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Standardised animal models of host microbial
mutualism
AJ Macpherson1 and KD McCoy1

An appreciation of the importance of interactions between microbes and multicellular organisms is currently driving

research in biology and biomedicine. Many human diseases involve interactions between the host and the microbiota,

so investigating the mechanisms involved is important for human health. Although microbial ecology measurements

capture considerable diversity of the communities between individuals, this diversity is highly problematic for

reproducible experimental animal models that seek to establish the mechanistic basis for interactions within the overall

host-microbial superorganism. Conflicting experimental results may be explained away through unknown differences in

the microbiota composition between vivaria or between the microenvironment of different isolated cages. In this

position paper, we propose standardised criteria for stabilised and defined experimental animal microbiotas to generate

reproducible models of human disease that are suitable for systematic experimentation and are reproducible across

different institutions.

THE ISSUES OF MODELLING HOST-MICROBIAL MUTUALISM

If we look up at the night sky and contemplate perhaps 1024

stars in the Universe, or glance down at the 1027 molecules in
our body, a mere 1014 microbes in our lower intestine comes
into perspective. Yet the microbiota that populates most animal
and plant body surfaces (with various densities and composi-
tions) is a story of big numbers, complex interactions and very
multidimensional networks. However trendy it is to think
about our bodies as host-microbial superorganisms, composed
of eukaryotic and prokaryotic components, these are not new
ideas. Louis Pasteur and Harvey Cushing both wrote about
these concepts:1,2 tempered by some scepticism on whether
it would be possible to separate the two (microbial/host)
components of the living plant or animal ‘superorganisms’.
Although the germ-free-breeding program pioneered at Notre
Dame University in the early years of the 20th century proved
that animals could live without their prokaryotic and other
microbial constituents,3–5 a further 100 years of experiments
have shown that a germ-free existence is far from normal.
Differences between germ-free and colonised animals can be
seen essentially in every organ system,6 and germ-free animals
lack a large chunk of the cumulative metabolic pathway
map, comprising the synthesis of essential nutrients and

vitamins, detoxification, and energy harvesting by metabolism
of compounds resistant to the digestive processes of the animal
host.7

Whereas observational astronomy has driven theoretical
models in physics from the age of Keppler and Newton, the
biology of host-microbial interactions remains largely empiri-
cal. We are still gazing more at ‘who is there’ in our microbiotas
than ‘what they are doing’. Yet the renaissance of interest in the
microbiota has been driven by much better biological tools to
explore the networks. ‘Omics are our equivalent of radio teles-
copes, spectroscopy, and X-ray astronomy, giving us the
beginnings of the detailed insights into the genetics, transcrip-
tional, translational, and metabolic events that must be
compiled into generalised theoretical networks.

Our problem as biologists is that whereas astronomical
phenomena can be conveniently split up—gravitation, how
stars shine, black holes, cosmic inflation, and so on—to find
universal laws, we have not yet developed an accepted or
defined reductionist approach to understanding host-microbial
mutualism. With over 1,000 operational taxonomic units in
human feces and a variable composition from person to person,
we end up with the equivalent of a different galaxy for every
individual, where (for the moment at least) it is hard to
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generalise universal network laws.8–11 The situation is hardly
better with experimental animals: variability between vivaria is
so wide that it is hard for two different research groups to look
at the same biological galaxy.12–14 Even within a vivarium,
the modern system of housing experimental animals within
individually ventilated isolated cages results in stochastic
changes in the microbiota so that every cage becomes its
own unique galaxy.15

Handling biological variability is also not new. The trick has
been to reduce complex adaptive systems to something
manageable. In the conceptual trajectory from molecular
structures of crystals, the metabolic reactions of purified
proteins, functioning of subcellular organelles, behavior of cell
lines, or the experimental animal model, the object is always the
same—to understand what happens in an intact animal or
human, living in a natural environment. We have been able
to handle germ-line genetic variability of animal models, and
to share defined models across institutions, by inbreeding
programs16 and genetic manipulation of embryos. In experi-
mental animal models, an important part of defining the
environment is to ensure that the animals are not infected with
any known pathogens for that species (specific pathogen-free:
SPF, classified according to the American Association of
Laboratory Animal Science or the Federation of European
Laboratory Animal Science Associations17,18). In this article, we
discuss the ideas and challenges that we face for equivalent clear
annotation and simplification of the microbiota in our
experimental animals to allow different biologists to study
the same defined phenomena and to start assembling the
general laws of host-microbial networks.

DIFFERENCES IN MICROBIOTA COMPOSITION HAVE

STRONG EFFECTS ON HOST BIOLOGY

It is clear that the differences in composition of the microbiota
make an immense difference to the biology of the host. Some
constituents are known to have especially strong effects—here
we will discuss a few examples that illustrate this point.

The clostridial clade of segmented filamentous bacteria (SFB;
Candidatus arthromitus) is an excellent example of a species
that has such a powerful effect on host immunity that it can
even be considered essential to drive the normal formation of
the immune system.19 It is intimately attached to ileal intestinal
epithelial cells through the eponymous filaments and ‘hold-
fasts’. SFB induces strong host immune responses including
IgA,19,20 Th17,21,22 and regulatory T-cell induction,23 whereas
colonisation levels are limited by expression of epithelial
antimicrobial peptides.24 SFB also drives immunopathology in
monocolonised mice including the arthritic phenotype of the
K/BxN model25 and induction of experimental allergic
encephalomyelitis (EAE).26 Whether or not immunopathology
results from strong effects on the immune system by particular
members of the microbiota probably depends on the host
genetic background that shapes immune repertoires and
regulatory mechanisms.25,27

Serendipitous SFB colonisation differences between mouse
lines from two different commercial suppliers led to the

discovery of its strong effects on T-cell responses.21

Notwithstanding the acumen involved, this should be a
wake-up call for our currently accepted standards of animal
supply and experimentation with rather undefined starting
conditions.

Sequencing of the SFB genome has shown that the potential
metabolic repertoire is actually rather limited. Synthetic
enzymes required for the amino acids alanine, threonine,
glycine, methionine, arginine, and proline are incomplete.
Endogenous synthesis of vitamins and cofactors including
riboflavin, porphyrins, and thiamine is also not possible.28,29

Given that SFB can monocolonise a mouse, it must be able to
obtain these compounds from the diet or from effete epithelial
cells. This is one illustration of the principle of interlinked
metabolism between the diet, the host, and the microbiota.

Molecular mechanisms of host immune stimulation have
been shown in a second example of strong effects of a specific
bacterium—the human commensal Bacteroides fragilis. This
organism expresses a zwitterionic polysaccharide (polysac-
charide A; PSA) capable of activating B cells by binding
its repetitive structure to the B-cell receptor and of activating
T cells through (non-peptide) presentation through major
histocompatibility complex Class II.30 Colonisation of
germ-free animals with PSA-expressing B. fragilis (but not
the PSA-deficient mutant) can normalise the otherwise
hypoplastic lymphoid structures and T-cell subsets.31 B. fragilis
also can maintain itself in an intimate niche (in this case within
the colonic crypts) through direct stimulation by PSA of the
Toll-like receptor 2 (TLR2) pathway on FoxP3þ regulatory
T cells:32 a regulatory response that offsets activation of Th17
CD4þ cells to clear the organism. PSA can also stimulate TLR2
on plasmacytoid dendritic cell to further enhance interleukin
(IL)-10 secretion by CD4þ T cells.33

Another effect comes from microbial production of short-
chain fatty acids. Bacterial-derived short-chain fatty acids
including butyrate have long been known to be a carbon source
for colonic epithelial cells.34 More recently butyrate and
propionate have been shown to enhance extrathymic differ-
entiation of regulatory T cells.35 The mechanism is through
acetylation and activation of the FoxP3 locus: the carboxylic
acids achieve this through inhibition of histone deacetylase
enzymes.36,37 Production of short-chain fatty acids by Clos-
tridia species thus probably accounts for their effectiveness in
inducing Treg cells.37,38

In the preceding paragraphs, we have concentrated on
examples of how particular members of the microbiota exert
strong effects on the ‘normal’ makeup of the host immune
system to make the case that studying the interactions at a
mechanistic level requires definition and annotation of
host-microbial superorganism composition. These examples
of strong effects are almost certainly the host-microbial
equivalent of monogenic traits. Before progressing to how
the problem of interactions in more complex microbiotas may
be solved experimentally, we need to mention three further
aspects of the multidimensionality of host-microbial super-
organism modeling.
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a Metabolism between the microbes and the host is very
integrated—to the extent that the term ‘metabolic hand-
shake’ has been coined.39 The combined (bacterial/host)
pathways for bile salt synthesis and metabolism provide a
prime example of such integration.40

b The phenotypes of many animal models of disease depend on
exactly which microbiota is being carried. SFB as a trigger of
arthritis or EAE was cited above, but this is the tip of the
iceberg. For example, colitis can be triggered in immuno-
deficient mice carrying Helicobacter hepaticus41–44 or
Helicobacter typhlonius.45 Metabolic syndrome (including
fatty liver and impaired glucose tolerance) is seen in mice
with defective inflammasome response pathways carrying
Prevotella or TM7.13,46 More generally, models of obesity,47

autoimmunity,48 cardiovascular disease,49 behavior,50

and tumorigenesis51 are all dependent on microbiota
composition.

c Diet has a profound effect on the composition of the
microbiota.11,52,53 Dietary composition not only affects
disease susceptibility through direct effects on host meta-
bolism, but also indirectly through changes in the composi-
tion and metabolism of intestinal microbes.54

This picture of the host-microbial superorganism is highly
complex and variable, especially if the dimension of genetic
variability in outbred individuals is added to the complexity
of the microbiota.8,55 The question is now, how realistic is it
to define, control, and standardise these factors? Table 1
distinguishes the main interdependent parameters of host and
microbial effects on mutualism and describes the potential
strategies for standardisation.

THE DIFFERENT APPROACHES TO SOLVING THE PROBLEM

OF MICROBIOTA DIVERSITY CONFOUNDING RESULTS IN

EXPERIMENTAL ANIMAL MODELS

In ecological terms, we have a choice of two broad approaches
to avoid diversity of the microbiota56 becoming a critical
confounding factor in our animal experiments.

The established method is to take a specific habitat (in the
case of mouse experimentation, this can be a single cage) and
try to ensure that experimental measurements, and controls
are carried out in parallel within this single habitat. In ecological
parlance, beta diversity between different habitats57 (the
microbiota ‘cage-effect’ whereby different experimental and
control groups are caged separately15) should be eliminated
from the experiment. One can cohouse animals so that
representatives of different experimental groups are within
a single cage (replicated across a series of cages), so the
differences between the groups and the cages can be
independently measured.13 In the case of strain-combination
experiments, an equivalent approach is to set a heterozygous
breeding and compare littermates that are homozygous or
heterozygous for the trait in question within a cage. Other
measures can supplement cohousing, such as transferring
bedding between cages or ventilating open top cages with a
single atmosphere (as in a flexible-film isolator). Such

experiments have the practical limitation that it is not permitted
to overcrowd animals within a cage.

A more important limitation of this approach is that the
starting alpha microbiota diversity within each individual
animal at the outset is usually uncontrolled and undefined.
Therefore, even if the experiment shows a result without
confounding cage effects, it may not repeat in a different
institution whose animals harbor a different starting micro-
biota, or at different times within the same institution following
changes in the microbiological diversity of the vivarium.
Another limitation is that it does not seek to control
microbiological beta diversity between different animals in
the same cage (this concern is amplified when one considers
that there is also diversity between the different niches in the
same animal that will not entirely synchronise with each other).
These limitations restrict our ability to use replicate animals
within the same cage or repeat the measurements in different
animals to address the molecular mechanisms of host-
microbial interactions.

We believe that there are immense experimental advantages
from a second bottom-up approach; to manipulate the starting
microbiota in a concerted effort to create standardised defined
mouse colonies that can be shared across institutions.

ISOGENIC AND ISOBIOTIC MICE

In murine animal models, we can certainly manipulate the
germ-line DNA by inbreeding and genetic-targeting techni-
ques. As a reasonable approximation, we therefore have
colonies of isogenic mice that are identical in the germline
and where targeted genetic manipulations can be studied at the
level of the intact animal. Enormous numbers of isogenic mice
are now available (http://www.findmice.org), either as breeding
colonies, as frozen embryos or sperm, or as embryonic stem
cells (Figure 1).

Although isogenic mice were born out of the breeding
programs for amateur ‘mouse fanciers’, their impact has been
far-reaching.58 Our ideas about mammalian genetics,59 reg-
ulation of mammalian development,60,61 transplantation
biology,62 immune restriction,63,64 infectious susceptibility,65

and tumor biology66 are founded on experiments with inbred
animals and later development of the ability to manipulate their
germline.67,68 Quite apart from the ability to relate genes to
functional biology, inbred mice reduce experimental variability
and increase the inherent power of biological studies generally.
One hopes that equivalent advances can be made with similar
fixation of the microbiota in isobiotic mice.

Yet in comparison with large numbers of isogenic mouse
strains, progress in harmonising the microbiota in isobiotic
mice has been modest (Figure 1). It has long been realised that
germ-free mice have hypoplastic lymphoid structures and
are highly susceptible to intestinal and opportunistic
infections.69,70 In an attempt to normalise the host and limit
infectious susceptibility, Russell et al. 71 carried out experiments
in which germ-free mice were inoculated with combinations of
bacteria from pure culture. To limit the effect of a single
bacterial species overgrowing in the intestine, they devised a
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cocktail of eight species that eventually became popular:
Escherichia coli var.mutabilis, Streptococcus faecalis, Lactoba-
cillus acidophilus, Lactobacillus salivarius, group N Strepto-
coccus, Bacteroides distasonis, a Clostridium species and a
species of extremely oxygen-sensitive (EOS) spiral-shaped
(fusiform) bacteria. Many different variations of similar
microbiotas came into use.72 In 1987, the National Cancer
Institute of the United States initiated standardisation of
various microbiotas, resulting in a revision of this ‘Schaedler
flora’ to include a Flexistipes fusiform bacterium and three
further EOS fusiform species.73,74

The ‘altered Schaedler flora’ (ASF) is still in widespread use
today, although very few vivaria strictly control the microbial
composition of the mouse colonies. Unfortunately, using
standard husbandry, it is extremely easy to introduce immi-
grant microbial species that diversify the ASF,75 or to diversify
other restricted microbiotas, especially if technicians and
scientists do not strictly observe aseptic techniques in animal
handling and care.76 Diversification is then passed vertically

within cohoused interbreeding groups, which complicates
interpretations about phenotypic differences between different
inbred genetic strains.14 A second disadvantage of the ASF is
that the organisms are not freely available (being protected
under commercial patent) and recreating the ASF from scratch
using pure cultures is very demanding, both in terms of growing
the fastidious anaerobic constituents and the inoculation
sequence required for them to colonise the intestine. Finally,
the ASF is such a minimal microbiota that mice have a
phenotype closer to germ-free than to colonised animals in
some model systems.12,76

This means that the ideal practical requirements of isobiotic
mice would be (i) a stable microbiota of defined composition
that is easy to regenerate using pure culture inoculation of
microbes into germ-free recipients; (ii) resistance to immigrant
microbes during standard vivaria conditions;72 (iii) metabolism
that mirrors that of animals colonised with a diverse
microbiota;76 and (iv) it should produce a phenotype in
disease models that reflects diverse colonisation conditions.48

1895
Guinea pigs raised germ-free

Nuttal and Thierfelder

1946

End 1950Commercialized flexible-film isolators

1965
The Schaedler Flora:

Colonization with five defined bacterial species
Rockefeller, Schaedler

The Altered Schaedler Flora:
Extended to eight defined bacterial species

National Cancer Instittute
1987

Transient, reversible colonization

Jun 25;328(5986):1705.10

2010

two lines of
Stable Defined Moderately Diverse Microbiota

(sDMDM)
CMF, University of Bern, 
Switzerland

1974

Retrovirus-mediated transgenesis in blastocysts
San Diego, Jaenisch

1981

DNA microinjection: trangene transmitted to next generation
Yale University, Gordon and Ruddle
University of Oxford, Constantini and Lacy

Embryonic stem cell-mediated gene transfer
Max Plank Institute, Gossler and Kemler

1986

Hapfelmeier et al, Science 2010

1951
1947

Academic institutions to study germ-free life:

Notre Dame University, Reyniers
University of Lund, Gustaffson

University of Nagoya, Miyakawa
Laboratory of Gnotobiology, Czech Republic

High-throughput gene targeting in C57BL/6 embryonic stem cells
Sanger Institute, Skarnes and Bradley 

2011

1903–15
Origin of inbred mice
Mice breeding for English fanciers and for Research 
Granby Farms, Abbie Lathrop 

1897–1936
Pioneering of mammalian genetics
Using mice strains from Granby Farms
Harvard University, William Castle

Bar Harbor renamed the Jackson Laboratory
Funded by automobile industry 
C.C. Little (trainee from Castle), director 

1944
The Jackson Laboratory 
supplies 9000 mice per year to research institutes

1950
The Jackson Laboratory breeds and houses 60 inbred strains of mice
Congenic mouse strains first developed
G. Snell, The Jackson Laboratory

1958 Mouse Genome Database

1979

The Frozen Embryo Repository

1993

Genetically Engineered Mice Repository

Knock-out Mouse Project: a knock-out mutation for every gene2006

1988

Humanized mice
Mosier and Wilson, University of California

Live mice: 3’487
Embryonic stem cells 209’969
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History of isogenic miceHistory of isobiotic mice

Numbers of different strains of isogenic mice maintained as:

1929

McCune and Weissman, Stanford University

Figure 1 Time line of development of isobiotic mice in comparison with isogenic mice. The panel on the left highlights historical events in the
development of gnotobiology. The panel on the right illustrates the huge progress made in the development of isogenic mice.
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MAN MU� DIE DINGE SO EINFACH WIE MÖGLICH MACHEN.

ABER NICHT EINFACHER. (ONE SHOULD MAKE THINGS AS

SIMPLE AS POSSIBLE. BUT NO SIMPLER. ALBERT EINSTEIN)

Discussion of defined microbiotas normally revolves around
their prokaryotic constituents. Yet these microbes are them-
selves carriers of bacteriophage and transposons (insertion
sequences), whose movement adds to the inherent genetic
variability of even the simplest microbiota. It would be over
simplistic to imagine that an isobiotic microbiota does not have
inherent genetic instability.

The 19 families of phages are distributed widely in the
eubacteria and archaea: in practice, the order Caudovirales
(tailed phage carrying ds DNA) and its families Siphoviridae,
Podoviridae, and Myoviridae dominate the mammalian
intestinal virome. Studies of the human fecal virome have
shown differences between individuals (even twins), although
within a single individual, the virome was quite stable and
composed mainly of temperate (lysogenic) phage. This
contrasts with phage in the microbial consortia in sludge
and acid-mine effluent that are dominated by lytic bacter-
iophage behaving in a more predatory fashion.77 Sequence
studies of CRISPR/Cas systems (a form of microbial immunity
that can target immigrant DNA, leaving a genetic footprint in
the spacers of the repetitive elements) also argue against the
occurrence of many lytic events.77 Nevertheless, this is a newly
emerging area of study, and additional experiments are
required to elucidate the role of bacteriophages in shaping
the gut microbiota and their contribution to disease (reviewed
in ref. 78, 79). Phage attack has been shown to lead to transient
changes in community structure and the ability of some
bacterial species to acquire phage resistance.80 Emerging data
on the identity and ecology of bacteriophages will be germane to
developing or modulating isobiotic lines.

Phage particles carry microbial host genes that are relevant to
adapting bacteria to the stresses of antibiotic treatment, and
possibly also other environmental stress. Antibiotic treatment
is an acute form of stressing intestinal bacteria, and certainly
results in widely increased phage/bacterial association.81 It is
still unclear how far other stresses cause phage-driven
adaptation responses in the microbiota.

The upshot is that there is likely sufficient stability in the
microbiota to make short/medium-term stability of mouse
models using defined isobiotic mice possible, especially with a
limited microbiota. However, the genetic background of the
microbiota will be subject to drift, both through the endogenous
bacterial mutation and movement of genetic elements between
bacteria, which may be accelerated under conditions where the
microbial consortia are stressed. A simplified defined micro-
biota where the prophage content and positions can be assessed
by genomic sequencing will provide powerful tools to allow us
to understand the dynamics and mechanisms of microbiota
adaptation in response to different manipulations of the overall
superorganism.

If plasticity of the microbiota metagenome is problematic
over time, it should also be possible to restore an isobiotic
system to defined starting conditions. This can be achieved

through recolonisation of fresh germ-free mice with defined
archived microbes from pure culture.

THE RARE BIOSPHERE

A further consideration for defined microbiotas is how one
handles rare organisms that may have biological importance
out of proportion to their frequency—the rare biosphere. Fungi
are an important example: although commensal fungi are
carried at low levels in healthy organisms, they can bloom or
cause opportunistic infections during immune suppression.82

There is also evidence that fungi not only interact metabolically
with bacteria and archaea, but also that they shape the succes-
sion of recolonisation after antibiotic treatment. Although
there is no difficulty in eliminating these organisms from a
microbiota when colonising germ-free mice with bacteria from
pure culture, experimental inclusion of components of the
rare biosphere may pose problems of reproducible low-level
colonisation in appropriate niches.

AXENIC AND GNOTOBIOTIC TECHNOLOGY

One of the reasons for the development of isolated ventilated
cages was to limit the transmission of pathogens or pathobionts
within an animal colony.72 Unfortunately, the cages can also
provide numerous microenvironments for drift and diversi-
fication through the immigration within the same animal-
holding room.14

Fortunately, technology for maintaining germ-free or gnoto-
biotic mice is well established. Flexible film isolators are used
that are initially sterilised by an internal mist of 3% peracetic
acid, and then ventilated with high-efficiency particulate air-
filtered air.6 Sterilised cages, bedding, food, and water can be
imported into this environment from large steel drums, which
have been passed through an autoclave with an appropriately
large sterilisation chamber (Figure 2).

Imports from drums into the isolators are accomplished
through plastic sleeves, which are attached to both the port on
the isolator and the outside of the drum, then sterilised inside

Figure 2 Sterile connection between a material drum and a flexible film
isolator. The large steel drum contains sterile materials to be imported into
the isolator, such as food, bedding, or cages. The drum is sealed and
autoclaved and then connected to the isolator via a plastic sleeve that is
sterilised by spraying with 2% peracetic acid, which then permits transfer
of the sterile material into the isolator.
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through spraying with 2% peracetic acid. After an hour to allow
the peracetic acid chemical sterilisation to be effective, the inner
door of the isolator port is opened, the membrane sealing the
drum is broken, and the materials are transferred into the
isolator using a glove that is set into the plastic sleeve. Germ-free
or gnotobiotic animals can be transferred either by a two-stage
transfer (first into an empty sterilised drum with a resealable
cap, followed by connection to a second isolator) or by directly
connecting the isolators with a plastic sleeve.

Our experience has been that animals that are germ-free, or
colonised with a limited microbiota, can be maintained over
many years using this system, whereas individually ventilated
cages are stable over months, but each cage constitutes a
microenvironment that is susceptible to microbiota diversi-
fication through introduction of new species, probably through
minor errors in aseptic handling.

An important adjunct to this technology is the ability to
transfer different mouse strains into the desired axenic or
gnotobiotic background. This can be done by embryo transfer
(Figure 3). Females of the new strain that needs to be imported
are superovulated and mated; then the two-cell-stage embryos
flushed from their oviducts and meticulously washed in sterile
M2 medium. The embryos are then surgically transferred into
pseudopregnant germ-free or gnotobiotic females with the
required microbiota, by linking their isolator with a sterile
microsurgery laminar-flow cabinet. Our experience is that this
is a highly reliable and relatively fast way of altering the hygiene
status of almost any strain of mice, and in the case of
gnotobiotic (isobiotic) transfers, the new strain acquires the
microbiota of the foster mothers.

One can therefore make a case that the technology of axenic
embryo transfer, although specialised, is good for purpose, and
that isogenic and isobiotic backgrounds can be manipulated
according to experimental need.

The problem of transferring animals that are germ-free or
with a defined microbial composition between these flexible-
film isolators in different institutions has also been solved using
special ‘transport sleeves’ (Figure 4). The scientific community
is therefore potentially in a position to raise the standards
whereby it defines and stabilises 90% of the cellular
composition and much of ‘the other genome’ in its animal
models.

ETHICAL AND SCIENTIFIC ADVANTAGES OF DEFINED

STABLE MICROBIOTAS

Ethics require us to reduce refine and replace animal experi-
mentation.83,84 It is well established that isogenic (genetically
inbred) mice have substantially less inherent phenotypic
variability across a wide range of experimental protocols than
outbred mice.85 Thus, experiments with inbred animals are
inherently better powered, requiring fewer per experimental
group. This is true not only in immunology, but also in other

48 h

d0

Collection of
oviducts

36 h

24 h

d0

Embryo donor from isogenic strain:

Embryo recipient strain germ-free or isobiotic:

19 days

Mating of a recipient female with
a vasectomized male 

Pseudo-pregnant germ-
free recipient female

Two-cell stage embryos are flushed
out of the oviduct and transferred into germ-

free pseudo pregnant recipient females

Isogenic strain
germ-free or isobiotic

hCG i.p.

PMSG i.p

d-4 d-2

d-1

Figure 3 Experimental protocol for superovulation of embryo donor females followed by embryo transfer into germ-free or isobiotic pseudopregnant
recipient females.

Figure 4 Specialised transport sleeve. The photo shows an example of a
specialised transport sleeve developed to allow shipping of germ-free
animals between facilities. The example shown is available from Taconic.
Many germ-free facilities have developed their own transport devices that
reflect the design of their isolators. Such transport containers allow
importation of germ-free or isobiotic mice into isolators at the new facility
and ensure hygiene is maintained during transport.
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biological science at the whole-animal level, including beha-
vioral and pharmacological studies. Misguided use of outbred
animals to obviate the concern that complex (host genetic)
traits are being studied where a single inbred strain may be
unrepresentative, decreases experimental power and remains
informative only if the animal numbers are considerably
escalated. A better solution is usually to use multiple isogenic
experimental strains (all of which remain appropriately
powered) and a factorial design.85 Translating the factors
for complex host genetic traits as differences in microbial
composition (or the microbial metagenome), a similar argu-
ment can be advanced for isobiotic mice. Here, we can stabilise
much of the inherent variability in the microbiota of current
vivaria, increasing experimental power, with the potential to
simplify the microbial complexity sufficiently to dissect
metabolic networks and the mechanisms of effects on the
host. By extrapolation from experiments using different
isogenic strains to understand complex traits, different isobiotic
strains are likely to be required to understand the effects of
different microbial consortia.

Of course, it is entirely appropriate to use outbred animal
stocks and human populations in high-resolution mapping of
complex traits.86 Large numbers are required. For example,
75,000 subjects and controls have been genotyped to detect 163
loci linked to inflammatory bowel disease,87 yet only B20% of
the variance in disease risk is explained. The complexity of
the human microbiome and the distinct consortia, named
enterotypes, has been so far accomplished with smaller
numbers of human metagenomes.8 Studies of the microbiota
composition according to diet or to disease susceptibility have
been reported so far with 10s–100s of subjects.9,11 It remains a
challenge that our reference microbial genomes are incom-
plete.88 Nevertheless, these studies show us the real world
complexity of host microbial interactions, and simplified
isobiotic microbiotas must be compared with complex
colonisations52 to collectively model this complexity, albeit
with the key advantage that they leverage sufficient power to
dissect the individual mechanistic pathways experimentally.

PROPOSED CRITERIA FOR DEFINED MICROBIOTAS?

From the previous discussion, although the generation of
standard microbiota mice is to some extent empirical, we
propose a number of criteria desirable in isobiotic mouse
strains (on a wild-type host isogenic background).

i Microbial stability over generations on a fixed sterile ‘open-
source’ diet when maintained under aseptic conditions.

ii Transferability of the isobiotic microbiota from a pseudo-
pregnant female to pups (of the same or a different isogenic
strain) after aseptic two-cell-stage embryo transfer.

iii The ability consistently to regenerate the particular
isobiotic microbiota de novo using germ-free wild-type
mice inoculated with the appropriate combination of
microbes from cryopreserved pure cultures.

iv Completeness of overall microbial metabolic pathway
representation in the sequenced metagenome.

v Distinct microbiota representation (in different isobiotic
lines) at species level to avoid direct replication of an
individual line: phylogenetic overlap above species level
should be expected and tolerated.

vi No abnormalities in wild-type mice in clinical chemistry,
peripheral blood count parameters, gross organ histology,
body composition, development or fecundity.

vii Representative metabolomic and immunological profiles
of serum, urine, and organs compared with mice harbor-
ing a diverse microbiota.

viii Normal pathogen colonisation resistance and inflamma-
tory and autoimmune model disease susceptibility.

ix Relative stability of the isobiotic microbiota under aseptic
husbandry within individually ventilated cages.

The experimental approach to making these isobiotic lines
can either be (a) through design to obtain representatives of
defined (where possible genetically tractable) organisms known
to be common in the gastrointestinal (or skin or airways) tract
on a phylum/class/order/family basis (e.g., Actinobacteria,
Bacteroidetes, Firmicutes, Proteobacteria); (b) empirical
through cocktail colonisation of germ-free mice and following
the resulting microbiota out to stability; or (c) diversification of
established isobiotic lines.

In order to ensure reproducibility of experimental data, it is
essential that the microbial consortia are stable over time and
horizontally and vertically transmissible (see criteria i). Such
stability under aseptic conditions will protect from divergence
of the microbiota over time. It is clear that it is important to
standardise diet for stability of the microbiota.52 As the
objective is ultimately to share standardised isobiotic mice with
other facilities worldwide, the use of commercially available
open-label diets, with 40 kGy sterilisation to eliminate potential
microbial immigrants will enable different institutions to
reproduce the conditions under which the microbiota is stable.
Generating isobiotic lines that are relatively stable will allow
researchers to import these lines and house them in individually
ventilated cages for specific short-term experiments (see
criteria ix), so that the benefits of standardisation are available
to those without the resources to establish isolator-based
breeding programs.

In order to be able to study different genetically targeted or
inbred wild-type mouse strains for comparative work on
biological systems under the same isobiotic microbiota
conditions, it is important that the microbiotas can be vertically
transferred from a pseudopregnant recipient of the required
isobiotic background to her embryo-transferred pups (see
criteria ii). The technology of ultraclean embryo transfer
described above to transfer the isobiotic microbiota has proved
successful in our unit.

Isobiotic microbiotas will be analogous to inbred isogenic
mouse strains, in that simplification of the traits (in the other
genome) will necessarily not be representative of diverse
microbiotas. We argued in the previous section that the
increase in experimental power and discrimination offsets this
disadvantage, especially if multiple isobiotic strains (all of
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which would remain appropriately powered) and a factorial
design are used. However, the outcome does not have to remain
entirely empirical, as metagenomic analysis can determine the
extent of pathway coverage for each isobiotic microbiota. One
can therefore aim to provide complete coverage of the microbial
metabolic pathway (see criteria iv) such that each isobiotic
consortia at least has the potential to provide a metabolic profile
similar to that provided by diverse microbiotas. Moreover, one
can assess the consequences of each isobiotic microbiota on (a)
the immune phenotype, (b) its phenotype during defined
disease models, and (c) the extent to which the intestinal and
host metabolome corresponds to mice with a diverse micro-
biota (see criteria vi, vii, and viii). This also means that different
microbiotas need to be maintained in vivaria or deliberately
generated from pooled recolonisation of germ-free sentinels,
starting from mouse microbial commensal strains from pure
culture (see criteria iii).

Sentinels from newly created isobiotic lines need to be
sampled across time to provide materials for microbio-
logical, metabolomic, and transcriptomic analyses to determine
how increased microbiota diversity impacts on the micro-
bial and host metabolome and host organ function. These
readouts need to be benchmarked against phenotypes
with diverse microbiotas and microbiotas from commercial
breeders.

STANDARDISATION OR ANARCHY?

In this article, we have tried to argue that defined microbiotas
should be available in experimental rodents. In practice, strict
‘standardisation’ will be impractical because many research
groups will wish to manipulate their microbiota for experi-
mental purposes and a single standard cocktail of organisms
would not capture the phenotypic variability that we are seeking
to model. Indeed, imposing strict standardisation rules would
be anarchy and would decrease our ability to discover new
correlations. Avoiding anarchy will depend on (a) sharing
resources of isobiotic animals and constituent microbes
between institutions; (b) avoiding restrictive patents limiting
the availability or use of key isobiotic models or their
constituent microbes for publicly funded research; and (c)
accepting that some questions can be satisfactorily answered
with simpler methods such as cohousing. Conversely, the
research community needs to agree with standards of biological
definition and provide increased reporting of the baseline
microbiotas (e.g., through high throughput 16S rRNA or
metagenomic gene sequencing) and their consequences in
host-microbial superorganism metabolism when using non-
standardised microbiotas. This in turn will require making
microbiota, microbiome, and metabolome determination more
available and more affordable for researchers. Ideally, a
diversity of defined isobiotic models will bring a depth of
information in reproducible settings that allow us to under-
stand general rules for the networks between prokaryotic and
eukaryotic components of the host-microbial superorganism
and to relate this to human health at an individual level.
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