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Glioblastoma (GBM) remains the most lethal and common primary brain tumor, even after
treatment with multiple therapies, such as surgical resection, chemotherapy, and
radiation. Although great advances in medical development and improvements in
therapeutic methods of GBM have led to a certain extension of the median survival
time of patients, prognosis remains poor. The primary cause of its dismal outcomes is the
high rate of tumor recurrence, which is closely related to its resistance to standard
therapies. During the last decade, glioblastoma stem cells (GSCs) have been successfully
isolated from GBM, and it has been demonstrated that these cells are likely to play an
indispensable role in the formation, maintenance, and recurrence of GBM tumors,
indicating that GSCs are a crucial target for treatment. Herein, we summarize the
current knowledge regarding GSCs, their related signaling pathways, resistance
mechanisms, crosstalk linking mechanisms, and microenvironment or niche.
Subsequently, we present a framework of targeted therapy for GSCs based on direct
strategies, including blockade of the pathways necessary to overcome resistance or
prevent their function, promotion of GSC differentiation, virotherapy, and indirect
strategies, including targeting the perivascular, hypoxic, and immune niches of the
GSCs. In summary, targeting GSCs provides a tremendous opportunity for
revolutionary approaches to improve the prognosis and therapy of GBM, despite a
variety of challenges.

Keywords: glioblastoma, glioblastoma stem cells, biomarkers, signal pathways, targeted therapy
INTRODUCTION

Malignant gliomas are the most frequent and lethal cancers originating in the central nervous
system (1), and include three main high-grade glioma phenotypes based on genome-wide
expression profiling and DNA methylation analysis in recent clinical assessments: proneural,
mesenchymal, and classical (2, 3). Glioblastoma (GBM), also known as glioblastoma multiforme, is
one of the most biologically aggressive subtypes due to its high malignancy and genetic
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heterogeneity (4, 5). The standard therapeutic approaches for
GBM include maximal surgical resection, radiotherapy,
chemotherapy (with various chemotherapeutic agents), and
other innovative therapies combined with conventional
approaches (6–8). Despite this, only 5.5% of patients between
the ages of 55 and 64 survive for five years from diagnosis, and
life expectancy has only increased from approximately 6 to 12–
18 months after maximal standard treatments. This dismal
prognosis is associated with the high rate of relapse and
resistance to current standard therapies (9, 10). Overall,
treatment of GBM is still challenging compared to other solid
tumors, despite the great advances in medical development and
improvements in therapeutic methods. Therefore, there is an
urgent need to identify novel therapeutic targets to optimize the
therapeutic approaches to GBM treatment.

Disease management and standard therapies are the absence
of work due to the considerable intratumoral phenotype,
intrinsic heterogeneity, and extensive infiltration of tumor cells
throughout the brain (11). Thus far, several studies have
identified the presence of stem cell-like cells in solid tumors,
termed cancer stem cells (CSCs). These cells have high plasticity
and the ability to proliferation, self-renew, and give rise to
pathognomonic heterogeneous cancer cells that comprise the
tumor (1, 12–14). A study on a pure CSC tumor model found
that CSCs form the basis of tumorigenesis and continue to
proliferate through self-renewal and segregation into different
tumor cells (15). Simultaneously, numerous studies have shown
that the highly malignant CSC subpopulation of tumor cells
shows more aggressive potential compared to non-CSCs, despite
the fact that the differences between CSCs and non-CSCs are not
fully clear (16–18). A huge amount of evidence has shown that
malignant CSC subpopulation of tumor cells in GBM are
probably linked to malignant relapse, resistance to standard
therapies due to their characteristic abilities to self-renewal,
differentiation, growing and progression (12, 19–25).
Therefore, CSCs causes of tumor characteristics such as
proliferation, maintenance, malignant relapse, and metastasis
in GBM (26). The major reasons for this resistance to chemo-
and radiotherapy are their assumed quiescence, high capacity for
extensive DNA repair, a higher mitochondrial reserve and their
location in hypoxic niches (2, 27, 28). In order to combat
therapeutic resistance of CSCs, it is necessary to understand
both the mechanisms of inherent resistance and the surrounding
niche of CSCs, which might be perceived as an interesting
alternative to targeting therapy for GBM. It is also crucial to
further understand the characteristics of these cells. First, CSCs
must be identified prospectively from a variety of tumor cells.
Common biomarkers, including CD133, CD44, and CD24, have
been used to identify and enrich CSCs; however, several studies
on CSCs have failed to confirm their reproducibility and
accuracy owing to the genetic heterogeneity of CSCs, and the
lack of universally informative biomarkers (29, 30). Furthermore,
with the aim of treating this highly malignant disease,
identification and blockade of CSC signaling pathways, such as
the Notch, sonic hedgehog (SHH) and Wnt signaling pathways
(31), which are closely correlated with tumor characteristics
Frontiers in Oncology | www.frontiersin.org 2
including proliferation, maintenance, malignant relapse, and
metastasis in GBM, will provide vital targets for GBM treatment.

In contrast to the bulk tumor populations, the unique
properties of CSCs suggest that targeting the stemness of CSCs
in GBM and developing targeted CSC therapies could offer an
unprecedented therapeutic opportunity for GBM (Figure 1).
This is important, as the refinement of the current standard
therapy techniques for GBM is essential to improve the poor
disease outcome. However, targeting CSCs for GBM therapeutics
remains difficult, owing to the slow cycling of CSCs, the high
expression of drug export proteins, and having no potential
ability in CSCs to expressing the oncoproteins that could be
targeted by the new generation of smart drugs, such as Gleevec
and Iressa (32). In order to gain a better understanding of the
characteristics of CSCs and CSCs-targeted therapeutic
approaches to overcome therapeutic challenges, including the
resistance and tumor recurrence in GBM, we summarize the
current knowledge regarding glioblastoma stem cells (GSCs),
their related signaling pathways, resistance mechanisms,
crosstalk linking mechanisms, and microenvironment or niche.
Subsequently, we present a framework of targeted therapy for
GSCs based on direct strategies, including blockade of the
pathways necessary to overcome resistance or prevent their
function, promotion of GSC differentiation, virotherapy, and
indirect strategies, including targeting the perivascular, hypoxic,
and immune niches of the GSCs. In summary, targeting GSCs
provides a tremendous opportunity for revolutionary approaches
to improve the prognosis and therapy of GBM, despite a variety
of challenges. We believe that this review could help to guide the
future of GBM research and therapy.
NEURAL STEM CELLS AND GLIOMA
STEM CELLS

Neural Stem Cells
In the 1960s, James Till and Ernest McCulloch first discovered
stem cells after performing modified spleen colony formation
assays in vivo (33). The crucial capacity for undergoing
asymmetric division via self-renewal of stem cells have been
described, which could generate two daughter cells with different
cell fates that is a true stem cell and the other one is a progenitor
with a high cycle ability despite a limited number of cell cycles,
and simultaneously the loss of this balanced process could induce
a cancer-like state (34). Recently, stem cells as undifferentiated
cells have been clearly defined that have the ability to undergo
asymmetric division, malignant proliferation, self-renewal,
plasticity, differentiation into progenitor cells or regeneration
of injured tissue (35). The cell cultures of GBM have been
verified to show capable of forming neurospheres in vitro with
high expression of biomarkers like CD133 and Nestin (36), and
these sphere-forming cells derived from human GBM into mice
could also grow tumor in vivo (20). The same cell culture
conditions could been used as for these normal neural stem
cells (NSCs) (37), which have the ability to produce neural and
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glial cells of the nervous system, are one of the primary stem cell
types in the nervous system, and the transformation from NSCs
to GSCs has been demonstrated to be a possible factor in the
formation of glioma (38). There are at least two neurogenic
regions of the adult mammalian brain where NSCs are identified:
the subventricular zone (SVZ) of the lateral ventricles and the
subgranular zone (SGZ) of the hippocampus in the dentate
gyrus. Stem cells near the SVZ or SGZ are always in a state of
Frontiers in Oncology | www.frontiersin.org 3
quiescence or active mitosis, as shown in several murine models
(39–41). In addition, NSCs situated in the SVZ could also
undergo asymmetric division as they are able to orient their
division and their mitotic spindle acting as a molecular trigger
for both daughter cells in the microenvironment (42–44). The
malignant proliferation of NSCs has been proven to be one of the
likely origins and identifying characteristics of cells that induce
tumorigenesis, including proliferation, maintenance, malignant
FIGURE 1 | Glioblastoma stem cells (GSCs) are likely to be one of the potential causes of tumor proliferation, maintenance, malignant recurrence and metastasis in
GBM, which aid in the self-renew, multilineage differentiation and proliferation of GSCs. Therefore, standard therapies alongside targeting GSCs or targeting GSCs
niche might be the optimal therapy strategy for GBM.
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relapse, and metastasis in GBM due to the genetic mutations in
oncogenes accumulation in NSCs, which may give rise to the
dedifferentiation in normal brain cells and induce tumor cells
(45–47).

The Relationship Between NSCs
and GSCs
These tumor cells possessing stem cell-like features seem to be
responsible for tumor progression and tumor relapse in various
solid tumors including GBM. The authentic origin of CSCs is a
problem that has been extensively investigated, but some
controversy about this question remains, due to the incomplete
and inconsistent experimental data (48–51).

Interestingly, the tumor-propagating cells in GBM named
GSCs have properties similar to those of normal NSCs, including
the enhanced ability to self-renew and undergo multilineage
segregation into different tumor cells (52, 53). In addition to
these similar stem cell properties, the common pathways
between GSCs and NSCs, such as Notch, bone morphogenic
proteins(BMPs), Wnt, NF-kB, platelet-derived growth factor
(PDGF), epidermal growth factor (EGF), SHH, and
transforming growth factor–b (TGF-b) are closely linked to the
development of the nervous system (36, 54, 55). Among these,
PDGF signaling is also important for the transformation of
normal NSCs into GSCs, facilitating the formation and
proliferation of GBM (56–58). EGFR signaling has been
demonstrated to play a pivotal role in regulating normal NSC
expansion, migration, differentiation, and survival in neural
development (59–62), inducing tumorigenic potential (63, 64).
The similar gene expression profiles between NSCs and GSCs
also support the hypothesis that CSCs are the other malignant
variants of NSCs (65, 66). Furthermore, GSCs and NSCs express
semblable neuronal or glial markers, such as CD133, CD15,
integrin-a6, L1CAM and (67). In contrast to the remaining
isolated cells which lack these markers, CSCs with common NSC
markers have undergone orthotopic tumor formation in nude
mice, and the orthotopic tumors are closely related to human
GBM (68). In summary, there is plenty of evidence to indicate
the common properties, signaling pathways, gene expression,
and biomarkers between NSCs and GSCs, however, it is still
difficult to confirm whether GSCs are derived from malignant
mutation of NSCs, which could induce tumor formation, or
whether they are derived from other mature cells with the ability
to self-renew and differentiate into various tumor cells. A reliable
approach to targeting GSCs for GBM treatment would only
selectively eliminate GSCs after identifying and isolating GSCs
from other NSCs. In regards to this problem, further studies on
the relationship between NSCs and GSCs are needed.

Isolation and Identification of GSCs
Specific and precise criteria play an indispensable role in
identifying and isolating GSCs from other cells (69). GSCs
have been isolated from solid tumors and classified as one of
the first cell types (23). Conversely, GSCs are effective at
initiating tumor xenografts in vivo, owing to the formation of
heterogeneous tumors that resemble the original parent tumor.
Frontiers in Oncology | www.frontiersin.org 4
On the contrary, GSCs have been demonstrated to self-renew
and form neurospheres when grown in vitro, which could be
used to assess the proliferation of GSCs via the frequencies of
GSCs in tumors (70, 71). Consequently, GSCs cultured in vivo or
in vitro play an important role in the pathogenesis and
development of GBM, because of the greater reliability and
physiological relevance of the model.

The use of various specific surface markers or molecular
mediators such as CD133, CD90, CD44, L1CAM, A2B5, and
GPD1 is a common method to identify GSCs and define lineage-
specific subpopulations within the tumor, although the cause of
their reproducibility and accuracy is still unclear (29, 30, 72).
However, the GSC niche as a potential marker source may cause
epigenetic changes and variations in CSC phenotypes via
microenvironmental signals in vivo or in vitro (31). The
recognition of GSCs as therapeutically targetable remains a
major challenge to overcome. Furthermore, some stem cells
might additionally express ABC transporters binding with
ATP, which are able to pump the fluorescent dye HOECHST-
33342 out of the cell and to recognize unlabeled side population
(SP) highly enriched in stem cells in neural tissues (67), which
could be an alternative approach for identifying GSCs. Another
approach to identify a subpopulation of GSCs is the observation
of autofluorescence around 520 nm under laser excitation at 488
nm, owing to the autofluorescence properties and distinctive
morphology of GSCs (73). In summary, various strategies for the
isolation and identification of GSCs have been produced, and
have facilitated efforts to isolate and identify GSCs via new and
more effective technology, which may require a thorough insight
into both the essential molecular and morphogenic processes
regarding how GSCs are associated with tumor initiation or
tumor proliferation in GBM. To improve the diagnostic and
therapeutic prediction value, it is important to develop methods
that are more effective to isolate and identify GSCs in GBM.

Biomarkers of GSCs
The isolation and identification of GSCs in GBM may contribute
to a better understanding of the mechanisms underlying
tumorigenesis and novel therapeutic strategies for GBM. It
may be an ideal and effective approach to sort and target GSC
populations via GSC markers to distinguish the expression of
stem cell surface markers in GSCs, and are functionally
correlated with the maintenance of GSCs, providing a powerful
tool to investigate the tumorigenic process in the cerebral
nervous system and promote the diagnosis, and treatment of
GBM. To date, a great number of advances have been made in
understanding GSC markers in the last several years. Here, we
focus on several putative GSC markers, including CD133
(PROM-1), Nestin, LGR5, B23 (NPM1), and GPD1.

CD133 (PROM-1)
CD133, as the initial isolation marker of GSCs, is still the best
validated marker. CD133, which belongs to the Pentaspan
transmembrane glycoprotein family member, is also known as
prominin-1 (PROM-1) or AC133 (74). It is a membrane bound
glycoprotein encoded by the PROM1 gene and the chemical
structure of CD133 involves a single-chain polypeptide of 865
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amino acids with 5-TM regions, an extracellular N-terminus and
a cytoplasmic C-terminus (75). CD133 was first discovered in
human hematopoietic progenitor cells and was later described in
mouse tissue (76). With the aim of enriching and identifying
tumor-propagating and tumor-initiating cells, CD133 has
become an alternative tool in some experiments. For example,
CD133+ cells in GBM, identified by flow cytometry, have been
considered tumor-initiating cells and have been demonstrated to
be responsible for the proliferation of tumor cells, as well as
resistance to radiation therapy based on immune-deficient
NOD/SCID mouse xenograft models (77). However, there are
still some controversies regarding CD133+ cells. Some studies
have questioned the idea that CD133 as a stem cell surface
marker is a common and useful tool for identifying and defining
GSCs, including the findings that CD133+ cells are differentiated,
while CD133− cells also have the ability to initiate tumors in
some cases (78), indicating that CD133 might not be a reliable
GSC informative marker. There are still some debates regarding
the definitive function of CD133 in GBM, but it is clear that the
expression of CD133 may change due to several interactions with
the tumor microenvironment, and may play a possible role in cell
differentiation and the epithelial to mesenchymal transition (79).
Given the limited knowledge regarding the definitive role of
CD133 and its expression across the differentiation spectrum of
GSCs, it is necessary to have a thorough insight into the function
of CD133 in GBM.

Nestin
The neuroepithelial stem cell protein commonly known as
nestin, first described as an antigen of rat-401 against
embryonic spinal cord and later identified as a class VI
intermediate filament protein (80), has been shown to be
expressed in neuroepithelial stem cells, and is highly expressed
in several types of human malignancies, including higher grade
GBM. Nestin has been shown to be strongly correlated with
lower cancer patient survival, while some researchers hold the
opposing view that there is no connection between Nestin
expression and poor prognosis in GBM (78, 81–85). Nestin, as
another putative marker for the GSC phenotype, probably plays
a significant role in aggressive growth metastasis and self-
renewal capacity of CSCs, organizing the cytoskeleton, cell
signaling, organogenesis, and cell metabolism, and represents
the proliferation, migration, and multi-differentiated
characteristics of multi-lineage progenitor cells, and it is thus a
more suitable target molecule to identify GSCs in GBM than
CD133 (86, 87). Zhang et al. previously showed that there have
been considerable refinements in clinical prognostic accuracy by
adding a putative marker for the GSCs Nestin into CD133 (88).
Although a definitive description of Nestin in GSCs remains
elusive, its role in transformed cells, especially GSCs, its
involvement in forming the cytoskeleton and the thorough
mechanisms underlying this relationship between Nestin
expression and miscellaneous capacity of GSCs is known.
Thus, a combined detection of Nestin and CD133 co-
expression may be a potential indicator of the biological
invasion of GBM.
Frontiers in Oncology | www.frontiersin.org 5
LGR5
Leucine-rich repeat-containing G protein-coupled receptor 5
(LGR5) was first reported as a marker of intestinal stem cells
and also serves as a novel functional marker of GSCs. LGR5
belongs to the seven-transmembrane receptor subclass of the G
protein-coupled receptor family, is closely correlated with the
Wnt signaling pathway and is also known as Gpr49 (89). LGR5
contributes to tumor formation, proliferation, and aggressiveness
(90–94). In 2018, Zhang et al.demonstrated that LGR5 has a
variety of roles, including promoting GSC epithelial-
mesenchymal transition (EMT) by activating the Wnt/b-
catenin pathway in vitro and in vivo, and should be an effective
indicator of prognosis in GBM, along with predicting glioma
recurrence (95). Therefore, targeting LGR5 in GSCs may
facilitate the treatment of GBM with ideal therapeutic
approaches to promote the further understanding of the novel
functional marker of GSCs.

B23
B23, also known as nucleophosmin or NPM1, is both a
chaperone of nucleic acids and a nucleolar protein shuttling
between the nucleoli, nucleoplasm, and cytoplasm, and is
involved in various functions, including centrosome
duplication, ribosome maturation and export, intracellular
transport, chromatin remodeling (core and linker histone
binding), apoptosis, and mRNA splicing in diverse cellular
processes, and plays an important role in the cellular response
to different stress stimuli and cell cycle control (96, 97). It has
been found that B23 is overexpressed at both the mRNA and
protein levels in hematologic malignancies and other types of
cancer compared with the normal brain, especially in gliomas
(98). Consequently, B23 is considered a promising therapeutic
target for GBM treatment.

Glycerol-3-Phosphate Dehydrogenase 1 (GPD1)
GPD1, also named as GPD-C, GPDH-C, or HTGTI, is one of
three isoenzymes of human glycerol-3-phosphate dehydrogenase
that are involved in cata lyzing the convers ion of
dihydroxyacetone phosphate (DHAP) with NADH and
glycerol-3-phosphate (G3P) with NAD+, which is critically
implicated in the transport of reducing equivalents across the
mitochondrial membrane and triacylglycerol synthesis (99–101).
Scientists have demonstrated that aberrant GPD1 expression is
found in dormant GSCs, but not in NSCs in vivo, and its
expression could aggravate the progression of GBM due to its
significance for GSC proliferation and maintenance, furnishing
dormant GSCs with functional correlation as a therapeutic target
(102). Therefore, loss of GPD1 could result in impairment of
GSC maintenance pathways in GBM, prolonging patient
survival. Furthermore, it is better to shed light on the crosstalk
between GPD1 and edema in GBM, as edema occurs in patients
suffering from human GBM (103).

Although growing putative GSC markers like CD133, CD90,
CD15, A2B5, ALDH1, Label-retention, Nestin, proteasome
activity, and ABC transporters (78, 104) have been used to
recognize GSCs, and a considerable number of studies have
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tang et al. Targeting Glioblastoma Stem Cells
been conducted on these markers to provide compelling and
informative evidence that these putative GSC markers are
powerful tools to investigate the tumorigenic process in the
cerebral nervous system and promote the diagnosis and
treatment of GBM (Table 1). However, the exact mechanisms
and functionalities of these putative markers in GSCs have not
been thoroughly elucidated. Given this problem, it is crucial to
have a thorough and wide insight into identifying both specific
markers of GSCs and the molecular mechanisms for the
development of improved and tailored targeting of GSC
treatments for GBM, especially paying closer attention to the
various ideas of GSC isolation and identification, such as the
concomitant use of different stem cell markers, instead of a
single marker.
THE GBM NICHE

Niches, clearly defined as the tumor microenvironment (TME)
composed of extracellular matrix (ECM) and a complex tissue of
cells including astrocytes, macrophages, pericytes, fibroblasts,
and endothelial cells play a significant role in stem cells that not
only an anatomic structural unit surrounding stem cells, but also
a functional unit that provides complex and dynamic
interactions with stem cells (13, 112). In the human brain,
stem cells, including normal NSCs, are enriched in specific
regions that consist of endothelial and ependymal cells to
maintain their stem cell properties (14). The relationship
between TME and stem cells is synergistic and codependent
like the ‘‘seed-and-soil’’ relationship rather than passive
relationship, which are adapted in GSCs, as they also require a
specific niche to support their stem-like characteristics, including
division other than self-renewal (113), high proliferation (114),
and multidirectional differentiation into various tumor cells. In
addition, multilineage and inherent crosstalk between GSCs and
microenvironment with various tumor components such as the
(ECM), cellular compartments such as cancer-associated
fibroblasts, immune cells, differentiated neural cells, etc., and
the blood–brain barrier (BBB) through tumor-derived pericytes
is facilitated to form an ideal microenvironment that could
enhance the invasive tumor-properties, or resistance to
chemotherapy and radiotherapy (79, 115). The chemo- and
radio- resistance of GBM is thus responsible for an isolated
properties of GSCs, along with the intrinsic dependance on the
synergistic interaction between these tumor cells and TME.
These properties of the GSCs niche could be conducive to
GBM heterogeneity, plasticity, and malignancy, determining
the fate of GSCs.

There are three major GSC niches, including the perivascular
niche via angiogenic pathways, the perinecrotic or hypoxic niche
via inducing hypoxia, and the immune niche. The perivascular
niche is surrounded by a mass of blood vessels feeding the tumor
with abnormal structure and function. The synergistic and
codependent relationship between the GBM perivascular niche
and GSCs can contribute to the progression of tumor
angiogenesis (116). There are a great number of CSCs under
Frontiers in Oncology | www.frontiersin.org 6
hypoxic conditions, which indicates a positive player in
maintenance of CSCs through supporting the critical stem cell
traits of multipotency, self-renewal, and tumorigenicity (117).
HIFs(HIF-1a and HIF-2a) in the hypoxic niche are upregulated
via the expression of HIF-1a and HIF-2a isoforms in GBM and
the roles of both HIF-1a and HIF-2a seem to be overlapping
with 75% homologies between HIF-1a and HIF-2a (118). In
addition, it has been found that tumor aggression increased via
acting on the GSCs and the infiltration of a large number of
immune cells in the GBM immune niche, showing that the
hypoxic response along with inflammation are overlapping
despite the immune privilege in the normal human brain
(119). The hypoxic environments could induce synthesis of
HIF-1a with the protein stabilized through engaging the T-cell
receptor (120), enhance the lytic ability of CD8+ T lymphocytes
(121) as well as interferon-gamma secretion by CD4+ T cells
(122), impair cytotoxic T lymphocyte (CTL) development,
proliferation and expression of inflammatory cytokines (121),
and also recruit immunosuppressive cells via GSCs signaling
including tumor-associated macrophages (TAMs), myeloid-
derived suppressor cells (MDSCs), and Tregs that could
promote angiogenesis, inhibit the immune response by
secreting chemokines and growth factors such as vascular
endothelial growth factor (VEGF), transforming growth factor-
b1 (TGF-b1), neurotensin, SDF1, and soluble colony-stimulating
factor 1 (sCSF-1) and expressing surface molecules that engage
inhibitory molecules on effector immune cells (123), ultimately
leading to the formation of an immunosuppressive
microenvironment. In a word, targeting of the GSC niche,
particularly the perivascular niche, the hypoxic niche, and the
immune niche, is still one of the crucial strategies to solve
resistance to current standard therapy for GBM and improve
the poor disease prognosis of GBM.
DIRECT TARGETING OF GSCS

Blockage of GSC Signaling Pathways
A sequence of signaling pathways and receptors upregulated by
GSCs involved in tumor proliferation, maintenance, and
resistance to chemotherapy and radiotherapy, could improve
the stem-like features and aberrant cell survival, ultimately giving
rise to oncogenesis in the brain (36). It is thus crucial to acquire a
thorough insight into the pivotal signaling pathways and
receptors responsible for GSC maintenance, including Notch,
Wnt, SHH and Receptor Tyrosine Kinase (RTK) pathways, to
understand the stem cell properties of GSCs and facilitate the
development of improved and tailored targeting GSCs
treatments for GBM.

Blockage of Notch Signaling Pathway
It has been previously confirmed that the Notch signaling
pathway is critically associated with stem cell fate
determination, proliferation, maintenance of cell quiescence,
metastasis, and modulation of differentiation of both normal
NSCs and GSCs (124). Via mutual effects with ligands on a
July 2021 | Volume 11 | Article 701291
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considerable number of cells, the Notch pathway, including the
four Notch receptors (Notch 1–Notch 4) and five ligands
(Jagged-1 and Jagged-2, and Delta-like-1, Delta-like-3, and
Delta-like-4), can regulate the interaction between cells and
neighboring cells covering a short range (125, 126). The Notch
signaling pathway is activated by sequential proteolytic cleavage
reactions, causing release and nuclear translocation of the
intracellular domains of Notch receptors (NICDs) and a series
of transcription-dependent pathways, activated by the Notch
signaling pathway are essential (127). Inhibitors of the g-
secretase (GSIs) complex which participates in regulating the
last proteolytic step for release of NICDs, such as RO4929097
(29), play a significant role in blocking the Notch signaling
pathway both in vitro and in vivo, owing to its ability to
activating the Notch signaling pathway (128).

Blockage of Wnt/b-Catenin Signaling Pathway
The Wnt/b-catenin signaling pathway is critically implicated in
modulating the differentiation and proliferation of normal neural
cells such as NSCs or cells of the astroglial lineage (129–131), as
well as the self-renewal, differentiation, and expansion of GSCs
(132–134). The nuclear localization of stabilized b-catenin is able
to abnormally activate the b-catenin signaling pathway of GSCs,
and is intrinsically correlated to tumorigenesis, growth invasion
in GBM (135, 136), and the expression of MGMT, which is
responsible for the resistance to TMZ (137). However, it remains
highly difficult to target the Wnt/b-catenin signaling pathway
owing to the serious side effects of this inhibition, as this pathway
is critically related to a considerable number of physiological
processes in human organs including the brain (138).

Blockage of SHH Signaling Pathway
It has been well demonstrated that normal NSC fate
determination, proliferation, maintenance, differentiation, and
ventral patterning in the special and pivotal region called SVZ is
intrinsically dependent on the SHH pathway in the adult brain
and organogenesis, such as neural progenitor modulation during
embryonic development (36). The SHH signaling pathway is
critically implicated in the oncogenesis of GBM and the self-
renewal of GSCs, as the activation of the SHH signaling pathway
upregulates the drug efflux Pglycoprotein (ABCB1), ABC
transporter ABCG2, multi-drug resistance-associated protein-1
(ABCC1/MRP1), MGMT, B cell-specific Moloney murine
leukemia virus integration site 1 (BMI1) (31, 139–141).
Furthermore, the loss of P53 causes up-regulation of the
potent transcription factor Nanog, which is closely correlated
with SHH signaling pathway activity and the ability to regulate
GSC properties, eventually contributing to chemo-resistance to
TMZ in GSCs via regulating the expression of the TMZ
resistance marker MGMT (141) and maintaining the self-
renewal, differentiation, and expansion of GSCs based on
recent studies (71).

Inhibition of Receptor Tyrosine Kinase
(RTK) Pathways
RTK pathways are transmembrane proteins composed of a
unique extracellular ligand-binding domain, a transmembrane
Frontiers in Oncology | www.frontiersin.org 8
helix, an intracellular tyrosine kinase domain, and a series of
tyrosine residues (142, 143). RTK pathways include some of the
most extensively studied pathways in oncology; here, we will
focus on several important growth factor receptors in GBM and
the targeted strategies to inhibit them.

Epidermal Growth Factor Receptor (EGFR)
The epidermal growth factor receptor (EGFR) is a
transmembrane RTK that is critically responsible for the
modulation of stem cell expansion, metastasis, differentiation,
and survival in the human brain (144). In the case of
heterodimers or homodimers formed by binding to ligands
consisting of EGF or transforming growth factor-a (TGF-a),
EGFR causes autophosphorylation of its C-terminal tail and
activation of downstream signaling via its docking site of the
SRC homology domain (145). It has been found that the over-
expression of EGFR in humans accounts for 40%–60% of
primary GBM tumors, especially in the classical subtype (146),
however, the over-expression of EGFR in GBM is intrinsically
implicated in gain-of-function missense mutations and in-frame
deletions in the extracellular domain, rather than responsiveness
to EGFR inhibitors (147, 148). The transactivation of b-catenin
enables EGFR activation, leading to GSC expansion, metastasis,
differentiation, tumor formation (149), and subsequently the
human oncogenic EGFR is over-expressed, enhancing the self-
renewal ability of GSCs, and further contributing to tumor-
initiation or tumor- proliferation in GBM (36, 63, 64).
Furthermore, in a GSCs marker study conducted by Song et al.
(150), in 2021, SH3KBP1, a promising therapeutic target in GBM
patients, was demonstrated to have the capacity to activate and
modulate EGFR signaling. There are three kinds of EGFR
tyrosine kinase inhibitors (TKIs) in total, including first-
generation reversible small-molecule TKIs, which target EGFR
and its co-receptor HER2, such as Erlotinib and Gefitinib (151),
second-generation TKIs which bind irreversibly to EGFR, such
as Afatinib, Neratinib and Dacomitinib (138) and third-
generation irreversible inhibitors such as TKIs AZD9291
(Osimertinib), which have excellent blood–brain barrier
penetration and have been shown to be effective in preclinical
tests (152).

Platelet Derived Growth Factor Receptor (PDGFR)
The PDGF family of receptors, one of the main deregulated RTK
pathways in GBM, is comprised of two categories of receptors by
different genes encoding PDGFRa, which is mainly responsible
for developing oligodendrocytes (153) and PDGFRb, which is
important for blood vessel formation (154) during embryonic
development. It has been found that the activation of PDGFR-
signaling via a PDGF-nitric oxide (NO)-ID4-regulatory circuit
(155) in humans accounts for tumorigenesis in 30% of GBM
patients, and the overexpression or alterations of PDGF ligands
are commonly found in GBM patients, especially in a proneural
subtype of GBM, which contributes to the development of GBM
and the function of GSCs, such as the self-renewal and tumor-
initiating capacity to different extents among PDGFRa and
PDGFRb (155). Among several PDGF inhibitors, such as
imatinib, tandutinib, AG1433, and nilotinib (138, 156), the
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small molecule TKI imatinib (also known as Gleevec; Glivec;
STI-571) has been demonstrated to enable the growth of GBM
xenografts in vivo to inhibit and the radiosensitivity of human
GSCs in vitro to increase (157), but it has no significant
therapeutic effect on recurrent GBM (156).

Vascular Endothelial Growth Factor
Receptor (VEGFR)
Three RTKs, VEGFR1, VEGFR2, and VEGFR3, which are
encoded by the genes FLT1, KDR, and FLT4, constitute the
VEGF receptor (VEGFR) family (158–160), a pivotal regulator of
vasculogenesis, angiogenesis, and lymphangiogenesis (VEGFR3)
in the normal body (161). GBM is one of various tumors which
highly expresses VEGF and its receptors, resulting in highly
vascularized tumors and increased microvasculature compared
to other normal tissues (162), and is an important target in
glioblastoma aberrant VEGFR2 signaling, which is an important
pathway affecting survival, proliferation, migration, and vessel
permeability in tumor cells (163). Furthermore, it has recently
been demonstrated that human cartilage glycoprotein-39 or
chitinase-like protein-1 (YKL-40) may be effective targets, as
they are able to upregulate VEGF expression and induce new
tumor vasculature (164). There are a wide variety of VEGFR
inhibitors (TKIs) with different treatment effects, including
atalanib (PTK787), mainly against VEGFR2, PDGFR, and c-kit
(165), sorafenib (166), tivozanib (167), pazopanib combined with
lapatinib (168), Cediranib (169), and SU1498 (170).

Therapeutic targeting of GSC pathways and receptors, such as
Notch, Wnt, SHH, EGFR, PDGFR, and VEGFR presented in this
review, which are critically implicated in tumor cell proliferation,
maintenance, and resistance to current therapies, is of significant
interest as it provides reliable and physiologically relevant trials
to block these stem cells via the inhibition of pathways and
receptors. Among these, EGFR, PDGFR, and VEGFR inhibitors
have shown less advantages for their limitations compared to
GSC pathways, such as Notch, Wnt, and SHH pathways,
suggesting that targeting GSC pathways might become a future
direction and an excellent solution in GBM therapy.

Promotion of GSC Differentiation
Multilineage differentiation both in vitro and in vivo is an
important property in NSCs, and NSCs share the ability to
promote cell differentiation in common with GSCs (68). In
addition, GSCs have been proven to become inherently more
sensitive to therapy, less capable of engraftment, and enable
apoptosis to be directly induced in some settings after
differentiating into more terminal glioblastoma cells (2).
Hence, the promotion of GSC differentiation might be a key
player in the therapeutic strategies for GBM. The bone
morphogenic proteins (BMPs) involved in promoting normal
neural precursor differentiation into astrocytes and post-
transcriptional modification using miRNA, have been
demonstrated to play a positive role in the stem cell niche of
the adult brain, increase in GSC differentiation, and suppression
of glioblastoma tumorigenicity in vivo, leading to the elimination
of GSCs and sensitization of GBM to chemotherapeutics (2, 171).
Recently, the overexpression of miR-128 or miR-302a has been
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shown to promote GSC differentiation, enhance senescence
mediated by axitinib treatment, and further impair GSC
proliferation (172). Furthermore, graphene oxide (GO), a new
carbon material, has been reported to have potential for use in
GBM treatment, as GO could decrease the expression of stem cell
markers such as SOX2 and CD133, and increase the expression
of differentiation-related markers such as GFAP and b-III
tubulin, ultimately inducing the differentiation of GSCs (173).
Sulindac, a non-steroidal anti-inflammatory drug (NSAID), is
capable of inducing GSC differentiation and sensitizing them to
oxidative stress (174).In the future, novel approaches for the
promotion of GSC differentiation and potent anti-GBM agents
such as GO and Sulindac, which could be used to suppress GSCs
and become useful for future clinical applications, are
urgently needed.

Virotherapy
As strictly intracellular organisms, viruses can replicate inside
host cells by hijacking the cellular machinery. Among these
various targeting GSC strategies, virotherapy has shown
therapeutic value in terms of preventing GBM recurrence;
here, we will shed light on oncolytic virotherapy (OV), which
has been extensively studied. Oncolytic virotherapy possesses
lytic properties and is capable of achieving tumor cell lysis
through intra-neoplastic virus replication (175). Several
approaches for delivering OV with stem cells against recurrent
GBM have been studied, including intra-arterial delivery of
allogeneic bone marrow-derived human mesenchymal stem
cells loaded with the oncolytic adenovirus DNX-2401 (BM-
hMSCs-DNX2401), and injection of NSCs to deliver an
oncolytic adenovirus into newly diagnosed GBM (4).
Furthermore, this might be an ideal strategy to overcome the
limitations of oncolytic viral vectors, such as limited
biodistribution, dismal replication, and negligible transduction
of neighboring tumor cells after intracranial injection to study
some vectors that possess the capacity to specifically target the
small population of GSCs with resistance to chemotherapy and
radiotherapy, in addition to more globally targeting the bulk
tumor populations.
INDIRECT TARGETING OF GSCS VIA THE
GBM NICHE

There are three major methods of indirect targeting of the GSC
niche, including targeting of: the perivascular niche via
angiogenic pathways, the perinecrotic or hypoxic niche via
inducing hypoxia, and the immune niche (Figure 2), which is
still one of the crucial strategies to solve resistance to current
standard therapy for GBM and improve the poor disease
prognosis of GBM.

Targeting the Perivascular Niche
The perivascular niche is surrounded by a mass of blood vessels
feeding the tumor with abnormal structure and function,
including poor and irregular formation (leaky and friable blood
July 2021 | Volume 11 | Article 701291
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vessels), hypoxia, loss of hierarchy, and an impaired blood–brain
barrier (BBB). This vasculature is distinct from the normal blood
vessels in humans, which are formed primarily through
vasculogenesis and angiogenesis, and transport gases, nutrients,
and waste products for the human body (176, 177). The synergistic
and codependent relationship between the GBM perivascular
niche and GSCs has been extensively proven. For example, it is
known that GBM mediates the perivascular region to maintain
GSCs survival, proliferation, and migration (178), simultaneously
GSCs act as a regulator of the cancer-specific vasculature,
infiltrating the tumor and thus contributing to the progression
of tumor angiogenesis (116). High levels of angiogenic factors
produced by GSCs in the human body are conducive to the
abnormal formation of tumor blood vessels under hypoxic
microenvironments, including vascular endothelial growth factor
(VEGF), SDF-1, PDGF, and fibroblast growth factor (FGF),
providing beneficial conditions for GSC survival and expansion
(178–180). Consequently, this might become an ideal approach for
GBM therapy by indirectly targeting the perivascular niche of
GSCs and interfering in the aberrant vascular proliferation via the
inhibitors angiogenic factors in tumor and simultaneously
combined with other treatments that might inhibit progression
of tumor malignancy or GSC differentiation, such as in
combination with immunotherapeutics, especially those
designed to repolarize macrophages (181) to overcome the
challenge that malignant progression in GBM is prompted by
increasing the invasion and metastasis of tumor cells after the
blockage of angiogenesis that could shrink the original tumor (14).
Frontiers in Oncology | www.frontiersin.org 10
Targeting the Hypoxic Niche
Hypoxia as one of the diagnostic hallmarks of GBM, with median
oxygen saturation levels of <2% in necrotic regions, compared to
the normal median oxygen concentrations of approximately 5%
in physiological tissues, owing to vigorous metabolic activity and
plentiful oxygen consumption in heterogeneous tumor cells,
along with chaotic and poor functioning blood vessels (182)
that are able to maintain and promote the intrinsic cellular
function of GSCs involved in self-renewal and differentiation, as
well as enhance angiogenesis, tumor aggression, and chemo- and
radiotherapy resistance in GBM, which are the main reasons for
GBM patient death (183, 184). It has been demonstrated that one
of the main regulators of the hypoxia response Hypoxia
Inducible Factor-1a (HIF-1a) and Vascular Endothelial
Growth Factor A (VEGFA) staining and tumor vascularity are
critically implicated in worse progression-free survival and are
responsible for lower patient survival rates of GBM based on
dynamic contrast-enhanced MRI analyses (185, 186), while
another hypoxia inducible factor (HIF) family HIF-2a
indicates an important role of maintaining GSC survival and
proliferation, as blockage of HIF-2a via the gene silencing
technology or others would significantly compromise the
intrinsic cellular features of GSCs (26, 187). Moreover, VEGFA
is one of the main factors prompting the invasion of GSCs and
polarizing immune cells into an immunosuppressive phenotype,
causing treatment resistance to both standard and modern
approaches via tumor-associated macrophage M2 polarization,
increased regulatory T cells, and higher rates of PD-1+ CD8+ T
FIGURE 2 | The perivascular niche The self-renewal and maintenance of neighboring GSCs within the perivascular maintenance niche could been promoted via
secretion of endothelial-derived diffusible signals including nitric oxide (NO), SHH, angiopoietin-1 (Ang-1), IL-8 and other soluble factors. GSCs are capable of
stimulating the proliferation of endothelial cells and the sprouting of new vessels via secretion of VEGF and SDF-1 in the local tumor environment for sustainability and
expansion of the vascular maintenance niche. The hypoxic niche With the constant invasion of GSCs, activation of hypoxia-related factors might take an active role in
stemcell maintenance and one of the main factors is the hypoxia response Hypoxia Inducible Factor 1a (HIF-1a). The immune niche On the one hand, for TAMs,
GSCs could chemo-attract and recruit TAMs to the tumor site, prompt the growth of macrophages and induce the polarization of TAMs into the immunosuppressive
M2 phenotype through secreting chemokines and growth factors like VEGF, transforming growth factor-b (TGF-b), SDF1 and soluble colony-stimulating factor 1
(sCSF-1). On the other hand, the accumulation of these pro-tumorigenic TAMs in tumor could secrete cytokines and signaling molecules such as basic fibroblast
growth factor (bFGF), TGFb, SDF1, VEGF, and nitric oxide (NO), contributing to tumor progression and GSCs maintenance in turn.
July 2021 | Volume 11 | Article 701291
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cells (188–191). Bevacizumab, a humanized monoclonal
antibody and inhibitor of VEGFA, is thus a promising anti-
VEGF agent to create persistent normalization through pruning
vessels and overcoming the recurrence of hypoxia and the
emergence of resistance in GBM (192).

Targeting the Immune Niche
In GBM mouse model systems, scientists found that tumor
aggression increased and the infiltration of a large number of
immune cells, such as TAMs and other CD11b+ myeloid cells
emerged in the brain after treating recurrent GBM patients with
bevacizumab or the angiokinase inhibitor cediranib, despite the
immune privilege in the normal human brain (119, 193–195).
The direct interaction of GSCs with these immune cells could
contribute to resistance of antiangiogenic therapy by generating
VEGF-independent angiogenesis and immunosuppression,
which leads to the development of tumors lacking the ability to
respond to VEGF inhibition (196, 197). TAMs are the most
prevalent tumor-infiltrating inflammatory cells in GBM (188,
189). A considerable number of infiltrating TAMs in the GSC
niche, including the blood-derived macrophages and resident
microglia (198), indicates a pivotal player in GBM tumor
progression and GSC maintenance by a pleiotrophin–PTPRZ1
signaling axis (199), and is also positively linked to the poor
prognosis of GBM and the high malignancy grade of glioma
(200, 201). The relationship between the GBM immune niche
and GSCs is also synergistic and interactive. On the one hand, for
TAMs, GSCs could facilitate chemo-attraction and recruit TAMs
to the tumor site upon the hypoxic conditions, prompt the
growth of macrophages, and induce the polarization of TAMs
into the immunosuppressive M2 phenotype by secreting
chemokines and growth factors such as VEGF, TGF-b1,
neurotensin, SDF1, and sCSF-1 (202–206). Additionally, for T
lymphocytes, GSCs play a direct role in inhibiting the
proliferation and activation of T cells and inducing T cell
apoptosis, which may be mediated via the inhibitory, co-
stimulatory molecule B7-H1, soluble factors such as galectin-3,
the T cell chemokine attractants VEGF, chemokine (C-C motif)
ligand 2 (CCL2), and prostaglandin E2 (202, 207–210), leading to
silencing of the immune response and escape immune
surveillance in GBM. Contrarily, the accumulation of these
pro-tumorigenic TAMs in tumors could trigger the secretion
of high levels of pro-inflammatory cytokines, such as RAGE,
COX2, and NF-kB (211, 212), contributing to tumor progression
Frontiers in Oncology | www.frontiersin.org 11
and GSC maintenance. Accordingly, targeting innate immune
cells and receptors correlated with their secreta, such as
macrophage colony stimulation factor receptor (213), have
been shown to increase tumor sensitivity to anti-GBM therapy,
and could become a promising therapeutic target for GBM.
CONCLUSION AND FUTURE DIRECTIONS

Here, we shed light on the knowledge of GSCs that are consistent
with the general definition of CSCs, their resistance mechanism,
vital signal pathways, the crosstalk between GSCs and their
niche, and describe how this can prompt the persistence and
progression of these stem cells. We also provide a framework for
targeting strategies to GSCs consisting of direct and indirect
strategies with some constructive opinions presented towards
different targeting strategies in the review. Targeting GSCs
provides a tremendous opportunity for revolutionary
approaches, and a wide variety of reliable therapeutic strategies
have been identified that are being clinically translated to
improve the prognosis and therapy of GBM after several
decades of stem cell therapy experiments, despite the need to
simultaneously meet a variety of challenges, such as how to target
GSCs effectively while avoiding impairing normal NSCs and
progenitor cells. Accordingly, more authentically useful
approaches for the isolation and identification of GSCs, further
laboratory and clinical investigations regarding crosstalk
between GBM and GSCs are needed to gain insights into
maintenance, therapy resistance, and recurrence in tumors, as
well as the origin, properties, and progression of GSCs. In the
future, efficient design of clinical trials, novel approaches for
targeting GSCs, and potent anti-GBM agents that could be used
to suppress GSCs and become useful for future clinical
applications are urgently needed.
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