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A unifying view on extended phase 
graphs and Bloch simulations 
for quantitative MRI
Christian Guenthner1,2*, Thomas Amthor2, Mariya Doneva2 & Sebastian Kozerke1

Quantitative MRI methods and learning-based algorithms require exact forward simulations. One 
critical factor to correctly describe magnetization dynamics is the effect of slice-selective RF pulses. 
While contemporary simulation techniques correctly capture their influence, they only provide 
final magnetization distributions, require to be run for each parameter set separately, and make 
it hard to derive general theoretical conclusions and to generate a fundamental understanding of 
echo formation in the presence of slice-profile effects. This work aims to provide a mathematically 
exact framework, which is equally intuitive as extended phase graphs (EPGs), but also considers 
slice-profiles through their natural spatial representation. We show, through an analytical, hybrid 
Bloch-EPG formalism, that the spatially-resolved EPG approach allows to exactly predict the signal 
dependency on off-resonance, spoiling moment, microscopic dephasing, and echo time. We also 
demonstrate that our formalism allows to use the same phase graph to simulate both gradient-spoiled 
and balanced SSFP-based MR sequences. We present a derivation of the formalism and identify the 
connection to existing methods, i.e. slice-selective Bloch, slice-selective EPG, and the partitioned 
EPG. As a use case, the proposed hybrid Bloch-EPG framework is applied to MR Fingerprinting.

In recent years, interest in MR sequence simulations has risen due to the advent of MR Fingerprinting (MRF) 
and the need for synthetic data to train neural networks1–5. While all simulation approaches solve the Bloch 
equations6 in one or another form, two main classes of techniques can be distinguished: (1) direct solution of 
the Bloch equations in the spatial domain (here simply called “Bloch simulations”), which can be performed 
through consecutive application of matrix operators (rotation operator algorithm7) or via general numerical 
differential equation solvers; or (2) indirect solution in the Fourier domain using extended phase graphs (EPG)8. 
While the former is especially useful for balanced SSFP simulations and general MR simulators (e.g. JEMRIS9 or 
the EMC Platform for MESE10), the latter is used as the work horse technique whenever spoiling gradients are 
employed. EPGs are not only numerically stable and computationally efficient, they also provide fundamental 
insights into MR sequences in terms of dephasing and rephasing configuration pathways, which can interfere 
and thus modify observed echoes11. Extensions to the EPG, such as the spatially-resolved EPG (SR-EPG)12–14, 
EPGs with magnetization transfer and exchange (EPG-X)15, EPGs with anisotropic diffusion16, three-dimensional 
EPG17, or slice-selective EPGs (ssEPG)18 are examples of the continued efforts to improve signal modelling in 
conjunction with spoiled sequences.

Due to the recent departure from classical, well-understood MR sequences to sequences exploiting the full 
spectrum of transient magnetization dynamics, fundamental effects resurface in form of confounders. This 
inspired re-evaluation of e.g. transmit field inhomogeneity ( �B+1  ), diffusion, slice profiles, intra-voxel dephasing, 
or magnetic field inhomogenieties ( �B0 ) in the context of MR Fingerprinting18–25.

Especially the problem of slice profiles has recently received interest, as it is straightforward to solve in bal-
anced SSFP-based MRF via Bloch simulations. However, in the context of spoiled sequences, such an approach 
becomes numerically instable or intractable. Moreover, slice profiles have been identified to re-introduce off-
resonance dependencies in gradient-spoiled MRF (FISP-MRF). Effective descriptions employing a variant of 
the SR-EPG have been employed, which resolve the slice profile by independently simulating a full EPG in each 
position and then summing along the slice dimension (partitioned EPG, pEPG)13,14,18. However, this strategy 
is only exact in the case of a perfectly homogenous material of infinite or rectangular extent and thus fails to 
simulate off-resonance artifacts encountered experimentally. This shortcoming has recently been rectified by 
the introduction of the ssEPG, where the hard pulse approximation is applied directly in the EPG, thus leading 
to a pure k-space description of the combined slice-excitation and spoiling problem18. However, this approach 
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necessitates the introduction of surrogate states to describe the effect of the RF pulse. These states are no longer 
separated by the spoiling moment, but by an arbitrary discretization moment arising from the time resolution of 
the RF pulse simulation. The EPG branches at every discretization point leading to a plethora of configuration 
pathways, which are no longer easily analyzed in view of echo formation. Thus, the elegant yet simplistic picture 
of configuration states shifted by spoiling gradients and their interference through RF pulses has been greatly 
complicated.

In 1994, Sobol and Gauntt26 described in detail the magnetization response to gradient-echo sequences with 
constant repetition time and gradient spoiling moment. They identified interference of substates (later referred 
to as configuration states) to be accountable for artifacts in gradient-echo sequences. While they worked with 
isolated, regular prisms (voxels), they noted that slice profiles are rarely rectangular and thus precise, a priori 
calculation of their effect on the interference of substates was intractable. Despite this early work, considerable 
misunderstanding of spoiled states in gradient echo sequences has persisted in the community (e.g. the notion 
of “killer gradients” destroying transverse magnetization) and effects such as off-resonance artifacts in FISP-
MRF came as a surprise (in defense of all authors cited and fellow researchers who fell for this: they also came 
as a surprise to us)18,22,23.

In this work, we present a contemporary solution to Sobol’s and Gauntt’s approach for sequences employing 
arbitrary flip angle trains, which is derived from the rotation operator algorithm that forms the basis of current 
EPG implementations8,12,18. We will work as far as possible with the nomenclature by Weigel8 and Malik et al.12. 
Where applicable, crosslinks to the work of Sobol and Gauntt are included26.

Our formalism is a hybrid between a conventional spatial Bloch simulation and an extended phase graph: it 
represents spoiling through configuration states and slice profiles in their natural spatial basis. This allows us to 
retain the elegance of the EPG formalism which enables the straight-forward identification of echo formation, 
while keeping the intuition of a spatial basis for the description of slice profiles. Moreover, the formalism is easily 
implemented in contemporary EPG codes and provides analytical access to multiple key signal dependencies: 
We show that the signal s(n) for each time-point n in an arbitrary gradient-echo sequence with constant TR and 
fixed spoiling moment ksp is given by a weighted sum over spatially-resolved configurations F+(n)

k (z) . Here, k is 
the configuration order and z the spatial position along the slice profile. The signal is given by

where C(z) is the coil sensitivity, M0(z) is the equilibrium magnetization and Wk(ω,R
′
2,TE) is an analytical 

weighting function that captures dependencies on off-resonance ω and microscopic dephasing R′
2 for arbitrary 

echo times TE (see the “Theory” section for the derivation). Through the exponential weighting factor eikkspz , the 
signal’s dependency on the spoiling moment ksp is also obtained analytically. An approximation of the spatially 
resolved configuration states F+(n)

k (z) can be readily obtained by piecewise discretization of the slice profile and 
independent EPG simulations (spatially resolved EPG).

We identify balanced steady-state free-precession (bSSFP or True-FISP) sequences as a special case of spoiled 
(FISP) SSFP by considering ksp = 0 . For spoiled SSFP, we recover the partitioned EPG approximation by the limit 
ksp → ∞ . Omitting spatial integration, the hybrid Bloch-EPG yields results equal to a direct Bloch simulation. 
Additional Fourier transformation allows to recover the slice-selective EPG solution. Thus, the formalism shows 
the connection between contemporary solution approaches and sequence variants in one unified framework. 
As an example, we apply the formalism to the raised problem of off-resonance artifacts in gradient-spoiled MR 
Fingerprinting (FISP-MRF).

Theory
The solution of the homogenized form of the Bloch equations can be obtained by consecutive application of 
four-dimensional matrix operators (Rotation Operator Algorithm, ROA)7, which act on magnetization vectors 
of the form

where M± = Mx ± iMy denotes the transverse magnetization, Mz the longitudinal magnetization, and M0 the 
equilibrium magnetization and r is the spatial position with r :=

(
x, y, z

)T . Following the nomenclature of 
Weigel8, hard pulses will be denoted by Tϕ(α) with flip angle α and phase ϕ . Relaxation and recovery for time t  
will be written as R(t) implicitly including the dependency on relaxation parameters T1 and T2 . Off-resonance 
ω and gradients G(t) lead to phase accrual at position r of φ = ω · t + γ

∫
dtG(t) · r , which will be denoted by 

the operator S(φ) and where γ is the gyromagnetic ratio ( γ1H ≈ 2π · 42.577MHz/T).
In the theoretical excursion of this work, we will work with four-dimensional representations of the opera-

tors, which are presented in Appendix A. For the numerical implementation, however, it is more efficient to 
work with the original three-dimensional matrices, since the fourth dimension—taking care of equilibrium 
magnetization—remains unchanged and only needs to be considered for the recovery of longitudinal magneti-
zation to equilibrium.

Effective RF pulse matrix and the hard pulse approximation.  Slice selection is performed using 
amplitude-modulated (AM) RF pulses (soft pulse) played concurrently to a constant slice-selection gradient G 

(1)s(n) =
∑

k

Wk

(
ω,R′

2,TE
)
∫

dz eikkspzC(z)M0(z)F
+(n)
k (z),

(2)M(r) =






M+(r)
M−(r)
Mz(r)
M0(r)




,
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(Fig. 1a)27. The through-slice direction is, without loss of generality, defined to be given by z , parallel to the slice-
select gradient. Pulse duration Tex , slice selection gradient strength G , and the slice thickness δ are connected by 
the time-bandwidth product κ of the pulse through the relationship27

Each RF pulse is preceded by a pre-winder gradient with moment kpre and followed by a refocusing gradi-
ent of moment kpost . Since the Bloch equations are linear, an effective matrix operator RF(z) can be defined28.

In this work, we restrict the analysis to short pulses ( Tex ≪ T1,T2,T
′
2 ) with sufficiently high time-bandwidth 

product κ ( 2πκ ≫ Tex · ω ), such that relaxation and precession during the pulse can be replaced by relaxation 
and precession operators acting after the pulse. Consequently, the matrix operator acts instantaneously at the 
“focus point” tf  of the shaped pulse29. The focus point can be obtained through a maximization of the free-
induction decay (FID) and is connected to the rewinder area by kpost = γG·tf

30.
The pulse simulation is performed using the hard-pulse approximation (see Fig. 1a,b)31. The RF amplitude 

modulation B+1 (t) is discretised into hard-pulses of Tϕ(αi) , each acting instantaneously at equidistant time points 
ti = i�t with flip angle αi = γB+1 (ti)�t . The effective RF pulse matrix is obtained by alternating hard pulses 
and phase accrual

Here, the product ( � ) denotes an ordered matrix product such that earlier time-points are found to the right 
of later time-points. As relaxation is neglected, the effective RF pulse matrix RF(z) is a rotation matrix in each 
z ( detRF(z) = 1) . It can be written in the form of an effective hard pulse Tϕ(z)(α(z)) and an additional effective 
phase accrual term S

(
φpre(z)

)

α(z) is the effective flip angle profile and ϕ(z) the effective pulse phase, which together determine the excita-
tion slice profile of the RF pulse. For echo and storage components, the additional phase-term φpre(z) needs to 
be considered (Fig. 1c). This representation is effectively decomposing the RF pulse matrix into Euler angles at 
each z . The resulting intrinsic rotations are first about the z-axis with angle φpre(z)− ϕ(z) , second, the tipping 

(3)2πκ = γGTexδ.

(4)RF(z) = S
(
kpost · z

)
·

(
∏

i

S(γG · z�t)Tϕ(αi)

)

· S
(
kpre · z

)
.

(5)RF(z) = Tϕ(z)(α(z))S
(
φpre(z)

)
.

Figure 1.   Slice-selective RF pulse and its numerical representation. (a) Slice-selection gradient and amplitude-
modulated RF pulse for slice-selective excitation shown together with prephasing and refocusing gradients. 
Same-colored dashed and filled gradient areas are of equal size. (b) Graphical representation of the hard pulse 
approximation assuming short RF pulses compared to rate of change of the B1 + envelope. (c) Effective RF pulse 
representation using the effective slice profile α(z) and pulse phase ϕ(z) as well as an effective prephaser φpre(z).
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of the magnetization by the flip angle α(z) —a rotation about the rotated x′ axis, and finally, a back rotation of 
ϕ(z) about the z″-axis.

Sequence description: MR fingerprinting and configuration state imaging.  Throughout this 
work, we assume constant off-resonance ω , repetition time TR and spoiling gradients with moment ksp = ez · ksp 
in the direction of slice-selection ez and an arbitrary set of RF pulses, here given solely by a flip angle variation 
(Fig. 2a) realized by pulse amplitude scaling.

The fundamental building block of MR Fingerprinting sequences are either balanced or gradient-spoiled 
SSFP-type sequence modules (Fig. 2b,c)2,3. Each is represented by a sequence of operators: slice-selective RF 
pulse RFn(z) with nominal flip angle αn , where n enumerates consecutive TR intervals, acquisition AQ , relaxa-
tion R(TR) and phase accrual S

(
ω · TR + ksp · z

)
2,3. Note, that balanced SSFP is obtained by considering the 

special case ksp = 0.
The magnetization M(n)(z) directly after the nth RF pulse is then given by

where M(0)(z) = M0(z)(0, 0, 1, 1)
T is the initial magnetization. For simplicity, we will assume acquisition to 

happen instantaneously at the echo time TE relative to the focus point of the soft pulse and assume readout 
gradients to be zeroth-moment nulled, i.e. magnetization remains unchanged by acquisition. At TE , magnetiza-
tion is given by

For spoiled SSFP, configurations other than the FID can be refocused, which is the basis for e.g. double- and 
triple-echo steady-state (DESS and TESS) relaxometry32,33, time-reversed FISP (PSIF or T2-weighted FFE), and 
diffusion-weighted SSFP sequences34,35. Acquisition is preceded by a refocusing gradient with a zeroth moment 
of integer multiples of ksp . To keep the total spoiling moment constant, compensation gradients with inverse 
gradient sign are inserted after the readout (Fig. 2c). The magnetization of the qth echo is given by

Hybrid Bloch‑EPG formalism.  Magnetization dynamics.  The aim is to reformulate the recurrence 
Eq. (6) to obtain an analytical expression in the phase accrual φ := ω · TR + ksp · z per TR . This can be achieved, 
as shown in Appendix B, by a Fourier series expansion of the phase accrual operator

(6)M(n)(z) = RFn(z) · R(TR) · S
(
ω · TR + ksp · z

)
M(n−1)(z),

(7)M(n)(z;TE) = R(TE) · S(ω · TE) ·M(n)(z).

(8)M(n)
q (z;TE) = R(TE)S

(

−q · ksp · z + ω · TE
)

M
(n)

(z).

Figure 2.   Sequence description. (a) Flip angle sequence used for example plots and simulation comparisons. 
(b) Schematic of the employed MRF sequence, where the SQ Block is replaced by one of the blocks shown in (c) 
being either balanced or spoiled SSFP with refocusing of different echo orders using moment-balanced selection 
gradients (red) played out in spoiling direction.
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where δk,k′ is the Kronecker delta ( δk,k′ = {1 : k = k′; 0 : otherwise} ). The magnetization after the n th RF pulse 
can then be written in the form

where the Fourier coefficients x(n)k (z) are given by

The initial condition translates to x(0)k (z) =
(
0, 0, δk,0, δk,0

)T
.

Through the transformation, the dependency of the magnetization M(n)(z) on the spoiling moment ksp and 
the off-resonance ω is now fully analytical and given by a Fourier series. The series coefficients x(n)k (z) are nothing 
b u t  c o nt i nu o u s l y  s p a t i a l l y - r e s o l v e d  c o n f i g u r a t i o n  s t a t e s  a n d  w e  m ay  d e f i n e 
(

F
+(n)
k (z), F

−(n)
k (z),Z

(n)
k (z), δk,0

)T
:= x

(n)
k (z) to relate it to the SR-EPG by Malik et al.12 or define l := k to relate 

it with the Fourier coefficients fl(n) := F
+(n)
k  used in Sobol and Gauntt, which are implicitly dependent on spatial 

position26.
The term 

∑

k′diag
(
δk,k′+1, δk,k′−1, δk,k′ , δk,k′

)
x
(n−1)
k′  is a convenient way to write the shifting operator of the 

EPG in analytical form. The first element of the diagonal matrix corresponds to up-shifting of F+ and the second 
to down-shifting of F− configurations. k is referred to as the order of the configuration x(n)k (z) . Here, spatial 
variation in slice-direction is introduced in the SR-EPG only through the effective RF pulse matrix RFn(z) , 
however, variations could also be introduced through spatially-dependent relaxation parameters and transmit-
field inhomogenieties12.

Signal reception.  Using the coil sensitivity in slice direction C(z) , which collates all dependencies on coil geom-
etry and induction physics into one convenient sensitivity factor, the signal received directly after the n th RF 
pulse can be written as

The solution ansatz for M(n)(z) (Eq. 10) can be inserted and simplified leading to

Following Leupold36, the signal Eq. (13) can further be extended to include signal decay due to Lorentzian-
distributed, microscopic inhomogeneities in the magnetic field distribution leading to an effective decay rate 
R′
2 , as well as, signal decay and phase accrual to an arbitrary echo time-point 0 ≤ TE ≤ TR . This leads us to the 

hybrid Bloch-EPG equation stated in the introduction

Thus, the acquired signal s(n) is determined by summation over configuration orders of the Fourier transfor-
mation 

∫

�
dzeikksp·z · · · of weighted spatially-resolved configurations Wk

(
ω,R′

2,TE
)
F
+(n)
k (z) . The weighting func-

tion Wk provides the analytical dependency on off-resonance ω , R′
2 and the TE , while the Fourier transformation 

allows for arbitrary spoiling moments.
Note: Substituting ksp → ksp + γ�B0(zi) , the formalism equivalently applies in locally first-order to inho-

mogeneities in the static magnetic field �B0(zi) , i.e. local field gradients26.
We termed the formalism the hybrid Bloch-EPG since it solves the interplay of slice profiles, spoiling gradients, 

and off-resonance by combining the natural representation of both: (1) extended phase graphs for spoiling and 
off-resonance and (2) the spatial domain representation of slice profiles as in conventional Bloch simulations.

Discretization and spatially‑resolved extended phase graphs.  For computer simulations, we discretise the spatial 
domain � in slice direction into N equidistant bins centered at position zi with width �z ( i = 1 . . .N ). We define 
an interpolation kernel function I(zi , z) , which allows us to approximate the RF pulse matrix by

For simplicity, we assume the matrix to be piecewise constant within each bin leading to the following kernel 
function

(9)S(φ) := diag
(
eiφ , e−iφ , 1, 1

)
=

∞∑

k=−∞

eikφdiag
(
δk,1, δk,−1, δk,0, δk,0

)
,

(10)M(n)(z) = M0(z)
∑

k

eik(ksp·z+ω·TR)·x
(n)
k (z),

(11)x
(n)
k (z) = RFn(z)R(TR) ·

∑

k′

diag
(
δk,k′+1, δk,k′−1, δk,k′ , δk,k′

)
x
(n−1)
k′ (z).

(12)s(n) =

∫

�

dz C(z)M
(n)
+ (z).

(13)s(n) =
∑

k

eikωTR
∫

�

dz eikksp·zC(z)M0(z) F
+(n)
k (z).

(14)s(n) =
∑

k

eiω(k·TR+TE)−R′2|k·TR+TE|− TE
T2

︸ ︷︷ ︸

=Wk(ω,R′2,TE)

∫

�

dz eikksp·zC(z)M0(z) F
+(n)
k (z).

(15)RF(z) ≈
∑

i

RF(zi) · I(zi , z).
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where θ(·) denotes the Heaviside theta function.
Since the configuration states x(n)k (z) only depend on z via RF(z) , the x(n)k (z) are also piecewise constant and 

can be written as

Insertion into the continuous hybrid Bloch-EPG Eq. (14), making use of the Fourier transformation Fk,i(ksp) 
of the kernel I(zi , z)

identifying the discrete spatially-resolved configuration states 
(

F
+(n)
k,i , F

−(n)
k,i ,Z

(n)
k,i , δk,0

)T
:= x

(n)
k,i  , and assuming 

spatially constant coil sensitivity C and equilibrium magnetization M0 , we arrive at the approximate solution to 
the hybrid Bloch-EPG

which can be directly evaluated from a spatially-resolved extended phase graph simulation. The term 
�zsinc

(

k
ksp�z

2

)

 in the kernel’s Fourier transformation Fk,i

(
ksp

)
 is equivalent to the “damping factor” Dl intro-

duced in Sobol and Gauntt26, and accounts for dephasing within each bin (voxel). Note: the equivalent formula-
tion derived by Sobol and Gauntt was stated for a single voxel, i.e. without the summation over the slice profile 
denoted by 

∑

i · · · here.

Configuration state imaging.  For refocusing of an arbitrary configuration q—in the following we will call it the 
refocused echo q to distinguish it from configuration state F+k —we can modify Eq. (19) accordingly

Connection to Bloch and slice‑selective EPG simulations.  The hybrid Bloch-EPG formulation can 
be used to obtain Bloch and slice-selective EPG representations for the same sequence. Direct evaluation of the 
transverse magnetization M(n)

+ (z) at the discrete positions zi before spatial integration, gives access to the solu-
tion obtained through conventional Bloch simulation, i.e. the time-dependent spatial magnetization distribution

On the other hand, Fourier transformation of the transverse magnetization allows to recover the solution of 
the slice-selective EPG (ssEPG), which directly yields the magnetization’s k-space representation by performing 
the hard pulse approximation using the EPG (here, to distinguish configuration order k from k-space, k′ is used 
to denote spatial frequencies)

These relationships are graphically depicted in Fig. 3. A spatially-resolved EPG is shown in the top left corner 
for the configuration order k = −6 . . . 6 as a function of the position z along the slice profile.

Bloch simulation (Fig. 3, left to right).  Analytical weighting with the weighting kernel Wk

(
ω,R′

2,TE
)
 as well as 

resolving the spoiling and echo refocusing by applying ei(k−q)ksp·z to the data is employed to resolve the interme-
diate representation of the configuration states. These are then superimposed to obtain the slice profile through 
the hybrid Bloch-EPG formulation (black, right), which is equivalent to direct Bloch simulation (blue). The 
root-mean-square error of the complex slice profiles normalized to the signal amplitude obtained via Bloch 
simulation (nRMSE) is 0.71% (see “Methods”, Eq. (40)). By integrating over the magnetization profile, signal s(n) 
is obtained. The predicted MR signal deviates by 3.8 · 10−4% between hybrid Bloch-EPG and Bloch simulation.

Note: A change in off-resonance (here, ω = 0 is shown) will lead to different relative phases of the weighted 
configurations leading to a phase shift of the oscillations in the intermediate representation. This will modify 
the slice profile by interference and lead to variations in the gradient-echo signal, which has been observed and 
described for MRF previously18,22,23.

Slice‑selective EPG (Fig. 3, top to bottom).  Similarly, we arrive at the intermediate k-space representation ( k′ ) 
through spatial Fourier transformation, where configuration states appear to be shifted by the spoiling moment 

(16)I
(
z, z′

)
= θ

(

z′ − z +
�z

2

)

θ

(

z − z′ +
�z

2

)

,

(17)x
(n)
k (z) ≈

∑

i

x
(n)
k,i · I(zi , z).

(18)Fk,i

(
ksp

)
:=

∫

�

dz I(zi , z)e
ikksp·z = �z sinc

(

k
ksp�z

2

)

eikksp·zi

(19)s(n) ≈ CM0

∑

k

Wk

(
ω,R′

2,TE
)∑

i

Fk,i(ksp) F
+(n)
k,i ,

(20)s(n)q ≈ CM0

∑

k

Wk

(
ω,R′

2,TE
)∑

i

Fk−q,i(ksp) F
+(n)
k,i .

(21)M
(n)
+ (zi) = M0

∑

k

Wk

(
ω,R′

2,TE
)
ei(k−q)ksp·z

∑

i

F
+(n)
k,i .

(22)F
(n)
+

(
k′
)
= M0�z

∑

k

Wk

(
ω,R′

2,TE
)∑

i

ei((k−q)ksp−k′)·zi · sinc

(

(k − q)
ksp�z

2

)

F
+(n)
k,i .
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ksp . Here, off-resonance ω will modify the complex phase of each configuration. Summing over the configuration 
order k leads to the slice-selective EPG representation in the bottom row, where the weighted configurations will 
interfere, which was previously described by Sobol and Gauntt26. The nRMSE of the k-spaces of hybrid Bloch-
EPG and ssEPG is 0.15% (see “Methods”, Eq. (41)). Here, the MR signal is given by the DC component ( k′ = 0 ) 
as known from conventional EPGs8,12,18. The predicted signal of the ssEPG deviates from the Bloch simulation 
by 2 · 10−2% . Refocusing of higher configuration orders leads to shifting of the state picture, centering a different 
peak at k′ = 0 and the formation of the q th refocused echo.

Special cases of spoiling: balanced SSFP and partitioned EPG.  Two special cases of spoiling can 
be discussed, ksp = 0 equivalent to balanced SSFP; and ksp → ∞ , which will be shown to be equivalent to the 
partitioned EPG solution.

ksp = 0—balanced SSFP.  Balanced SSFP can be considered a special case of spoiled sequences with vanishing 
spoiling moment ( ksp = 0 ). In this case, the hybrid Bloch-EPG Eq. (20) can be simplified to

(23)s
(n)
bSSFP = CM0�z

∑

k

Wk

(
ω,R′

2,TE
)∑

i

F
+(n)
k,i .

Figure 3.   Graphical Representation and Relationship of Hybrid Bloch-EPG, Spatially-Resolved EPG, 
Partitioned EPG, Bloch Simulation, and Slice-Selective EPG. Bloch simulation (top, right) and slice-selective 
EPG (bottom, left) are equivalent up to Fourier transformation. Using the spatially-resolved EPG (SR-EPG; 
top, left) and the hybrid Bloch-EPG formalism, both Bloch and ssEPG solutions can be obtained using an 
analytical relationship. The intermediate steps show the transformation and weighting of each configuration 
state separately for both the spatial domain (top) and k-space (left). Through summation over state orders 
k , interference between configuration states leads to modification of the slice profile and hence a change in 
observed signal. A single SR-EPG simulation provides analytical access to four dimensions of the solution space: 
TE, ω , R′

2 , and the spoiling moment ksp . While ssEPG and Bloch simulations can be obtained from each other, 
the mapping of SR-EPG to Bloch or ssEPG cannot be reversed as the configurations cannot be disentangled 
from the spatial information alone. The partitioned EPG (pEPG) approximation is given by summation over the 
F0 state in the SR-EPG (top, left). Solid and broken lines denote imaginary- and real-part, respectively.
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Hence, in balanced SSFP, the configuration states only contain information about off-resonance, which is 
by definition independent of the spatial coordinate. Thus, slice profiles can directly be integrated over before 
weighting and summation.

ksp → ∞—partitioned EPG.  In the limit ksp → ∞ , the sinc-function in Eq. (18) can be simplified to37

leading Eq. (20) to become

Hence in the limit of infinite spoiling, the slice profile integration can be directly performed and only one 
state, the q-th configuration will contribute. Interference of adjacent configurations, as predicted by the hybrid 
Bloch-EPG, does not take place. This implies that no magnitude or phase variation other than the trivial phase 
accrual ω · (qTR + TE) can be observed18. This approximation is equivalent to the approach by Lebel and McPhee, 
which was termed partitioned EPG (pEPG) by Ostenson13,14,18.

(24)lim
ksp→∞

sinc

(

k
ksp�z

2

)

= δk,0,

(25)s
(n)
q,pEPG = lim

ksp→∞
s(n)q = CM0�z ·Wq

(
ω,R′

2,TE
)∑

i

F
+(n)
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Figure 4.   Analytical recovery of balanced SSFP, spoiled SSFP and pEPG from one spatially-resolved phase 
graph. Visualization of the three spoiling cases which can be analytically recovered from a single spatially-
resolved EPG (SR-EPG) simulation by applying the Fourier transformation, echo selection (white line, here the 
0th order), and configuration state weighting Wk . Three spoiling cases can be identified: (1) no gradient spoiling 
is equivalent to balanced SSFP, where the interference of configuration states leads to the distinct frequency 
response profile. Here, the signal is degenerate in the echo order (*). (2) With finite spoiling, banding artifacts 
are reduced at the expense of overall signal magnitude. However, as already noted by Ostenson et al.18, an off-
resonance dependency remains, which is sensitive to the spoiling moment. (3) For infinite spoiling, a single state 
will contribute the signal, which is equivalent to the solution of the partitioned EPG (pEPG). Here, banding is 
fully suppressed and no off-resonance dependency apart from the trivial phase accrual at TE is observed. For the 
simulation of the off-resonance dependency, the employed weighting function is marked and the accompanying 
parameters are given in bold.
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Figure 4 visualizes the signal formation within the hybrid Bloch-EPG from one SR-EPG (left) for the three 
possible cases of spoiling: no spoiling ( ksp = 0 , top row), finite spoiling ( ksp  = 0 , middle row) and strong spoil-
ing ( ksp → ∞ , bottom row). After spatial Fourier transformation, a configuration order k vs. refocused echo q 
plot can be obtained (left column). For any given q , configurations along the white, horizontal lines are selected. 
With ksp = 0 , the echo order q is irrelevant as no spoiling moment is applied, i.e. it leads to degeneracy for all 
echo orders. For ksp → ∞ (bottom row), only one configuration remains, which leads to the pEPG solution. 
Configurations are weighted by Wk (top), which contributes the analytical dependency on TE , R′

2 and ω . Sum-
mation over the weighted configurations allows to recover, e.g. the signal dependency on off-resonance, here 
shown for TE = 0.

To further the understanding of the three cases of spoiling in SSFP, Fig. 5 shows the possible gradient echo 
sequences in a combined configuration k vs. k-space ( k′ ) graph. The plot on the right is achieved by spatially 
Fourier transforming the SR-EPG on the left. During signal acquisition, a superposition of weighted configura-
tion states 

∑

kWkF
+
k  is observed. Each configuration state is evaluated at a different spatial frequency k′ , which 

can be found by selecting them along straight lines.
Balanced SSFP corresponds to selecting spatial frequencies of configurations along horizontal lines (green), 

i.e. all configurations are evaluated at the same spatial frequency. Angulated lines (red) depict spoiled SSFP 
sequences. The slope is given by the spoiling moment ksp . Asymmetry in the slice profile phase (see Fig. 11) 
arising from the non-linear response of the Bloch equation’s solution with respect to RF fields leads to an asym-
metric k′-space, which is seen in Fig. 5 by the asymmetry between the upper and the lower half-space. Hence, 
negative spoiling moments lead to a different spoiled SSFP signal than positive. Vertical shifting of lines (broken) 
corresponds to adding gradients before the acquisition object with respective compensation gradients after the 
readout, i.e. phase encoding gradients. Small shifts ( ≪ ksp ) are attributed to phase encoding as used in Fourier 
imaging (green, broken). Shifts of integer multiples of ksp refocus different configuration orders, e.g. F−1 or the 
PSIF-echo (orange, broken).

Results
Application of the hybrid Bloch‑EPG to MR fingerprinting and configuration state imag-
ing.  Off‑resonance.  In Fig. 6, the signal is plotted as a function of time index and for two different relaxation 
parameters for both balanced and spoiled SSFP sequences. The respective off-resonance value is color coded, 
where positive and negative off-resonance share the same color bar as they are indistinguishable in the magni-

Figure 5.   Interpretation of balanced and spoiled SSFP in the configuration state k vs. k-space (k’) picture. 
Application of the Fourier transformation and integration over the slice profile is equivalent to summing along 
lines in the configuration state k vs. k-space k’ plot. Horizontal lines (green) are attributed to balanced SSFP, 
where a shift away from k-space center can be interpreted as phase encoding in slab direction (broken line, 
vertically offset). Angulated lines correspond to spoiled SSFP. Here, shifts ≪ ksp denote phase encoding, whereas 
shifts on the order or more of the spoiling moment can be attributed to refocusing of higher configuration 
orders (e.g. PSIF or time-reversed FISP sequences; broken, orange line). The pEPG solution is identified with a 
vertical line of infinite slope (blue).
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Figure 6.   Signal Magnitude and phase for balanced and spoiled SSFP-based MRF sequences as a function 
of off-resonance. Signal-time curves for 101 off-resonance values between ±π/TR are shown. Positive and 
negative frequency offsets share the same color as they are indistinguishable in the signal magnitude response. 
For spoiled SSFP, the signal phase is shown relative to the phase accrual observed within the pEPG formalism, 
i.e. accounting for sign change due to inversion recovery and the trivial accrual of ω(qTR+ TE) due to 
the refocusing of different configuration orders q . Spoiled SSFP ( ksp = 4 · 2π/δ , δ : slice thickness) shows 
greatly reduced off-resonance dependency compared to bSSFP. Higher configuration orders experience larger 
magnitude and phase variation, which can be attributed to neighbouring, lower configurations being of larger 
amplitude, thus leading to stronger interference.

Figure 7.   Dependency of signal amplitude and phase on echo time and off-resonance. The bSFFP-MRF signal 
can be obtained by superimposing the signal of all configuration state orders F(k). Signal-behavior of bSSFP-
MRF is dominated by (1) GRE at short echo times and (2) spin-echo or time-reversed GRE for echo times close 
to TR. For high R2′ decay rates, higher-order contributions can be neglected. Constructive (3) and destructive 
(4) interference of configuration states of different order lead to the distinctive bSSFP-banding structure.
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tude plots. The spoiling moment of ksp = 4 · 2π/δ reduces the off-resonance dependency greatly compared to 
bSSFP for all displayed configuration orders. While magnitude variation persists equally for all configurations, 
phase variation is increased for higher-order configurations. Phase variation is predominantly found in the re-
gion of low signal magnitude as well as for high flip angles.

R2′, off‑resonance and echo‑time dependency.  In Fig. 7, the signal for time-point 90 in the MR fingerprinting 
sequence is shown for both balanced and spoiled SSFP sequences and four configuration orders. As in conven-
tional balanced SSFP, the bSSFP-MRF signal behaves like a gradient-echo for short TE (1), and spin-echo like 
for long TE (2)38. Configurations of higher order ( F1 and F−2 ) cannot be observed due to the rapid transverse 
decay for R2′ = 1/10 ms. Constructive (3) and destructive (4) interference of configurations leads to the banding 
structure observed in balanced SSFP.

Spoiling moment.  In Fig. 8, the signal response for time-point 90 is plotted against off-resonance and spoiling 
moment for the four configuration orders. At ksp = 0 , all configurations show the same balanced SSFP response. 
For small deviations of ksp from zero, the different configuration states can be thought of as phase encodings of 
the balanced SSFP slice profiles. Asymmetry in the effective slice profile leads to different response for positive 
and negative spoiling moments. For sufficiently large spoiling moments, both magnitude and non-linear phase 
variations can be effectively suppressed.

Suppression of magnitude variation in MRF.  Signal magnitude and phase vary with spoiling moment and fin-
gerprinting index. Figure 9 shows the standard deviation of the signal magnitude with respect to off-resonance 
normalized to the average MRF signal

as a function of spoiling moment ksp and time n , where �· · · �ω denotes the average over ω . Periodic minima are 
observed, which are encountered at approximately 2π/δ . In the time-point region between 15 and 50 (flip angle 
ramp between 15° and 50°), the location of the minima varies. Thus, no spoiling moment can be found that 
reduces the off-resonance signal variation below 1% (black) for all time points simultaneously. For gradient-
recalled echo (GRE, F0 state of gradient-spoiled SSFP) and time-reversed GRE ( F−1 state of gradient-spoiled 
SSFP), a spoiling moment of at least 8 · 2π/δ is necessary to reduce magnitude variation below 1%.
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Figure 8.   Dependency of the spoiled SSFP signal on off-resonance and spoiling moment. At ksp = 0 , the 
balanced SSFP signal is recovered for all cases. The asymmetry in the slice profile phase leads to different 
responses for positive and negative spoiling (red arrows). For four-fold spoiling, variation in signal amplitude 
and non-linear variation in phase is mostly suppressed.
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The role of the damping factor: aliasing and Bloch simulations.  In Fig. 10, the predicted signal 
behavior is compared between hybrid Bloch-EPG and a standard Bloch simulation for different number of slice 
profile discretization points Nsp . The hybrid Bloch-EPG with a reduced number of discretization points (gray) 
produces comparable results to the reference calculation with 3001 points (black). In contrast, the result of the 
Bloch simulation (violet, broken) shows aliasing for both 301 and 151 points. Equivalent aliased results are 
obtained when omitting the damping factor sinc

(

k
ksp�z

2

)

 in Eq. (18) in the hybrid Bloch-EPG (yellow, dotted).
This demonstrates the importance of the damping factor to resolve the effect of spoiling on a sub-discre-

tization level. Aliasing occurs as soon as the damping factor becomes zero for the highest occupied state kmax

i.e. a state kmax is populated, which can no longer be resolved by the slice profile discretization alone. The respec-
tive configuration state at which aliasing occurs is given by

and evaluates to 250, 25 and 12.6 for the shown case, which is in agreement with the findings shown in Fig. 10.
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Figure 10.   Comparison of signal-time behavior for different slice profile discretizations and simulation 
methods. The hybrid Bloch-EPG with reduced number of slice profile discretization points Nsp (solid, gray) 
approximates well the signal obtained with the Hybrid Bloch-EPG and Nsp = 3001 (black). Omitting the 
damping factor in the hybrid Bloch-EPG signal Eq. (19) leads to aliasing (yellow, dotted), which is equivalent to 
the results of a Bloch simulation (violet, broken).

Figure 9.   Off-resonance signal variation as a function of time point and spoiling moment. standard deviation 
of the signal magnitude with respect to off-resonance normalized to the mean signal amplitude plotted 
against spoiling moment and temporal index. Between index 15 and 50, minima of the signal variation do 
not follow a horizontal line, thus, no single spoiling moment can be found that reduces slice profile induced 
off-resonance variation to below 1% in this exemplary case. Only with strong spoiling ( ≥ 8 · 2π/δ ) can the 
variation consistently be suppressed for the F0 configuration. This demonstrates that the pEPG is ill-suited to 
predict MRF signal time-courses for standard spoiled SSFP-based MRF and even more so in the context of 
configuration state imaging.
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Discussion
We have presented a formalism that employs the spatially-resolved EPG as an input to obtain the MR signal of 
spoiled and balanced SSFP sequences with variable, slice-selective RF pulses. The formalism allows to capture 
the dependency on spoiling moment ksp , echo time TE , microscopic dephasing R2′ , and off-resonance ω analyti-
cally. We recovered three known solution methods to the Bloch equations, i.e. spatial-domain simulations (Bloch 
simulation), slice-selective extended phase graphs (ssEPG), and the partitioned EPG (pEPG) and presented 
them in one unified picture.

Interpretation of the hybrid Bloch‑EPG.  Considering gradient-spoiled SSFP, spoiling gradients store 
magnetization history in high spatial frequencies of the magnetization distribution. The present formalism sug-
gests that off-resonance artifacts in spoiled SSFP sequences arise from overlapping past and current magnetiza-
tion in k-space leading to interference of configuration states. This occurs whenever a state’s k-space representa-
tion has finite intensity at multiples of the spoiling moment. Since each configuration order k shows different 
off-resonance phase ω(kTR + TE) , interference of the magnetization states leads to signal magnitude and phase 
variations. Changes in the spoiling moment can either reduce or amplify interference. Generally, the overlap of 
the configurations is reduced with increasing spoiling moment26.

Through the analytical dependency on the spoiling moment, the special case ksp = 0 can be considered, which 
corresponds to balanced SSFP (True-FISP). To the knowledge of the authors, this is the first time that a com-
mon formalism for balanced and spoiled SSFP-based MRF sequences is presented that allows to seamlessly and 
analytically sweep between these sequences. This also applies when fully neglecting any spatial variation in the 
magnetization apart from spoiling (pEPG). In this case, interference of configuration states does not occur for 
ksp  = 0 . However, setting ksp = 0 , the balanced SSFP solution can again be obtained36. Since SR-EPG calculations 
are readily implemented and already widely used, adoption of the hybrid Bloch-EPG formula is straightforward.

Fundamental to the slice-selective EPG formalism is a constant spoiling moment increment �k , which is 
given by the time-resolution �t employed in the hard pulse approximation (Eq. 4)

In order to ensure linear phase graph growth, spoiling moment ksp , refocusing gradient moment kpost and 
prewinder kpre need to be integer multiples of �k . This can either be enforced through rounding, rendering the 
solution inexact or by designing the pulse sequence respectively. Contrary, in Bloch simulations, the minimal 
number of isochromats is determined by the spoiling moment and number of sequence repetitions simulated 
to avoid aliasing artifacts. In the hybrid Bloch-EPG, however, the mathematical separation of slice profile and 
spoiling means that aliasing cannot occur, and the slice profile resolution can be chosen according to accuracy 
needs (Fig. 10). Here, the damping factor plays a crucial role by analytically resolving the intra-voxel phase 
dispersion on the sub-discretization level. Likewise, the number of configuration states solely depends on the 
number of time points simulated for the MRF sequence and is fully independent of the time-resolution of the RF 
pulse. This flexibility and intrinsic numerical stability of the method comes at the expense of increased memory 
requirements, as the full SR-EPG needs to be retained in order to evaluate the analytical dependencies. The 
implementations of Bloch, ssEPG and hybrid Bloch-EPG presented here were not designed with computational 
efficiency in mind. An exact computational complexity analysis and performance comparison of the techniques 
in the realm of MRF dictionary generation is beyond the scope of this work.

Extensions to the hybrid Bloch‑EPG.  Off‑resonance distribution.  In Eq. (14), we followed Leupold36, 
to extend our model to include dephasing due to microscopic field inhomogeneities effectively assuming a Lor-
entzian off-resonance distribution. Using the work of Ganter39, other distributions can equally be considered by 
integrating the signal s(n) over an off-resonance distribution p(ω) . Since ω only enters into s(n) via the exponential 
term eiω(k·TR+TE) contained in the weighting function Wk , we can readily define a generalized weighting function

where p̃(t) is the Fourier transformation of the off-resonance distribution function p(ω)

For example, by substituting the Fourier transformations provided by Ganter and keeping a global offset 
frequency ω , we arrive at the following two expressions for the weighting function for Gaussian-distributed 
inhomogeneities

and spherically distributed inhomogeneities

with J1 being the Bessel function of the first kind37.
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Spectral information.  Analogously, the model can be extended to include multi-peak spectra analytically, e.g. 
for accurate modelling of fat using a 7-peak model40. Assuming peak frequencies of ωj , line-width R′

2,j , and peak 
weights wj , the weighting function can be replaced by

assuming equal relaxation properties (T1 & T2) for each peak. If peaks have different relaxation properties, a 
separate phase graph calculation must be performed for each peak before summation.

Variable echo time and configuration state imaging.  Our derivation does not impose restrictions on the type of 
readout employed in each TR. Thus, sequences with variable echo times and multi-echo sequences can equally 
be discussed2,41. This also includes sequences refocusing multiple configuration states, e.g. double- and triple-
echo steady-state (DESS & TESS)32,33 or MRF employing configuration state imaging.

Arbitrary spoiling and k‑space readout.  We restricted spoiling to the through-slice direction, which allowed 
us to discuss slice profiles as a source for off-resonance artifacts in spoiled SSFP-based MRF. Using the same 
approach, however, we can also discuss arbitrary spoiling directions. In this case, three factors need to be con-
sidered separately: (1) the spatial distribution of the configuration states F+k (r) , which is a consequence of RF 
pulses, B1 + inhomogeneity, and variation of relaxation properties; (2) the coil sensitivity-weighted equilibrium 
magnetization distribution C(r)M0(r) ; and (3) Fourier encoding of the spatial frequency k′ with the associated 
time point of encoding τ(k′), which depends on the chosen acquisition trajectory. The signal Eq. (14) can then 
be generalized to

Employing the convolution theorem, the signal is given by

Thus, interference of configurations can be equally formulated as a question of how well separated states are 
in k-space42, an insight already formulated and discussed in detail by Sobol and Gauntt26. In addition, effects of 
non-instantaneous acquisition, such as blurring through off-resonance and k-space filtering as a result of signal 
decay are equally captured through the dependency of the model on the sampling time-point τ(k′).

Variable TR sequences.  Central to the derivation is a constant phase increment φ = ω · TR + ksp · z . This 
directly enforces a constant repetition-time TR, off-resonance ω , and spoiling moment ksp . Only in this case, the 
phase graphs for off-resonance and spoiling are equal. In addition, this leads to a constant phase advance angle 
φ per TR and the phase graph will grow linearly with each iteration. Dropping this requirement, exponential 
growth ( ∼ 3n) of pathways quickly renders the SR-EPG intractable8. Dropping the constant TR requirement, a 
phase graph needs to be simulated for each off-resonance frequency separately.

Equilibrium magnetization and coil sensitivity.  Contrary to RF pulses, equilibrium magnetization and coil sen-
sitivities enter as factors into the generalized signal equation (Eq. 35). From a state-mixing perspective, they can 
be represented as convolutions in k-space (Eq. 36). Hence, they generally lead to broadening of the configura-
tion’s k-space representation and lead to increased mixing. Considering coil sensitivities as the only spatially 
varying component, they are expected to show minor state interference since they typically vary slowly in space. 
Contrary, equilibrium magnetization can vary strongly, e.g. at tissue interfaces or due to contrast agent uptake, 
leading to increased interference of configurations and thus off-resonance artifacts.

Continuous broadening of configuration states.  Considering a single RF pulse within the small tip-angle approx-
imation ( α ≪ 1rad ), Pauly’s k-space interpretation of slice-selective excitation can be employed to estimate the 
spatial frequencies excited43. The maximal frequency component in the excitation slice profile is then given by 
half the gradient moment of the slice selection gradient γGTex/2 . Thus, the minimal spoiling moment to fully 
dephase the transverse magnetization after a single RF pulse is given by

Since RF pulses can be represented by independent matrix products in each spatial position, they also trans-
form to convolutions in k-space. Hence, consecutive application of multiple RF pulses will generally lead to a 
broadening of the configuration state’s k-space populating at most the spatial frequency nπκ/δ after the n th RF 
pulse. This hinders complete spoiling unless signal cancellation due to interference is achieved (Figs. 7 and 8).

B1 + inhomogeneity.  Transmit field inhomogeneity ( �B+1  ) affects the RF pulse matrices and thus is equally 
expected to lead to continuous configuration state broadening despite being slowly varying in space.
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Strong spoiling and partitioned EPG.  Ultimately, the continuous broadening of configuration states leads to the 
insight that spoiling as strong as possible is required to consistently dephase states below the noise floor26. Then, 
the partitioned EPG approximation is justified, which was recovered by the limit ksp → ∞ and is characterized 
by truly refocusing a single configuration.

Relaxation during RF.  In the derivation of the effective RF pulse operator RF(z) , we have assumed negligible 
relaxation during excitation, which leads to a rotation matrix description with effective rotation angles. While 
this assumption holds true for most imaging sequences and tissues, short relaxation times and long RF pulses 
can lead to departure from this simplifying assumption. It is important to note, however, that the notion that 
RF pulses can be expressed as an effective matrix operator RF(z) remains generally true since the solution of 
the Bloch equations can still be represented by a linear operator. Equally, the assertions made about the Hybrid 
Bloch-EPG formalism do not require a specific form of RF(z) . However, the RF pulse operator becomes para-
metrically dependent on T1 , T2 , and R′

2 , which can pose a significant computational burden for dictionary gen-
eration as RF pulses need to be calculated either on the fly or be pre-calculated for all combinations of relaxation 
parameters. Moreover, the RF operator is no longer a pure rotation matrix ( detRF(z)  = 1) implying that the 
description by effective flip-angle profiles is no longer possible. If and how this effective description of slice-
selective RF pulses in the presence of relaxation can be extended, however, as well as a detailed analysis of 
dephasing effects during excitation, remains subject of future work.

Implications for MR fingerprinting and configuration state imaging.  A detailed discussion of the 
effect of slice profile and spoiling in the context of off-resonance artifacts has already been presented by Osten-
son et al.18 We will therefore only discuss the specific findings in the context of configuration interference and 
configuration state imaging.

There are two regions in the test example MRF sequence, where magnitude and phase variation due to 
off-resonance are strongest: (1) the time at which longitudinal magnetization passes through zero during the 
recovery process (for F(0) and T1 = 800 ms, T2 = 50 ms (red curve), time index 25…40 in Fig. 6) and (2) high flip 
angle regions (time index 50…100). Following the argument of Sobol and our findings regarding interference of 
configuration states, an increase in off-resonance variation is related to increased contributions from unwanted 
states Fk  =q relative to the refocused state Fq.

In the case of configuration state imaging, a time-reversed spoiled SSFP-based fingerprinting sequence read-
ing out the F−1 configuration shows similar behavior to the F0 imaging, albeit with generally reduced signal 
magnitude. For higher configurations ( F+1 and F−2 ), configuration state interference leads to pronounced signal 
magnitude variations (see Figs. 6 and 9). We attribute this to the generally low intensity of the F+1 and F−2 states 
compared to their neighboring F0 and F−1 states. Of note, while favorable spoiling moments exist, the valleys of 
low magnitude variations become steeper in Fig. 9, rendering them more susceptible to changes in the spoiling 
moment, e.g. due to local field inhomogeneities.

To the knowledge of the authors, MRF combined with configuration state imaging has so far not been 
published apart from time-reversed gradient-spoiled MRF (PSIF)44. While the combination of the two seems 
straightforward, the increase in off-resonance variation for higher order states as well as the difficulty of finding 
a common spoiling moment that works equally well across configurations might be one obstacle hindering suc-
cessful implementation. Especially time-reversed spoiled-SSFP might be interesting in the realm of diffusion-
sensitive MR Fingerprinting34,35.

To the knowledge of the authors, current MRF implementations employ RF pulse amplitude scaling to imple-
ment variable flip angles. This typically leads to an amplification of side lobes at high flip angles (Fig. 11(1)) and 
non-linear phase accrual over the slice profile (Fig. 11 (2) and (3)), which in turn result in increased off-resonance 
variation in high flip angle regions. Optimal design of RF pulses, pre-winder, and refocusing gradients might 
allow control over configuration interference and thus off-resonance artifacts in gradient-spoiled MRF.

The effective pulse representation (Eq. 5) allows to fully describe slice selective RF pulses through a position-
dependent phase accrual φpre(z) and a hard pulse. Hence, together with the hybrid Bloch-EPG, we can formulate 
a model for slice profile corrections in DESS & TESS45 sequences using the analytical solutions for the transverse 
configuration states F+k  in steady state by Hänicke (use Eq. (21) in Hänicke, where Sn denotes the steady state 
solutions of the signal magnitude of the configuration orders n)46. By defining

we can evaluate the signal of the q th refocused echo in the presence of an arbitrary slice profile by

Finally, the hybrid Bloch-EPG allows to recover four dimensions analytically: TE , ω , R′
2 , and the spoiling 

moment ksp . Optimal parameter combinations of R′
2 and ω , could be determined by conventional fitting routines 

rather than being resolved through discrete atoms in a dictionary. This could help to reduce the dimensionality 
of the dictionaries and improve model-data consistency. Analytical access to ksp further allows for fast evaluation 
of optimal spoiling moments to improve sequence design and mitigate slice profile effects.

(38)F+k (zi) =

{
Sn|α→α(zi),n=k : k ≥ 0
−Sn|α→α(zi),n=k : k < 0

,

(39)s(n)q = CM0

∑

k

Wk

(
ω,R′

2,TE
)∑

i

Fk−q,i

(
ksp

)
F+k (zi)e

iφpre(zi)k+iϕ(z).
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Conclusion
The hybrid Bloch-EPG formalism proposed in this work utilizes a numerically calculated spatially-resolved 
EPG to analytically recover the MR signal dependency on echo time, microscopic dephasing, off-resonance, and 
spoiling moment. It is applicable to sequences with varying RF pulses but constant TR and spoiling moment, 
as they are commonly used in MR Fingerprinting. The hybrid Bloch-EPG formalism allows to seamlessly tune 
between spoiled and balanced SSFP-based MRF sequences. It was shown that off-resonance artifacts arise from 
interference of configuration states, which is a direct effect of incomplete spoiling due to non-rectangular slice 
profiles. The formalism retains a clear separation of configuration states and slice profiles, which allows for a 
more fundamental understanding of echo formation and artifact generation than alternative Bloch or slice-
selective EPG calculations.
Methods
The hybrid Bloch-EPG formalism was implemented in MATLAB 2020b (Mathworks, Natik, MA, USA) and 
compared to implementations of both Bloch simulation and slice-selective EPG. Hann-apodized sinc pulses 
with flip angles αn according to Fig. 2a were generated with κ = 10 and nominal slice thickness of 5 mm by 
amplitude scaling. Refocussing gradient area kpost was calculated once for the maximal flip angle of 70° and the 
prewinder was defined as kpre = −

(
γGTex + kpost

)
 . For each n = 1 . . . 100 , effective RF pulse matrices RFn(z) 

were obtained using the hard pulse approximation. An adiabatic inversion pulse preceded the test sequence, 

Figure 11.   Effective RF pulse decomposition. Two exemplary slice profiles for (a) 30° and (b) 70° RF pulse 
decomposed into effective flip angle α(z) (black) and rf pulse phase profiles ϕ(z) (blue, solid). The broken line 
corresponds to the effective pre-phaser φpre(z) , which needs to be considered for storage and echo components 
of the pulse. (1) At high flip angle, slide lobes are amplified due to violation of the small tip angle approximation. 
(2) At low flip angles, the effective pulse phase is not flat as the gradient waveforms for the sinc pulses were 
optimized for the maximum flip angle (3) as is performed on contemporary scanner systems. For large flip 
angles, pronounced non-linearity in both phase terms arises at the boundary of the slice profiles.
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which was simulated as an ideal pulse inverting the longitudinal magnetization only. Repetition time was assumed 
to be constant with TR = 15 ms.

Bloch simulation was performed using the rotation operator algorithm and propagation of the magnetiza-
tion through the hard pulse approximation (Eq. 4) in each repetition. The slice-selective EPG was implemented 
according to Ostenson et al. by performing the hard pulse approximation in the Fourier domain18. For compari-
son of the techniques in Fig. 3, rounding of spoiling, refocusing and prephasing moments to the state increment 
of the slice-selective EPG ( �k = γG�t ) was performed as well as choosing 5119 isochromats and 145 temporal 
steps to ensure equivalence of the methods. For visualization purposes only, RF pulse phase alternation was not 
simulated.

For all other results and if not otherwise stated, plots depict phase graphs and signals after 91 RF pulses, i.e. 
time-point 90 within the fingerprinting train (Fig. 2a) with simulation parameters of T1 = 800 ms , T2 = 50 ms , 
R′
2 = 0 , TE = 0 , and ω = 0 . The spatially-resolved EPG was simulated with 3001 isochromats, and a field-of-view 

of three times the nominal slice thickness.
For the comparison of hybrid Bloch-EPG magnetization profiles and the Bloch simulation (see Fig. 3), the 

normalized root-mean-square error (nRMSE) was calculated as follows

and the nRMSE for the ssEPG according to

Code to reproduce the figures in this paper can be found in the supporting material.

Data availability
All data presented was generated through custom code, which is shared as part of this publication.

Code availability
Code to reproduce the findings of this paper can be found here: https://​doi.​org/​10.​5905/​ethz-​1007-​437.
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