Beyond gene expression data, we also assessed the value of 
genomic sequence-level aberrations as classifier features, but 
this generally did not confer any significant advantage relative 
to clinicopathological information alone in the vast majority of 
cancer types examined (data not shown). As such, we focused 
our analysis on data derived from bulk RNA sequencing.

One challenge in using expression-level data for survival clas-
sification is the sheer number of genes, or features, across the 
entire transcriptome. As such, for each of GBM, STAD, and OV, 
we performed a differential expression (DE) analysis between 
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patients who survived above and below the respective time 
points we were interested in examining (Figure 2A). For instance, 
for STAD, a DE between patients surviving longer than 1 year 
and shorter than 1 year was performed, and genes with a P value 
of less than .001 were funneled into downstream analysis. This 
yielded genes enriched in the lower surviving comparator group 
that have been described in association with malignant and 
aggressive behavior; for instance, PTGS2, a prostaglandin syn-
thase and cyclooxygenase, has been reported to facilitate resist-
ance of GBM to radiotherapy, a commonly used treatment 
modality for this disease. Beyond genes that are upregulated in 
the poorer surviving group, there were also genes whose down-
regulation was associated with reduced OS (Figure 2B)

To observe whether integration of our DE analysis would 
improve survival prediction as evaluated by AUROC, we 
deployed a random-forest-embedded sequential forward selec-
tion (SFS) approach that begins with an initial subset of the 15 
most predictive clinicopathological features (as already identi-
fied in the prior analysis) before sequentially appending the 
next most informative gene as an additional feature. We 
extended the SFS analysis for up to a total of 40 features to 
optimize for parsimony, split between 15 that were clinico-
pathological and 25 that were gene-expression-based. With 
clinicopathological features alone, the AUROCs for GBM, 
STAD, and OV survival prediction were 0.66, 0.69, and 0.67, 
respectively. However, following the inclusion of gene expres-
sion data, these increased to 0.76, 0.77, and 0.77, respectively 
(Figure 3). We therefore conclude that bulk gene expression 
data could serve to complement clinical features in predicting 
both 1-year and 3-year OS across numerous cancer types

Discussion
Prediction of cancer survival for individual patients is challeng-
ing given the large number of features that contribute to intrinsic 
tumor behavior, treatment response, and the patient’s ability to 
tolerate therapy or withstand tumor burden. However, using 
random forest and gradient boosting machine learning 
approaches, we model and predict OS across each of 16 cancer 

Figure 2.  Gene expression classifiers associated with lower performing cancer subtypes. (A) Volcano plots of gene upregulated or downregulated in 3 

different patient cohorts (1-year OS stomach/gastric adenocarcinoma, 3-year OS ovarian carcinoma, and 1-year OS glioblastoma multiforme). (B) Genes 

derived from the differential gene expression analysis and their corresponding log2 fold change.
OS indicates overall survival.

Figure 3.  Gene expression classifiers improve survival prediction 

scores. Line graph showing successive increases to AUROC as the 25 

most relevant genes are included in the sequential feature selection 

algorithm.
AUROC indicates area under the receiver operating curve; OS, overall survival.
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types using both clinical features and bulk transcriptomic data. 
This is advantageous to performing a pan-cancer classification 
in aggregate, given that some of our highest performing features 
are highly cancer-specific (eg, liver fibrosis score in liver cancer). 
Indeed, performing an alternative aggregated analysis would 
have precluded the identification of robust predictors for indi-
vidual cancer types. Overall, our results suggest that clinico-
pathological features alone can robustly predict 1-year and 
3-year OS in a cancer-type-dependent manner, and that for 
more poorly performing cancers, the integration of gene expres-
sion can improve classification performance. However, it should 
be noted that there were discrepant results between prediction 
accuracy and AUROC for certain cancer types, such as GBM at 
3 years and THCA at 1 year. To facilitate interpretation of these 
results, we suggest that greater emphasis be placed on the 
AUROC results for each cancer type, given that this metric takes 
into account both the sensitivity and specificity of the model. 
Indeed, it is possible for a classifier to achieve arbitrarily high 
prediction accuracies if the data are disproportionately skewed 
toward a particular outcome, which we posit occurred with the 
inflated prediction accuracy for GBM at 3 years. These chal-
lenges, such as overfitting models and having unbalanced out-
comes groups, prompted us to further perform an orthogonal 
analysis of similar features with a Cox proportional-hazards 
model. Taken together, we believe this provides a broad atlas of 
prognostic features within the various TCGA patient cohorts.

For some cancer types, our survival classifiers exhibit similar 
performance as other previously described machine learning 
methods, albeit leveraging distinct data sets. As an example, for 
GBM, prior studies have used radiomic features and machine 
learning to predict OS for long survivors (>900 days), short survi-
vors (<300 days), and mid-survivors (300-900 days), with 
AUROC scores of 0.784, 0.817, and 0.709, respectively.9 Similarly, 
mean kurtosis (MK) and mean diffusivity (MD), both derived 
from diffusion kurtosis imaging (DKI), predict 2-year survival of 
patients with GBM with AUROC scores of 0.841 and 0.772, 
respectively.10 For OV, a gradient boosting machine learning 
model was developed to predict survival of epithelial ovarian car-
cinoma and produced an AUROC score of 0.830 when validated 
on an external cohort.11 Finally, for gastric adenocarcinoma, prog-
nostic classifiers derived from immunohistochemistry biomarkers 
and support vector machine (SVM)-based methods have been 
shown to predict 5-year OS with an AUROC score of 0.834.12 It 
remains to be seen how features used in other studies may be com-
bined with those in ours to generate better models overall.

Although prior studies have reported the use of machine 
learning to predict survival for individual cancer types,13,14 few 
to our knowledge have systematically deployed consistent 
approaches on as many disease sites as we have, thereby pre-
venting a robust understanding of the diseases in which clinical 
and pathological features are capable of predicting patient out-
comes and which still require more investigation. In light of 
this, we performed the analyses on clinicopathological and 

biomolecular features separately, which allowed us to decipher 
the value of more accessible features first before determining 
the added benefit of more complex information.

One limitation of the study was the availability of data that 
could be inputted into our model. Although there were many 
other features that theoretically could have served as model 
inputs, incomplete annotation in a large proportion of patients 
precluded their use. Furthermore, while the integration of gene 
expression information to supplement clinicopathological fea-
tures did provide substantial benefit to prediction for multiple 
cancer types, there was still significant room for improvement. 
This suggests that the complex nature of cancer behavior and 
patient prognosis cannot be entirely encapsulated through bulk 
transcriptomics alone, and it remains to be seen whether the 
integration of alternative modes of molecular profiling such as 
mutations, DNA methylation, and chromatin accessibility and 
even spatial/radiographic resolution of these biomarkers can 
enhance prognostication. Ultimately, however, the benefit of 
prognostication lies in better insights for clinical management 
and planning for patients. With more complete clinicopatho-
logical annotations and the advent of accessible technological 
advances, we may be poised to move beyond binarizing patients 
by their likelihood of survival at 5 years after diagnosis.

Conclusions
Cancer prognostication is important for guiding clinical man-
agement and treatment, but it is challenging due to the sheer 
number of features that can affect outcomes. In this study, we use 
machine learning tools to characterize and examine the relative 
importance of clinical, pathological, and gene expression features 
in predicting OS across 16 different cancer types. For some can-
cer types like PAAD and SKCM, we observe that clinical fea-
tures alone are strong predictors of OS with average 3-year 
AUROC scores of 0.88 and 0.84, respectively. In contrast, for 
other cancer types like GBM, STAD, and OV, clinical features 
are not robust predictors of OS (AUROC scores of 0.66, 0.69, 
and 0.67, respectively), and additional transcriptomic informa-
tion is incorporated to improve survival prediction. With the 
inclusion of the 25 gene-expression-based features, AUROC 
scores for the 3 cancer types increased to 0.76, 0.77, and 0.77, 
respectively, emphasizing the prognostic impact of transcrip-
tomic information. Finally, using an orthogonal approach, we 
leverage Cox proportional-hazards models to assess the impact 
of prognostic features on OS and DFS. Through this study, we 
provide a robust and pragmatic approach that uses routinely col-
lected clinical oncology data and provides accurate survival clas-
sification at the individual patient level.
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