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Abstract

Many wearables allow physiological data acquisition in sleep and enable clinicians to assess

sleep outside of sleep labs. Belun Sleep Platform (BSP) is a novel neural network-based home

sleep apnea testing system utilizing a wearable ring device to detect obstructive sleep apnea

(OSA). The objective of the study is to assess the performance of BSP for the evaluation of

OSA. Subjects who take heart rate-affecting medications and those with non-arrhythmic

comorbidities were included in this cohort. Polysomnography (PSG) studies were performed

simultaneously with the Belun Ring in individuals who were referred to the sleep lab for an

overnight sleep study. The sleep studies were manually scored using the American Academy

of Sleep Medicine Scoring Manual (version 2.4) with 4% desaturation hypopnea criteria. A

total of 78 subjects were recruited. Of these, 45% had AHI < 5; 18% had AHI 5–15; 19% had

AHI 15–30; 18% had AHI� 30. The Belun apnea-hypopnea index (bAHI) correlated well with

the PSG-AHI (r = 0.888, P < 0.001). The Belun total sleep time (bTST) and PSG-TST had a

high correlation coefficient (r = 0.967, P < 0.001). The accuracy, sensitivity, specificity in cate-

gorizing AHI� 15 were 0.808 [95% CI, 0.703–0.888], 0.931 [95% CI, 0.772–0.992], and 0.735

[95% CI, 0.589–0.850], respectively. The use of beta-blocker/calcium-receptor antagonist and

the presence of comorbidities did not negatively affect the sensitivity and specificity of BSP in

predicting OSA. A diagnostic algorithm combining STOP-Bang cutoff of 5 and bAHI cutoff of

15 events/h demonstrated an accuracy, sensitivity, specificity of 0.938 [95% CI, 0.828–0.987],

0.944 [95% CI, 0.727–0.999], and 0.933 [95% CI, 0.779–0.992], respectively, for the diagnosis

of moderate to severe OSA. BSP is a promising testing tool for OSA assessment and can

potentially be incorporated into clinical practices for the identification of OSA.

Trial registration: ClinicalTrial.org NCT03997916 https://clinicaltrials.gov/ct2/show/

NCT03997916?term=belun+ring&draw=2&rank=1
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Introduction

Obstructive Sleep Apnea (OSA) is a challenging sleep disorder associated with increased car-

diovascular and metabolic morbidities as well as increased mortality [1–7]. In the general adult

population, the prevalence of OSA defined by apnea-hypopnea index (AHI)� 5 events/h

ranges from 9% to 38% and the prevalence is likely to further increase due to both the obesity

epidemic and aging of society [8–10].

The current gold standard for the diagnosis of OSA requires overnight multi-channel poly-

somnography (PSG) in the sleep lab. Type 3 home sleep apnea testing (HSAT) devices are now

widely used despite concerns of false negative results [11–14]. Technologies that analyze

peripheral arterial tone (PAT) signal are considered acceptable alternatives [15, 16]. In the

recent Peripheal Arterial Tonometry Evaluation of Reliability (PATER) study, Ioachimescu

et al. conducted a large cohort comparing WatchPAT with synchronous PSG in 500 consecu-

tive veterans [17]. Using a 3% desaturation threshold, the WatchPAT-200 automated algo-

rithm overestimated severity by an average of +4 events/h, and the 4% threshold

underestimated severity by −6 events/h. Diagnostic concordance was found in 42%, 41%, and

83% of mild, moderate, and severe OSA. These authors recommended that those with no OSA

or mild OSA, assessed by WatchPAT, undergo in-lab PSG testing.

Wearable devices now exert a significant impact in medicine and healthcare [18, 19]. Many

wearables allow physiological data acquisition in sleep and enable clinicians to assess sleep outside

of sleep labs [20–28]. The recent advances of wearable technology arise largely from the miniatur-

ization of biosensors, low-power computation, and the application of artificial intelligence, partic-

ularly machine learning [29, 30]. The Belun Sleep Platform (BSP, Belun Technology Company

Limited, Hong Kong) consists of a patented wearable ring device, a charging cradle, and cloud-

based software. The Belun Ring, an FDA-cleared pulse oximeter, acquires pulse oximetry, photo-

plethysmography (PPG), and 3-axis accelerometer signals from the radialis indicis artery of the

proximal index finger. The BSP proprietary OSA detection algorithm was built using neural net-

works and trained with a dataset of 5,783 patients and 8,417 records of overnight sleep studies

scored with the 4% oxygen desaturation hypopnea criteria [31]. Two fully connected neural net-

works for respiratory event detection and total sleep time estimation were trained respectively to

learn features and patterns from SpO2, pulse rate, heart rate variability (HRV), accelerometry sig-

nal, and PPG waveform to detect respiratory events and total sleep time by 5-minute segments.

Features were extracted from overnight data, current segment, and consecutive prior segments.

Both the respiratory event detection model and total sleep time estimation model have three fully

connected hidden layers. The respiratory event detection model contains 160, 80, and 20 neurons

in each layer while the total sleep time estimation model contains 160, 80, and 5 neurons (Fig 1).

The activation functions used in both models are the sigmoid function. The outputs of the respi-

ratory event detection model are the predicted number of respiratory events in each segment.

A recent proof-of-concept study in adult subjects not taking heart-rate affecting medica-

tions and having no significant comorbidities showed a good correlation between the Belun

apnea-hypopnea index (bAHI) and the PSG-AHI as well as good sensitivity, specificity, posi-

tive predictive value (PPV), and negative predictive value (NPV) in categorizing AHI� 15

events/h. The Belun total sleep time (bTST) also correlated well with the PSG-TST [32].

In this current study, we hypothesized that BSP can reliably identify moderate to severe

OSA in a sleep lab patient population including those who take heart rate-affecting medica-

tions and have non-arrhythmic comorbidities. We specifically studied the accuracy of bAHI

and bTST by comparing them directly to concurrent in-lab PSG-AHI and PSG-TST. We also

investigated the performance of a diagnostic algorithm incorporating STOP-Bang to predict

moderate to severe OSA. STOP-Bang was selected in this study over Berlin Questionnaire
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(BQ) and Epworth Sleepiness Score (ESS) as studies have shown that STOP-Bang is more

accurate than ESS and BQ in predicting OSA of various severity as ESS only assesses sleepiness

and BQ focuses primarily on OSA-related symptoms as opposed to STOP-Bang questionnaire,

which includes demographic and anthropometric characteristics such as BMI, age, neck cir-

cumference, and gender [33–35]. We hypothesized that the addition of STOP-Bang may

improve the diagnostic precision as well as the categorization of OSA severity.

Methods

Participants

A total of 336 consecutive subjects who were referred to the American Academy of Sleep Med-

icine (AASM)-accredited University Hospitals Cleveland Medical Center labs (Beachwood

and Cleveland, Ohio) for evaluation of sleep disorders were screened; 206 adult subjects met

the eligibility criteria; 113 signed informed consent and participated in the study. Seventy-

eight subjects who passed the 2-step ring size optimization protocol and had a recording

Fig 1. BSP neural network architecture diagram. The BSP proprietary OSA detection algorithm was built using neural networks and

trained with a dataset of 5,783 patients and 8,417 records of overnight sleep studies. (A) Respiratory event detection model containing

160, 80, and 20 neurons; (B) Total sleep time estimation model containing 160, 80, and 5 neurons.

https://doi.org/10.1371/journal.pone.0258040.g001
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time� 4 hours were enrolled (Fig 2) [32]. Patients who were on heart-rate altering medica-

tions such as beta-blockers and/or calcium channel antagonists were included in this study.

All underwent BSP testing with simultaneous overnight PSG.

The inclusion criteria were adults age 18–80 with a valid email address who are willing to pro-

vide written informed consent and complete STOP-Bang questionnaire. The exclusion criteria

included subjects who were referred for positive airway pressure titration study; those with atrial

fibrillation, pacemaker, defibrillator, left ventricular assist device, or status post-cardiac transplan-

tation; patients on home O2, non-invasive ventilator, diaphragmatic pacing, or any form of nerve

stimulator; patients with hospitalization in the prior 30 days or unstable cardiopulmonary status

judged to be unsafe for a sleep study by the sleep tech or the on-call sleep physician on the night

of the study; those with heart rate outside the 50–100 per minute range at the time of testing, and

those unable to complete the required study. Patients with atrial fibrillation were excluded from

this study as the BSP analysis algorithm has not been tested in this specific population.

BSP algorithm and data collection

In this study, the neural network algorithm used in the BSP is the same as that used in the

proof-of-concept study [32]. The BSP ring captures oxygen saturation (SpO2),

Fig 2. CONSORT flow diagram.

https://doi.org/10.1371/journal.pone.0258040.g002
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photoplethysmography (PPG), and accelerometer signals. The bTST is derived from features

extracted from accelerometer, SpO2, and PPG signals. The bAHI is derived from bTST and

features extracted from heart rate variability and SpO2 changes [32].

STOP-Bang data were collected on the night of the sleep study. There are seven different

ring sizes (sizes 5, 7, 9, 10, 11, 13, and 15) available. A 2-step ring selection approach was

used to ensure the appropriate ring size as described in the proof-of-concept study [32].

Once the ring selection is optimized, the ring is securely placed on the proximal phalanx of

the non-dominant hand index finger and left in place overnight. At the conclusion of the

sleep study, the ring is removed and placed back on the cradle connected to a PC laptop

using a USB cable. The acquired data are then uploaded to the cloud via the internet and the

neural network algorithm automatically calculates and generates a report that can be down-

loaded immediately. To assess the accuracy of bTST, sleep stages in 30-second epochs from

PSG were extracted according to the valid sleep period of BSP for comparison with the

PSG-TST. The bAHI is defined as the number of respiratory events estimated by the BSP

algorithm divided by the bTST. The PSG scoring technicians and the interpreting physician

(AAC) were blinded to the BSP results.

Polysomnography scoring and statistical analysis

Attended in-lab PSG (SleepWorks, Natus, Pleasanton, CA) was performed in all patients in a

standard fashion. The PSG montage includes EEG leads (O1M2, O2M1, C1M2, C2M1, F1M2,

F2M1), right electrooculogram, left electrooculogram, chin electromyogram, nasal pressure

airflow, thermistor airflow, chest and abdominal respiratory efforts, pulse oximetry, left leg

electromyogram, right leg electromyogram, and electrocardiogram. CPAP flow was also moni-

tored for split night studies. All studies were manually scored in 30-sec epochs according to

the AASM Scoring Manual, version 2.4 [36, 37]. An obstructive apnea event is defined as a

decrease in the thermistor airflow to< 10% of the baseline for� 10 seconds with continued

respiratory effort. A hypopnea event is defined as a decrease in nasal pressure signal excursions

by 30% to 90% of the baseline for� 10 seconds accompanied by oxygen desaturation� 4%.

The Belun Technology Company staff were blinded to the in-lab PSG results.

Statistical analysis was performed using R (R Core Team) to assess the accuracy of BSP in

predicting OSA [38]. We used the Kruskal-Wallis test by ranks to compare the medians of age,

body mass index (BMI), AHI, central apnea index (CAI), and STOP-Bang score among OSA

severities as these data are not normally distributed. Mantel-Haenszel Chi-Squared test was

used to compare frequencies in gender, and race among OSA severities [39]. Agreements

between results derived from PSG-AHI versus bAHI and PSG-TST versus bTST were deter-

mined by Pearson’s correlation and Bland-Altman method [40]. Statistical measures including

accuracy, sensitivity, specificity, PPV, NPV, positive likelihood ratio (LR+), negative likelihood

ratio (LR-), Cohen’s Kappa coefficient (Kappa), and area under the receiver operator Curve

(AUCROC) were computed at PSG-AHI cutoffs of 5, 15, and 30 events/h. Fisher’s exact test

was used to compare sensitivity and specificity between subjects with and without heart rate-

affecting medications and those with and without comorbidities. Statistical measures of diag-

nostic algorithms combining STOP-Bang score cutoffs of 3, 4, and 5 with a bAHI cutoff of 15

events/h were compared for accuracy in predicting moderate to severe OSA. The diagnostic

algorithm yielding the best results was internally validated using bootstrapping with 1,000

samples [41].

The study protocol was approved by the University Hospitals Institutional Review Board

(STUDY20181042). All ongoing and related BSP trials are registered at ClinicalTrials.org. This

trial was registered after recruitment of participants began due to clerical error.
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Results

Baseline characteristics

A total of 78 adult subjects were included. Baseline data including gender, race, BMI, STOP--

Bang, AHI, CAI are shown in Table 1. This sampled population was unbalanced and skewed

towards female subjects (65%) and those with normal and mild OSA (63%). There were 22%

with STOP-Bang score < 3 and only 36% of subjects had STOP-Bang� 5. Concerning comor-

bidities, 29% of subjects had diabetes, 58% hypertension, 49% hyperlipidemia, and 31%

asthma/chronic obstructive pulmonary disease. Echocardiography report was available in 40%

of subjects with 4% having systolic dysfunction and 20% having diastolic dysfunction. There

were 32% taking beta-blockers and/or calcium channel antagonists.

Comparing BSP to PSG

The bAHI correlated well with the PSG-AHI (r = 0.888, P< 0.001; Fig 3A). The mean differ-

ence between bAHI and PSG-AHI was +4.2 events/h with a 1.96 standard deviation of 17.8

events/h (Fig 4A). The bTST is also highly correlated with PSG-TST (r = 0.967, P< 0.001; Fig

3B). The mean difference between bTST and PSG-TST was -24.8 minutes with a 1.96 SD of

30.2 minutes (Fig 4B). The receiver operator curve (ROC) was plotted at three different

PSG-AHI cutoffs of 5, 15, and 30 events/h and is shown in Fig 5. The overall performance of

the BSP including accuracy, sensitivity, specificity, PPV, NPV, LR+, LR-, kappa, and AUROC

for AHI of 5, 15, and 30 events/h are summarized in Table 2. The optimal bAHI cutoff for pre-

diction of moderate or severe OSA was 16 events/h with a sensitivity, specificity, PPV, and

NPV of 0.929, 0.820, 0.744, and 0.954. The contingency table comparing OSA severity mea-

sured by PSG and BSP is shown in Table 3. Statistical measures for the subjects taking heart-

Table 1. Summary of subject characteristics and PSG results.

Parameter OSA Severity P-value

ALL No OSA Mild OSA Moderate OSA Severe OSA All OSA

Subject (%) 78 (100%) 35 (45%) 14 (18%) 15 (19%) 14 (18%) 43 (55%) -

Gender (%) < 0.05b

Male 27 (35%) 9 (12%) 3 (4%) 10 (13%) 5 (6%) 18 (23%)

Female 51 (65%) 26 (33%) 11 (14%) 5 (6%) 9 (12%) 25 (32%)

Age (y) 51.5 ± 13.4 49 ± 14 47 ± 12 54 ± 11 54 ± 15 52 ± 13 0.24a

Race (%) 0.57b

Black 41 (53%) 17 (22%) 10 (13%) 6 (8%) 8 (10%) 24 (31%)

White 4 (5%) 3 (4%) 0 (0%) 1 (1%) 0 (0%) 1 (1%)

Asian 30 (38%) 13 (17%) 3 (4%) 8 (10%) 6 (8%) 17 (22%)

Others 3 (4%) 2 (2%) 1 (1%) 0 (0%) 0 (0%) 1 (1%)

BMI (kg/m2) 36.1 ± 10.1 31.4 ± 7.9 42.5 ± 10.2 39.1 ± 10.6 38.1 ± 9.8 39.9 ± 10.1 <0.01a

STOP-Bang 3.9 ± 1.8 3.1 ± 1.6 3.8 ± 1.5 5.3 ± 1.5 4.4 ± 1.9 4.5 ± 1.7 <0.01a

AHI (/h) 14.5 ± 17.0 2.4 ± 1.5 8.3 ± 2.0 21.1 ± 3.9 43.6 ± 16.9 24.9 ± 20.0 <0.001a

CAI (/h) 1.39 ± 3.5 0.40 ± 0.7 0.77 ± 1.8 2.11 ± 3.9 3.71 ± 6.6 2.19 ± 4.6 <0.05a

AHI = apnea-hypopnea index; BMI = body mass index; CAI = central apnea index; OSA = obstructive sleep apnea; PSG = polysomnography. No OSA = AHI < 5; Mild

OSA = AHI 5 to < 15; Moderate OSA = AHI 15 to < 30; Severe OSA = AHI� 30.

Mean ± standard deviation for age, BMI, AHI, and STOP-Bang.

Numbers of subjects (%) for gender and race.
a Kruskal-Wallis test by ranks to compare medians of age, BMI, STOP-Bang, AHI, and CAI among No OSA, Mild OSA, Moderate OSA, and Severe OSA groups.
b Mantel-Haenszel Chi-Squared test to compare frequencies in gender, and race among No OSA, Mild OSA, Moderate OSA, and Severe OSA groups.

https://doi.org/10.1371/journal.pone.0258040.t001
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rate affecting medications and for those with comorbidities are summarized in Table 4. Fish-

er’s exact test indicated no significant difference in sensitivity and specificity between subjects

with and without heart rate-affecting medications (P = 0.192 for sensitivity; P = 0.474 for

Fig 3. Scatterplots. (A) Scatterplot comparing bAHI to PSG-AHI; (B) Scatterplot comparing bTST to PSG-TST. bAHI = Belun apnea-hypopnea index;

PSG-AHI = polysomnography apnea-hypopnea index; bTST = Belun total sleep time; PSG-TST = polysomnography total sleep time.

https://doi.org/10.1371/journal.pone.0258040.g003

Fig 4. Bland-Altman plots. (A) Bland-Altman plot for bAHI vs. PSG-AHI; (B) Bland-Altman plot for bTST vs. PSG-TST. bAHI = Belun apnea-hypopnea

index; PSG-AHI = polysomnography apnea-hypopnea index; bTST = Belun total sleep time; PSG-TST = polysomnography total sleep time.

https://doi.org/10.1371/journal.pone.0258040.g004
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specificity). Comorbidities also did not affect the performance of BSP testing (P = 1.000 for

sensitivity; P = 0.410 for specificity).

Combining STOP-Bang and bAHI

We assessed the performance of a diagnostic algorithm incorporating STOP-Bang with a

bAHI cutoff of 15 events/h. We tested STOP-Bang score cutoffs of 3, 4, and 5, and a cutoff of 5

had the best performance in stratifying subjects into three categories: (1) positive for moderate

Fig 5. ROC curves for bAHI vs. PSG-AHI at PSG-AHI Cutoffs of 5, 15, and 30 events/h (N = 78). ROC = receiver

operator characteristic; bAHI = Belun apnea-hypopnea index; PSG-AHI = polysomnography apnea-hypopnea index.

https://doi.org/10.1371/journal.pone.0258040.g005

Table 2. Performance (mean with 95% CI) of bAHI at PSG-AHI cutoffs of 5, 15, and 30 (all subjects, N = 78).

Cutoff Accuracy Sensitivity Specificity PPV NPV LR+ LR- Kappa AUROC

5 0.564 (0.447,

0.676)

1.000 (0.918,

1.000)

0.029 (0.001,

0.149)

0.558 (0.441,

0.672)

1.000 (0.025,

1.000)

1.029 (0.973,

1.090)

0.000 (0.000,

0.000)

0.031 (0.000,

0.092)

0.929 (0.876,

0.980)

15 0.808 (0.703,

0.888)

0.931 (0.772,

0.992)

0.735 (0.589,

0.850)

0.675 (0.509,

0.814)

0.947 (0.822,

0.994)

3.509 (2.179,

5.651)

0.094 (0.024,

0.361)

0.618 (0.451,

0.785)

0.955 (0.903,

1.000)

30 0.910 (0.824,

0.963)

0.714 (0.419,

0.916)

0.953 (0.869,

0.990)

0.769 (0.462,

0.950)

0.939 (0.849,

0.983)

15.238 (4.809,

48.286)

0.300 (0.131,

0.688)

0.687 (0.470,

0.903)

0.961 (0.919,

1.000)

bAHI = Belun apnea-hypopnea index; PSG-AHI = polysomnography apnea-hypopnea index; PPV = positive predictive value; NPV = negative predictive value; LR+ =

positive likelihood ratio; LR- = negative likelihood ratio; Kappa = Cohen’s Kappa coefficient; AUROC = area under receiver operator characteristic curve.

https://doi.org/10.1371/journal.pone.0258040.t002
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or severe OSA (STOP-Bang� 5 with bAHI� 15 events/h); (2) negative for moderate or severe

OSA (STOP-Bang < 5 with bAHI < 15 events/h); and (3) indeterminate (STOP-Bang < 5

with bAHI� 15 events/h, or STOP-Bang� 5 with bAHI < 15 events/h). With this combined

diagnostic algorithm, 61% of the subjects need no further sleep testing (Fig 6). Compared to

the STOP-Bang cutoff of 5 alone (Table 5), this diagnostic algorithm using STOP-Bang cutoff

of 5 and bAHI cutoff of 15 events/h yielded better performance in assessing moderate to severe

OSA (original dataset, Table 6). Internal validation of the diagnostic algorithm was performed

by bootstrapping with 1,000 samples which showed small 95% bootstrapped confidence inter-

vals around the original coefficients (bootstrapping re-sampling, Table 6).

Discussion

This study assessed the performance of BSP in detecting OSA in adult patients referred to

sleep labs for in-lab PSG. Unlike the proof-of-concept study, this cohort included patients tak-

ing medications known to affect heart rate and those with non-arrhythmic comorbidities. The

bAHI and bTST derived from BSP correlated well with PSG-AHI and PSG-TST with a correla-

tion coefficient of 0.888 and 0.967, respectively. The use of heart rate-affecting medications did

not negatively influence the performance of BSP testing. Despite the presence of a relatively

low overall OSA prevalence and an unusually high female-male ratio uncharacteristic for an

in-lab study population, the performance of BSP remains reasonably robust.

This study again demonstrated that although BSP has a good overall performance, diagnos-

tic discordance exists. BSP tends to overestimate AHI in individuals with AHI under 15

events/h and underestimate AHI in those with an AHI over 15 events/h [32]. Similar diagnos-

tic discordances between PSG-AHI and HSAT respiratory event index have been described in

other PAT/PPG-based devices including WatchPAT and NightOwl [16, 32, 42–44]. This over-

estimation of AHI in the low AHI range is likely due to the identification of RERAs and auto-

nomic arousals from other causes by the BSP algorithm. On the other hand, the

underestimation at high AHI range may be due to misses of the respiratory events when conse-

cutive respiratory events occur over a short period, or this may be attributable to the rejection

Table 3. Contingency table of OSA severity measured by PSG and BSP (all subjects, N = 78).

PSG

No OSA 35 (45%) Mild 14 (18%) Moderate 15 (19%) Severe 14 (18%)

BSP No OSA 1 (1%) 1 (1%) 0 (0%) 0 (0%) 0 (0%)

Mild 37 (47%) 28 (36%) 7 (9%) 2 (2%) 0 (0%)

Moderate 27 (35%) 6 (8%) 7 (9%) 10 (13%) 4 (5%)

Severe 13 (17%) 0 (0%) 0 (0%) 3 (4%) 10 (13%)

BSP = Belun Sleep Platform; PSG = polysomnography; No OSA = AHI < 5; Mild OSA = AHI 5 to < 15; Moderate OSA = AHI 15 to < 30; Severe OSA = AHI� 30

https://doi.org/10.1371/journal.pone.0258040.t003

Table 4. Performance (mean with 95% CI) of bAHI at PSG-AHI cutoff of 15 for subjects taking heart-rate affecting medicines and subjects with comorbidities.

Effect Accuracy Sensitivity Specificity PPV NPV LR+ LR- Kappa

Medications

(N = 25)

0.840 (0.639,

0.955)

0.846 (0.546,

0.981)

0.833 (0.516,

0.979)

0.846 (0.546,

0.981)

0.833 (0.516,

0.979)

5.077 (1.403,

18.374)

0.185 (0.050,

0.677)

0.679 (0.392,

0.967)

Comorbidities

(N = 64)

0.828 (0.713,

0.911)

0.923 (0.749,

0.991)

0.763 (0.598,

0.886)

0.727 (0.545,

0.867)

0.936 (0.786,

0.992)

3.897 (2.179,

6.971)

0.101 (0.026,

0.386)

0.658 (0.479,

0.838)

bAHI = Belun apnea-hypopnea index; PSG = polysomnography; PPV = positive predictive value; NPV = negative predictive value; LR+ = positive likelihood ratio; LR- =

negative likelihood ratio; Kappa = Cohen’s Kappa coefficient

https://doi.org/10.1371/journal.pone.0258040.t004
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of motion artifact-related poor PPG signals in patients with very severe OSA. Overall, BSP

demonstrated satisfactory performance in detecting moderate or severe OSA despite the pres-

ence of severity discordance, which is more prominent in patients with no OSA or mild OSA.

Compared to other PAT/PPG-based devices

Several studies have investigated the performance of PAT/PPG-based HSAT. Choi et al. used

WatchPAT-100 in 25 subjects and showed a sensitivity and specificity of 0.810 and 0.770 in a

population with a prevalence of 68% for AHI� 15 events/h [45]. Li et al. studied WatchPAT-

200 performance in 43 individuals with suspected OSA and revealed a sensitivity and specificity

of 0.938 and 0.667 in a population with a prevalence of 57% for AHI� 15 events/h [42]. Ioachi-

mescu et al. recently conducted a study using WatchPAT-200 in 500 consecutive veterans and

reported a sensitivity and specificity of 0.910 and 0.610 with a prevalence of 58% for AHI� 15

events/h [17]. Massie et al. compared NightOwl with simultaneous PSG with automated scoring

in 101 subjects and showed a sensitivity and specificity of 0.970 and 0.830 in a population with a

prevalence of 59% for AHI� 15 events/h [44]. The current study demonstrated a comparable

sensitivity of 0.931 [95% CI, 0.772–0.992] and specificity of 0.735 [95% CI, 0.589–0.850] in a

population with a relatively low prevalence of moderate to severe disease (37%).

Fig 6. The combined diagnostic algorithm using STOP-Bang cutoff of 5 and bAHI cutoff of 15 events/h curtailed the need for

further sleep testing by 61%. bAHI = Belun apnea-hypopnea index. a This false negative case had a PSG-AHI of 17.6 events/h; b These

two false positive cases had mild OSA with PSG-AHI� 5 events/h.

https://doi.org/10.1371/journal.pone.0258040.g006

Table 5. Performance (mean with 95% CI) of STOP-Bang score of 5 at PSG-AHI cutoffs of 5, 15, and 30 (N = 78).

Cutoff Accuracy Sensitivity Specificity PPV NPV LR+ LR- Kappa

5 0.705 (0.591,

0.803)

0.558 (0.399,

0.709)

0.886 (0.733,

0.968)

0.857 (0.673,

0.960)

0.620 (0.472,

0.753)

4.884 (1.870,

12.753)

0.449 (0.349,

0.712)

0.427 (0.244,

0.610)

15 0.731 (0.618,

0.825)

0.621 (0.423,

0.793)

0.796 (0.657,

0.898)

0.643 (0.441,

0.814)

0.780 (0.640,

0.885)

3.041 (1.633,

5.664)

0.477 (0.293,

0.775)

0.420 (0.211,

0.628)

30 0.641 (0.524,

0.747)

0.500 (0.230,

0.770)

0.672 (0.543,

0.784)

0.250 (0.107,

0.449)

0.860 (0.733,

0.942)

1.524 (0.811,

2.862)

0.744 (0.429,

1.291)

0.124 (0.000,

0.332)

bAHI = Belun apnea-hypopnea index; PSG = polysomnography; PPV = positive predictive value; NPV = negative predictive value; LR+ = positive likelihood ratio;

LR- = negative likelihood ratio; Kappa = Cohen’s Kappa coefficient.

https://doi.org/10.1371/journal.pone.0258040.t005
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Methods to improve diagnostic precision in PAT/PPG-based testing

Overall, PAT/PPG-based testing has a sensitivity and specificity in the range of 0.810 to 0.970

and 0.610 to 0.830 for moderate to severe OSA and has the potential to significantly misclassify

OSA severity [17, 42, 44, 45]. A couple of approaches have recently been developed to improve

the performance and diagnostic concordance of PAT/PPG-based testing. Zhang et al. devel-

oped and validated a manual algorithm for visual editing of WatchPAT automated scoring

and assessed its accuracy in an unselected clinical population [46]. The authors concluded that

a 10–15 minute manual editing of automatic scored data can improve correlation and agree-

ment with PSG as well as a concordance for categorical agreement of OSA severity. Alterna-

tively, Ioachimescu et al. explored statistical models to predict AHI by using robust functional

parameters from WatchPAT-200 in concert with available demographic and anthropometric

data including age, gender, neck circumference, and body mass index [47]. In this cohort of

500 patients with a high pretest probability of OSA, the mean diagnostic accuracy of Watch-

PAT was improved to 67%, 81%, and 85% in mild, moderate-severe, or no OSA, respectively.

The authors concluded that these models can be used to improve the diagnostic precision of

the PAT-based testing, thus ameliorating the high rates of misclassification for OSA presence

or disease severity.

Our study demonstrated that another feasible approach to improve diagnostic precision is

to simply combine PAT/PPG-based testing with STOP-Bang questionnaire, which is ubiqui-

tously used for OSA screening in clinical practice. The concept of combining a prediction

score and portable testing for diagnosis and screening of OSA is not new [48–50]. Morales

et al. addressed the diagnosis of severe OSA in a sleepy elderly population with a two-stage

strategy using Multivariable Apnea Prediction score followed by nasal pressure-based HSAT

[48]. Gurubhagavatula et al., using the same approach, screened internal medicine outpatients

with hypertension for severe OSA. Both studies concluded that a two-stage approach per-

formed better in identifying severe OSA than the single-stage approach [49]. More recently,

Mashaqi et al. reported that the combined use of STOP-Bang and nocturnal oximetry mea-

sures improved the accuracy of severe OSA screening in both inpatient and outpatient settings

[50]. Our combined approach provides an easy method to better predict moderate to severe

OSA with high precision in the majority of subjects even in the setting of a relatively low preva-

lence and allows further stratification, with which an appropriate clinical course of action can

be consequently taken. This proposed approach can potentially curtail the need for more

sophisticated sleep testing, which may lead to significant healthcare cost savings.

Strengths and weaknesses

This study is the first investigation to use a combination of a sleep questionnaire and a medi-

cal-grade wearable using neural network algorithm to identify OSA. One of the strengths of

this study is the concurrent recording of both in-lab PSG and BSP. All sleep studies were man-

ually scored based on the most current AASM scoring manual by one of our two senior

Table 6. Performance (mean with 95% CI) of the combined approach using STOP-Bang cutoff of 5 and bAHI cutoff of 15 (N = 48).

Methods Accuracy Sensitivity Specificity PPV NPV LR+ LR- Kappa AUROC

Original dataset 0.938 (0.828,

0.987)

0.944 (0.727,

0.999)

0.933 (0.779,

0.992)

0.895 (0.669,

0.987)

0.966 (0.822,

0.999)

14.170 (3.700,

54.300)

0.060 (0.009,

0.401)

0.868 (0.724,

1.000)

0.939 (0.868,

1.000)

1,000 Bootstrapping

re-sampling

0.938 (0.860,

1.000)

0.944 (0.813,

1.000)

0.934 (0.839,

1.000)

0.894 (0.722,

1.000)

0.965 (0.886,

1.000)

14.662�

(5.600,1)

0.060 (0.000,

0.200)

0.866 (0.698,

1.000)

0.978 (0.935,

1.000)

� Median of LR+ was provided as the use of mean produced infinite LR+.

https://doi.org/10.1371/journal.pone.0258040.t006
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registered sleep technicians and reviewed by an experienced board-certified sleep specialist.

The scoring technicians and the sleep specialist reviewing the sleep studies were blinded to the

BSP results.

As far as the limitations are concerned, readers should take into account that this sampled

population, unlike a typical sleep lab population with high OSA prevalence, skewed towards

females and those with no OSA or mild OSA. This could have resulted from a high percentage

of male patients with severe OSA declining to consent. This made the comparison of this study

with other studies difficult, but nonetheless allows us an opportunity to project how BSP may

perform in a non-sleep clinic where the prevalence of moderate to severe OSA is relatively low.

Another limitation of this study is that this study was not performed in an unattended home

setting but a sleep lab setting. Further investigation in the home setting in comparison to estab-

lished HST devices is warranted. Finally, this diagnostic algorithm combining STOP-Bang and

bAHI requires further validation in various patient populations and clinical settings.

Conclusions

BSP is a promising wearable sleep technology that can potentially be incorporated into clinical

practice for detecting OSA. Combining STOP-Bang cutoff of 5 with a bAHI cutoff of 15

events/h improves prediction precision and diagnostic concordance in detecting moderate or

severe OSA, which may be used to streamline the clinical practice. Further clinical investiga-

tion for the diagnosis and screening of moderate to severe OSA using BSP with or without the

combination with STOP-Bang is warranted.
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