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Abstract: Despite the intricate involvement of the endocannabinoid system in various physiological
processes, it remains one of the most under-studied biological systems of the human body. The scope
of endocannabinoid signalling is widespread, ranging from modulation of immune responses in
innate and adaptive immunity to gestational processes in female physiology. Cannabinoid receptors
are ubiquitously distributed in reproductive tissues and are thought to play a role in regulating the
immune–reproductive interactions required for successful pregnancy, specifically among uterine
natural killer cells and placental extravillous trophoblasts. The use of cannabis during pregnancy,
however, can perturb endocannabinoid homeostasis through effects mediated by its major con-
stituents, ∆-9-tetrahydrocannabinol and cannabidiol. Decidualization of the endometrium, invasion,
and angiogenesis may be impaired as a consequence, leading to clinical complications such as
miscarriage and preeclampsia. In this review, the crosstalk between endocannabinoid signalling
in uterine natural killer cells and placental extravillous trophoblasts will be examined in healthy
and complicated pregnancies. This lays a foundation for discussing the potential of targeting the
endocannabinoid system for therapeutic benefit, particularly with regard to the emerging field of
synthetic cannabinoids.

Keywords: endocannabinoid system; inflammation; female reproduction; pregnancy; uterine natural
killer cells; extravillous trophoblasts; Delta9-THC

1. Introduction

In human pregnancy, the maternal endometrium undergoes a process of decidual-
ization wherein differentiation of endothelial, epithelial and stromal cells, paired with
recruitment of immune cells, primes the decidua for blastocyst implantation [1]. This mor-
phological and functional transformation is necessary for communication with placental tro-
phoblasts for the maintenance and success of pregnancy [1]. As fetal-derived trophoblasts
begin the process of decidual invasion to remodel the maternal vasculature for utero-
placental blood flow establishment, maternal leukocytes come into close contact with
trophoblasts, specifically extravillous trophoblasts (EVTs) [2]. This site of decidual immune
cell and trophoblast interaction is an immunologically privileged environment since the
fetus, a semi-allogenic graft containing both maternal (self) and paternal (non-self) antigens,
evades attack and rejection by the maternal immune system [3].

Of the 26–37% of leukocytes localized in the decidua, up to approximately 80% are
identified as uterine natural killer (uNK) cells [4,5]. The proportion of uNK cells increases
over the menstrual cycle to the first and second trimester decidua basalis, which is the
portion of the decidua that underlies the placenta and interacts with EVTs [4–7]. As preg-
nancy comes to an end in the third trimester, there is a reduction in uNK cell numbers,
suggesting that they have roles in EVT-specific events, such as invasion and vascular
remodelling, as opposed to labour and parturition [6]. uNK cells also contribute to the

Biomedicines 2021, 9, 267. https://doi.org/10.3390/biomedicines9030267 https://www.mdpi.com/journal/biomedicines

https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://doi.org/10.3390/biomedicines9030267
https://doi.org/10.3390/biomedicines9030267
https://doi.org/10.3390/biomedicines9030267
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biomedicines9030267
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/2227-9059/9/3/267?type=check_update&version=2


Biomedicines 2021, 9, 267 2 of 19

maintenance of pregnancy through the production of cytokines and angiogenic growth
factors [8–11]. Other decidual immune cells include macrophages and T cells, however
research surrounding their functions in pregnancy is limited [4]. Given that uNK cells
are the predominant decidual leukocyte population and have established functions in
pregnancy, immune responses in female reproduction mediated by uNK cells are the focus
of this review.

The endocannabinoid system (ECS) plays a necessary role in a variety of physiological
processes in the human body, including modulation of immune responses and reproductive
events [12]. Unfortunately, research surrounding ECS regulation in peripheral tissues is
limited, and has primarily focused on the central nervous system (CNS) wherein the ECS
is implicated in assisting with pain perception and cognitive functions [12]. The effects
mediated by the ECS are exerted through endogenous cannabinoids (endocannabinoids),
the enzymes involved in endocannabinoid biosynthesis and degradation, and cannabinoid
receptors [13]. Anandamide (AEA) was the first identified endocannabinoid in 1992,
after which its main biosynthetic and hydrolytic enzymes were determined to be N-acyl-
phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) and fatty acid amide
hydrolase (FAAH), respectively [14–17]. Shortly after, the second major endocannabinoid
was identified as 2-arachidonoyl glycerol (2-AG) [18]. 2-AG is synthesized by diacylglycerol
lipase (DGL) and degraded by monoacylglycerol lipase (MAGL) [19–22]. The targets of
these endocannabinoids are cannabinoid receptors 1 (CB1R) and 2 (CB2R), which are
the primary receptors of the ECS [13,23]. CB1R is most abundant in the CNS, although
it is also expressed in the peripheral nervous system and peripheral cell types [24,25].
In contrast, CB2R is predominantly localized in cells of the immune and reproductive
systems [26,27]. Other receptors of the ECS include the transient receptor potential (TRP)
ion channels, peroxisome proliferator activated receptors (PPARs), G protein-coupled
receptor 55 (GPR55), GPR18, and GPR119 [28–32]. Unlike CB1R and CB2R, the roles of
these non-classical receptors are poorly characterized.

Both CB1R and CB2R are classified as GPCRs that regulate an array of signal trans-
duction cascades, particularly the adenylyl cyclase pathway [33]. Cannabinoid receptor
activation is associated with attenuated adenylyl cyclase through guanine nucleotide-
binding protein complex (Gi)-mediated actions [34,35]. Cyclic adenosine monophosphate
(cAMP) levels and protein kinase A (PKA) activity are subsequently inhibited [36–38].
The functional responses impacted by cannabinoid-dependent inhibition of adenylyl cy-
clase include cellular apoptosis, differentiation, proliferation, and survival [39–42].

The presence of ECS components at the maternal-fetal interface dates to 1999 when
CB1R and CB2R localization was demonstrated in the human placenta and the BeWo cell
line, which is representative of cytotrophoblasts [43]. Production of NAPE-PLD, FAAH,
MAGL, and DGL has also been identified in reproductive tissues [44–46]. In comparison,
the presence of endocannabinoid signalling in uNK cells has been recently reported [47].
The evidence for CB1R, CB2R, NAPE-PLD, and FAAH expression in uNK cells suggests
that this decidual leukocyte population may have a role in regulating local levels of AEA
via its regulatory enzymes [47].

Furthermore, alterations in ECS signalling during early pregnancy are associated
with impaired decidualization due to inhibited differentiation of endometrial stromal cells,
and decreased secretion of cytokines and angiogenic growth factors by uNK cells [48,49].
These effects may then interfere with EVT-specific functions of invasion and angiogene-
sis [45,50]. One of the ways that ECS signalling in female reproduction can be disrupted
is through exposure to plant-derived cannabinoids (phytocannabinoids), such as delta-
9-tetrahydrocannabinol (∆9-THC) and cannabidiol (CBD) [45,51]. In fact, compromised
decidualization is associated with various adverse clinical outcomes, including implanta-
tion failure, recurrent spontaneous miscarriage, preeclampsia, fetal intrauterine growth
restriction, and preterm birth [49]. This review will focus on the implications of ECS-
mediated crosstalk between human (uNK) cells and EVTs at the maternal-fetal interface in
successful pregnancies and those burdened with complications.
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2. Uterine Natural Killer Cells in the Decidua

uNK cells are a phenotypically distinct subset of human natural killer (NK) cells
as they are cluster differentiation 56 positive (CD56+), CD2+, CD3− and CD19− [4,52].
The CD56 (NKH-1/Leu-19) antigen is a neural cell adhesion molecule expressed mainly
on NK cells, and is involved in embryogenesis [5,53]. About 90% of peripheral NK cells
have low-density CD56 antigenic expression and are characterized as CD56dim while the
remaining, including uNK cells, are CD56bright [54]. However, unlike peripheral CD56bright

NK cells, uNK cells possess lytic granules that contain perforin and granzyme [55,56].
uNK cells are also functionally different as they do not express the CD19 antigen, which
mediates antibody-dependent cellular cytotoxicity [57]. As a result, the cytotoxicity of uNK
cells is approximately 30% less than that of peripheral CD16+ NK cells [58].

Besides differences in cytotoxic functionality, a microarray comparison of CD56bright

uNK cells with CD56bright and CD56dim peripheral NK cells determined that 278 genes
out of the 10,000 analyzed are differentially expressed by three-fold [56]. The majority
of these genes were overexpressed in uNK cells, including those involved in regulating
cytotoxicity such as the NK cell C-type lectin-like receptors (NKG2C, NKG2E) and killer cell
immunoglobulin-like receptors (KIR3DL1, KIR3DL2, KIR2DL3, KIR2DL4) [56]. Expression
of genes that modulate immune cell functions, such as galectin-1 and placental protein-14,
was also elevated. In addition, the cell-surface molecules CD9, CD151, and tetraspan-5
were reported to be exclusively expressed in uNK cells [56].

The main function of uNK cells appears to be the secretion of cytokines, growth factors,
and angiogenic factors to assist in trophoblast invasion and maternal spiral artery remod-
elling [54,59]. uNK cells isolated from early pregnancy deciduae show gene expression
and secretion of the cytokines tumour necrosis factor-alpha (TNF-α), interferon-gamma
(IFN-γ), leukemia inhibitory factor (LIF), interleukin-1beta (IL-1β), IL-10, and transforming
growth factor-beta (TGF-β) [8–10]. The growth factors granulocyte colony-stimulating
factor (G-CSF) and granulocyte macrophage colony-stimulating factor (GM-CSF) are also
produced by uNK cells [8]. Moreover, uNK cells are a source of angiogenic factors, such
as angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), and vascular endothelial growth factor
(VEGF) [11].

uNK cells have also been implicated in gestational complications. Endometrial biop-
sies obtained from women suffering from recurrent miscarriage show an increase in CD56+

NK cells [60,61]. However, these investigations have not considered the intensity of CD56
antigenic expression, which makes it unclear whether elevated CD56bright uNK cells or
CD56dim/CD56bright peripheral NK cells are implicated [60]. Conversely, no correlation be-
tween uNK cell number and recurrent miscarriage has been observed as well [62]. Placental
bed biopsies have further displayed elevated CD56bright NK cell numbers in pregnancies
complicated with preeclampsia and fetal growth restriction [63,64]. This is linked to in-
creased secretion of IL-12 and IFN-γ by NK and T helper 1 (Th1) cells [64]. Both IL-12
and IFN-γ play roles in promoting an inflammatory response, which is a hallmark of
preeclampsia [64]. Further investigations examining the functions of human uNK cells
are required to elucidate how decidual immune responses may contribute to pathological
reproductive events.

3. Trophoblasts in the Placenta

In addition to decidualization, successful pregnancy depends on proper trophoblast
differentiation and functionality [65,66]. In brief, human placental development begins
with the formation of the trophectoderm around 5 days post-fertilization [65,66]. This sepa-
rates the trophectoderm, the lineage that interacts with the endometrium, from the inner
cell mass that gives rise to the embryo and fetus [65,66]. As pregnancy progresses to
implantation, mononuclear cytotrophoblasts (CTBs) are derived from trophectoderm stem
cells [65,66]. Approximately 2 weeks post-fertilization, CTBs begin to proliferate, dif-
ferentiate, and undergo cell–cell fusion to become multi-nucleated syncytiotrophoblasts
(STBs) [65,66]. STBs form the syncytium, which establishes the primary site of maternal-
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fetal exchange of gases and nutrients [65,66]. STBs are also major producers of pregnancy-
specific hormones, such as human chorionic gonadotropin [65,66].

Around 3 weeks post-fertilization, CTBs differentiate into another type of trophoblast,
the EVTs [65,66]. EVTs are primarily responsible for invasion into the maternal decidua and
migration into the spiral arteries to establish low resistance blood flow to the uterus [65,66].
CTBs therefore give rise to 2 major trophoblast lineages in the placenta, with each possess-
ing distinct roles during placentation and pregnancy [65,66]. Of these, only EVTs come into
close contact with leukocyte populations in the decidua basalis [7]. Since uNK cells are the
largest decidual immune cell population, communication between EVTs and uNK cells is
the focus below.

4. Interactions between uNK Cells and EVTs

Peripheral NK cells display cytotoxic activity against infected and foreign cells, par-
ticularly those that have reduced expression of human leukocyte antigen class I (HLA-I)
molecules [67]. This response is dependent on the balance of activating and inhibitory
receptors present on NK cells [67]. However, uNK cells do not show cytotoxic activity
against EVTs despite their close proximity in the decidua and presence of foreign paternal
antigens [68]. EVTs are the only trophoblast type with expression of HLA-I molecules,
including the classical HLA-C and non-classical HLA-E and HLA-G [69,70]. Due to the
presence of HLA-I molecules on EVTs, inhibitory receptor interactions allow EVTs to evade
attack by uNK cells [71]. HLA-C is a ligand for KIR2D receptors, which can either activate
or inhibit uNK cell cytolytic activity against EVTs depending on the specific type [72,73].
KIR2DL1, KIR2DL2 and KIR2DL3 receptors inhibit while KIR2DS1 and KIR2DS2 activate
uNK cell responses [67]. Moreover, HLA-E is recognized by CD94/NKG2 receptors, and
HLA-G is recognized by KIR2DL4 [72,74]. Interactions between HLA-I molecules and
inhibitory NK cell receptors are also associated with promoting trophoblast invasion and
establishing fetal circulation [73,74].

The increase in number of uNK cells in the late secretory phase of the menstrual
cycle and early pregnancy can be attributed to increased proliferation, differentiation of
peripheral CD56dim NK cells to uNK cells, and migration of CD56bright peripheral NK
cells [75–77]. EVTs are implicated in the latter mechanism as they may assist NK cell
movement into the decidua [77]. Specifically, interactions between chemokine receptor
type 3 (CXCR3) and its ligand CXCL9, as well as CXCR4 and CXCL12, are important for
peripheral NK cell migration [77]. CD56bright peripheral NK show increased expression of
CXCR3 and CXCR4 compared to CD56dim peripheral NK cells [77]. Immunohistochemical
staining has demonstrated that invading EVTs also express CXCL12 [77]. Due to the
expression of CXCR4 on NK cells and CXCL12 on EVTs, trophoblasts are suggested to play
a role in attracting CD56bright peripheral NK cells to the decidua through CXCR4-CXCL12
interactions in early pregnancy [77].

Communication between uNK cells and EVTs is also important for the regulation of
trophoblast invasion [78]. uNK cells isolated and purified from the decidua basalis of first
trimester pregnancies are major producers of genes responsible for encoding chemokines,
including IL-8 (CXCL8) and interferon-inducible protein-10 (IP-10) [78]. Isolated EVTs are
shown to express CXCR1 and CXCR3, which are receptors that bind to IL-8 and IP-10,
respectively [78]. Furthermore, in vitro Transwell migration assays with different NK
cell subtypes have demonstrated that only uNK cells promote migration and invasion of
trophoblasts [78]. uNK cells secrete elevated levels of IL-8 and IP-10, resulting in greater
CXCR1- and CXCR3-mediated interactions that play a role in inducing trophoblast cell
migration and invasion [78].

In addition, matrix metalloproteinases (MMPs) are necessary for the breakdown of
the decidual extracellular matrix, which is an event required for invasion and angiogene-
sis [79]. The activity of MMPs is tightly regulated by tissue inhibitors of metalloproteinases
(TIMPs) [80]. Through immunohistochemical staining, EVTs have been shown to express
MMP-1, MMP-2, MMP-3, MMP-9, and their inhibitors, TIMP-1 and TIMP-2 [80]. uNK
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cells also express and secrete MMP-2, MMP-9, TIMP-1, and TIMP-2 [81]. Moreover, EVTs
cultured in uNK cell supernatant from weeks 12–14 of gestation demonstrate enhanced
invasion through a mechanism involving increased secretion of MMP-9 and decreased
expression of M30, a biomarker for apoptosis [82].

Alongside facilitating trophoblast invasion, first trimester uNK cells possess important
roles in vascular remodelling as they secrete VEGF, placental growth factor (PlGF), Ang-
1, and Ang-2 [11,78,83]. EVTs are also a major source of VEGF, PlGF, Ang-1, Ang-2 as
well as angiogenin [84]. All of these factors are positive regulators of angiogenesis, with
VEGF serving as the key mediator in embryogenesis [85]. During pregnancy, the process
of vascular remodelling follows 4 distinct stages that are dependent on the extent of
vascular smooth muscle cell and endothelial cell disruption, and EVT colonization [86].
EVT presence is generally increased as remodelling progresses [86]. However, the number
of leukocytes, particularly uNK cells, is shown to increase prior to EVT infiltration [86].
Remodelling in the decidua thus begins before invasion by trophoblasts, and is supported
by uNK cells through the production of angiogenic factors [86,87]. The number of uNK
cells also decreases around week 20 of gestation, the time when angiogenesis is complete
in the decidua [81,86]. Therefore, the major functions of uNK cells involve assisting in the
establishment and maintenance of pregnancy through crosstalk with EVTs during invasion
and vascular remodelling.

5. ECS Signalling in the Immune System

The immune system functions to defend the body from foreign substances and infec-
tion through two lines of defense: innate and adaptive responses [88]. The expression of
cannabinoid receptors, CB1R and CB2R, is reported in the major cells involved in innate
(dendritic cells, monocytes/macrophages, neutrophils, NK cells) and adaptive (B cells,
T cells) immunity [89–91]. Of these, B cells express the highest levels of CB1R and CB2R,
followed by NK cells, monocytes/macrophages, and lastly, T cells [90]. CB1R and CB2R
are also expressed in lymphoid tissues, such as the spleen and thymus [89–91]. Despite
the presence of both cannabinoid receptors, the gene expression of CB2R is 10- to 100-fold
greater than that of CB1R in immune cell populations [90]. In addition, lipopolysaccharide
(LPS)-stimulated macrophages, dendritic cells, and T cells have been shown to synthe-
size the endocannabinoids AEA and 2-AG, which is suggestive of endocannabinoid level
regulation by immune cells [91–93].

Cannabinoid receptor activation in cell types of the innate immune system is associ-
ated with apoptosis and recruitment of dendritic cells, inhibited migration of neutrophils,
inhibited phagocytic activity and Th1-type cytokine secretion of macrophages, and in-
hibited cytotoxicity of NK cells [94–99]. Endogenous and exogenous cannabinoids are
also reported to modulate local inflammatory responses through interactions with toll-like
receptors (TLRs) present on macrophages and dendritic cells [100]. TLRs are pattern-
recognition receptors (PRRs) that identify pathogen-associated molecular patterns (PAMPs)
to initiate innate immune responses [100]. TLR2 and TLR4 signalling can be suppressed
by cannabinoids through downstream inhibition of the activity of transcription factor
nuclear factor-tB (NF-tB) via the myeloid differentiation factor 88 (MyD88) pathway [100].
In particular, activation of CB2R by its synthetic agonist JWH 133 (1.5 mg/kg) is asso-
ciated with suppressed TLR4 signalling in dendritic cells of B10.RIII and BALB/c mice,
resulting in attenuated cellular activation and maturation [101]. The phytocannabinoid
∆9-THC (5–20 µM) has also been shown to inhibit inducible nitric oxide transcription and
nitric oxide production in murine RAW 264.7 macrophages through a CB2R-dependent
mechanism [102].

ECS signalling modulates events in B cells and T cells of the adaptive immune system
as well. The majority of experimental investigations, however, have examined B cell func-
tions in mouse models. In BALB/c mice, 2-AG (1 µM) stimulated naïve B cell chemotaxis
through a CB2R-dependent mechanism [103]. CB2R also mediated immature B cell reten-
tion in the bone marrow sinusoids of chimeric C57BL/6 (Ly5.2+) and Boy/J (Ly5.1+) mice,
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which is linked to reduced maturation [104]. Moreover, activation of CB2R is associated
with immunoglobulin class switching from IgM to IgE in B cells of C57BL/6 mice [105].
On the other hand, investigations with primary human CD3+ T cells demonstrate that
AEA (2.5 µM) suppressed the proliferation and secretion of TNF-α, IFN-γ, and IL-2 [106].
AEA (40 nM) has also been implicated in the attenuated migration and pro-inflammatory
IL-17 secretion observed in primary human CD8+ T cells and CD4+ Th17 cells, respec-
tively [106,107]. In addition, ∆9-THC (5 µM) is reported to balance CD3+ Th-cell responses
by decreasing the ratio of Th1/Th2 cytokines, therefore providing this phytocannabinoid
with an immunomodulatory role [108]. Similar to B cells, cannabinoid-dependent outcomes
in T cells are primarily mediated through CB2R signalling [106–108].

6. ECS Signalling in the Female Reproductive System

In healthy human pregnancy, plasma levels of AEA are tightly regulated from ovula-
tion to the onset of labour [109]. Beginning with ovulation, an increase in AEA is favoured,
suggesting a potential role for this endocannabinoid in follicular maturation [110]. For the
majority of pregnancy, however, low AEA levels are maintained for fertilization, implan-
tation, decidualization, and placentation [109,111]. As pregnancy comes to an end, levels
of AEA then experience a surge to assist in labour and parturition [109,111]. In fact,
a cross-sectional investigation following healthy singleton pregnancies in humans reported
mean AEA levels of 0.89, 0.44 and 0.42 nM in the first, second and third trimesters, re-
spectively [111]. These levels increased 6-fold in labouring women, reaching a plasma
concentration of 2.5 nM [111]. Therefore, relatively low and stable AEA levels contribute
to the success of pregnancy as imbalances are linked to gestational complications, such as
miscarriage, preeclampsia and ectopic pregnancy [47,111].

In comparison, the levels and roles of 2-AG in human pregnancy remain undefined,
although its regulation over pregnancy in mice has been explored. In pregnant CD-1
mice, 2-AG (1–10 nM) arrested blastocyst development in a dose-dependent manner,
indicating that elevated 2-AG is detrimental during the pre-implantation period [112].
While outcomes from mouse models may be translated to humans, it is important to
consider that gestational length varies across species, lasting 3 weeks in mice and 40 weeks
in humans [113]. As a result of differences in physiology, there are changes in the processes
of decidualization, placentation, and development of the maternal-fetal interface between
mice and humans [113]. Finally, expression of both CB1R and CB2R has been reported in
the human uterus, decidua, placenta and trophoblast cells [44,47,114,115].

Another important role for endocannabinoid signalling during pregnancy is the modula-
tion of trophoblast functions [116]. In the human choriocarcinoma-derived BeWo cells, AEA
(10 µM) attenuated cellular proliferation [44]. 2-AG (10–25 µM) also inhibited proliferation
in primary human CTBs as well as induced apoptosis through chromatin condensation and
fragmentation, presence of apoptotic bodies, and generation of reactive oxygen and nitrogen
species [117]. Furthermore, the cannabinoids ∆9-THC (20 µM), AEA (10 µM), and 2-AG
(10 µM) have been shown to impair the biochemical and morphological differentiation of
CTBs, leading to poor trophoblast cell-to-cell fusion [50,118,119]. ∆9-THC (20 µM) expo-
sure also decreased the secretion of human chorionic gonadotropin, placental lactogen, and
insulin-like growth factors in BeWo cells, all of which are important for fetal development
and pregnancy success [50]. Finally, ∆9-THC (10 mM) has been associated with decreased
trophoblast invasion in the human HTR-8/SVneo cell line that models EVTs [120].

7. Crosstalk between ECS Signalling in the Immune and Reproductive Systems

One of the major immune-reproductive interactions in human physiology occurs
between decidual uNK cells and placental EVTs (Figure 1) [3]. In these systems and cell
types, the ECS contributes to the maintenance of pregnancy. Despite this central role,
connections between ECS signalling in the immune and reproductive systems during
pregnancy have not been clearly elucidated.
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Figure 1. Crosstalk between uNK cells and EVTs in healthy and complicated pregnancies. uNK cells and EVTs express the
primary cannabinoid receptors, CB1R and CB2R [43,47]. While uNK cells have only been shown to participate in local AEA
production, EVTs can synthesize both AEA and 2-AG [43,47]. In healthy pregnancy, communication between uNK cells and
EVTs is necessary for peripheral NK cell migration to the decidua, EVT migration and invasion, regulation of cytokines
and growth factors, and angiogenesis [77,78,82,86,87]. However, pregnancy complicated by cannabis use is associated with
inhibited intracellular cAMP activity that results in impaired PRL secretion and decidualization [121,122]. Exposure to
∆9-THC, and perhaps CBD, can thus alter uNK cell-EVT crosstalk, which may lead to gestational complications through
compromised invasion and maternal vasculature remodelling. Unfortunately, the effects of CBD in the decidua and placenta
remain undefined in comparison to those of ∆9-THC. The long arrows shown in the panels represent interactions between
uNK cells and EVTs. In the healthy pregnancy panel, the short arrow signifies the secretion of PRL by uNK cells, which is
replaced with an inhibitory arrow in the complicated pregnancy panel. Moreover, the major functions of uNK cells and
EVTs in pregnancy are shown in purple and red boxes, respectively, and the overall implications of impaired crosstalk are
shown in blue. Created with BioRender.com (accessed on 7 March 2021).

Decidualization is an early pregnancy-specific event wherein the endometrium is
transformed into the decidua through the differentiation of endometrial stromal cells, and
the migration of peripheral leukocytes [121]. Increased cAMP production plays a critical
role during the decidualization process, which perhaps underlies the importance of cannabi-
noid signalling due to its use of this second messenger [121]. Specifically, elevated levels
of cAMP are associated with transcription of decidual prolactin (PRL) in differentiated
endometrial stromal cells around day 25 of the menstrual cycle to prepare for blastocyst im-
plantation and pregnancy establishment [123]. uNK cells also contribute to decidualization
by secreting elevated levels of PRL when stimulated by cAMP (Figure 1) [124]. However,
cannabinoid receptor signalling is associated with inhibited cAMP activity, which can
then lead to disrupted decidualization [121,122]. In the absence of cAMP, endometrial
stromal cells no longer differentiate and cease to express decidualization markers PRL and
insulin-like growth factor binding protein-1 (IGFBP-1) [123,125]. A similar outcome may
be observed in uNK cells in response to cannabinoid receptor activation.

The role of the ECS in regulating decidual function has been investigated using the
human endometrial stromal cell line, St-T1b. Treatment of St-T1b cells with AEA (10 µM) is
associated with cell cycle arrest at the G2/M phase in undifferentiated cells and attenuated
proliferation in differentiated cells [49]. AEA exposure also decreased the expression of
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PRL and IGFBP-1 [49]. Since St-T1b cells express CB1R, but not CB2R, the effects of AEA on
attenuated decidualization were initially postulated to occur through a CB1R-dependent
mechanism [49]. Further investigations confirmed that activation of CB1R by a synthetic
agonist, WIN-55,212-2 (2–10 µM), decreased expression of PRL and IGFBP-1 in endometrial
stromal cells through a cAMP-dependent mechanism [122]. This outcome was reversed
by treatment with the synthetic CB1R antagonist AM251 (1 µM), which showed further
evidence that CB1R activation negatively modulates decidualization [122]. The ECS is thus
implicated in impaired decidualization through CB1R signalling, which inhibits adenylate
cyclase activity and cAMP levels required for decidual cell differentiation [122].

In human uNK cells isolated and purified from first trimester decidual tissues, alterations
in the balance between AEA synthesis and degradation have been linked to impaired
decidualization [48]. Relative to elective pregnancy terminations, miscarried samples
were characterized by a two-fold increase in AEA levels [48]. While no differences in
CB1R and CB2R expression were observed, uNK cells from women who experienced
miscarriage showed elevated levels of both NAPE-PLD and FAAH, suggesting that local
production of AEA by NAPE-PLD increased to a greater degree than its breakdown by
FAAH [48]. uNK cells from miscarried deciduae also displayed reduced expression of
PRL and IGFBP-1 [48]. However, there is a lack of research investigating CB1R-mediated
signalling and its effects on cAMP regulation in uNK cells compared to endometrial
stromal cells.

The process of EVT invasion is dependent on successful decidualization as tro-
phoblasts come into close contact with decidual leukocytes for the remodelling of maternal
vasculature [78]. Complications during decidualization can therefore compromise the
crosstalk between uNK cells and EVTs. In particular, both uNK cells and EVTs produce com-
mon factors, including TNF-α and IL-25, that are implicated in early pregnancy [126–128].
TNF-α is an immune-activating Th1 cytokine with roles in implantation, and the regu-
lation of trophoblast functions such as apoptosis, differentiation, invasion, and syncy-
tialization [129–132]. In EVTs isolated from first-trimester placentae following elective
terminations, TNF-α (10 ng/mL) treatment inhibited cellular migration and invasion [132].
TNF-α also appears to modulate decidualization as it suppressed PRL production in pri-
mary endometrial stromal cells [133]. Primary uNK cells demonstrate decreased levels of
both PRL and IGFBP-1 after TNF-α treatment as well [48]. Similar results are reported in
women who have suffered from miscarriage as their uNK cells secrete elevated TNF-α [48].
Other gestational conditions associated with high TNF-α levels include preterm birth and
preeclampsia [134,135].

Moreover, IL-25 (IL-17E) is involved in mediating Th2-type immune responses [127].
Treatment with IL-25 (1 ng/mL) has been shown to stimulate proliferation and decidual-
ization through elevated levels of PRL and IGFBP-1 in endometrial stromal cells [124,127].
While little is known about the effects of IL-25 in EVTs and uNK cells, this cytokine is
downregulated in women who have experienced recurrent miscarriage [136]. Since IL-25
is implicated in the success of decidualization, its production by EVTs and uNK cells may
contribute to subsequent events in pregnancy, such as invasion and angiogenesis, through
modulation of the balance between Th1 and Th2 cytokines [127].

To conclude, alterations in cannabinoid receptor-mediated signalling can impair de-
cidualization, which can subsequently interfere with EVT-uNK cell crosstalk as well as
lead to compromised trophoblast invasion and vasculature remodelling (Figure 1). Com-
plications during pregnancy may occur as a consequence, including failed implantation,
intrauterine growth restriction, spontaneous recurrent miscarriage, preeclampsia, and
preterm birth [49].
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8. Effects of Maternal Cannabis Use during Pregnancy

Cannabis is one of the most commonly used drugs during pregnancy, with a self-
reported incidence of 1.4–7.1% [137–139]. Among these pregnant women, the majority
revealed cannabis use in the first trimester during their prenatal clinic visits [140]. This
increased consumption in early pregnancy may be attributed to the perceived effects of
diminished nausea and vomiting [140]. Despite the anecdotal benefits, conflicting clinical
data suggests that chronic cannabis use is linked to cannabinoid hyperemesis syndrome
(CHS) [141]. CHS is characterized by episodes of acute nausea, vomiting, and abdominal
pain persisting for 24–48 h post-cannabis use [141]. As of 2020, only 6 cases of CHS have
been published with pregnant patients [142]. This may be the result of individuals not
disclosing cannabis use to health care providers when patient history is recorded due to
perceived social and medical stigma [142].

Maternal cannabis use is also associated with various complications for both the
mother and fetus, including decreased fetal birth weight (<2500 g), increased admissions
to the neonatal intensive care unit (NICU), preterm birth (<37 weeks of gestation), small-
for-gestational-age (SGA) status, miscarriage, and placental abruption [143,144]. Moreover,
prenatally exposed children display lower scores in verbal reasoning, language compre-
hension, reading tasks, memory, and visual function, compared to non-exposed children
during infancy and adolescence [144]. Children also show deficits in impulse control
and tasks requiring sustained attention [144]. Since research examining the mechanistic
effects of cannabis use during pregnancy and on fetal development is limited, there is a
requirement to develop clear safety data to educate patients who may not be aware of
the potential adverse effects associated with its consumption [144,145]. This knowledge
may further assist in developing clinical interventions to mitigate the risk of gestational
complications and ensuing health outcomes for children exposed to cannabis in utero.

In addition, the primary bioactive phytocannabinoids, ∆9-THC and CBD, can readily
cross the placenta due to their lipophilic nature [143]. Human investigations of ∆9-THC
transfer across the placental barrier have not been evaluated, however animal models
indicate that 10–28% of its maternal plasma concentrations are found in the fetal circula-
tion [146,147]. While similar outcomes may be observed in humans, transfer of ∆9-THC is
dependent on route of administration, placental permeability, and individual variations
in frequency of use [143,148]. Unfortunately, relatively little is known about the effects of
CBD during human pregnancy.

In terms of pharmacological activity, ∆9-THC is a partial agonist for CB1R (Ki = 5.05 nM)
and CB2R (Ki = 3.13 nM) (Figure 2) [149,150]. CBD has a more complex mechanism of action
as it is a non-competitive allosteric modulator of CB1R (Ki = 4350 nM) and partial agonist
of CB2R (Ki = 2860 nM) [150,151]. In comparison, the endocannabinoid AEA is a partial
agonist for CB1R (Ki = 209 nM) and is largely inactive at CB2R (Ki = 1940 nM) whereas 2-AG
is a full agonist for both CB1R (Ki = 34.6 nM) and CB2R (Ki = 145 nM) [25,152–154]. Besides
differences in cannabinoid receptor affinity, only endocannabinoids possess the ability
to initiate a negative feedback mechanism via retrograde signalling to suppress further
neurotransmitter release [155]. Since phytocannabinoids lack this regulatory mechanism,
exposure to cannabis can perturb ECS signalling through persistent cannabinoid receptor
activation and stimulation [155].
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AEA, 2-AG, ∆9-THC, CBD, and nabilone are displayed. While the structures of nabiximols and dronabinol are also shown,
there is currently no published information for the Ki values of these compounds. Created with BioRender.com (accessed
on 7 March 2021).

Another point of contrast is that endocannabinoids are associated with local effects
whereas phytocannabinoids act systemically and can influence interactions across systems,
including those between uNK cells and EVTs in pregnancy [156]. Treatment with ∆9-THC
(40 µM) in chorionic villous explant cultures has been associated with increased local AEA
levels after a 72-h exposure period [45]. Since ∆9-THC can mediate its actions through
CB1R and has been shown to alter ECS homeostasis in the placenta, it may interfere with
placental-decidual communication. Specifically, ∆9-THC exposure may compromise the
crosstalk between uNK cells and EVTs by altering their production of cytokines and growth
factors, which are required for successful decidualization, invasion, and angiogenesis.

9. Therapeutic Applicability of Cannabinoids

Due to its multi-faceted biological roles, the ECS holds therapeutic promise for con-
ditions associated with altered endocannabinoid homeostasis [157]. However, targeting
components of the ECS for drug design is associated with challenges due to non-specific
responses that result from global cannabinoid receptor activation [157]. In the 2-year rimon-
abant in obesity (RIO)-North America clinical trial, efficacy and safety data surrounding
rimonabant, a selective CB1R inverse agonist (Ki = 1.8 nM), was investigated [158,159].
The primary outcomes in overweight and obese participants were decreased body weight
and waist circumference by up to 48.6% in the first year, with maintained weight loss in
the second year [158]. Unfortunately, 83–86% of participants receiving rimonabant also
reported severe psychological side-effects, such as depression and anxiety [155]. Rimon-
abant was not approved by the U.S. Food and Drug Administration (FDA) or Health
Canada [158,160]. A lesson learned from rimonabant is the requirement for biased ligand
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signalling in cannabinoid-based therapeutics to create targeted, site-specific pharmacologi-
cal responses [161].

As of early 2021, the FDA has approved 4 cannabinoid-based drugs: Epidiolex, Ce-
samet, Marinol, Syndros [162,163]. Cesamet and Marinol are also approved by Health
Canada, alongside Sativex [164]. Of these, only Epidiolex and Sativex contain phyto-
cannabinoids whereas the rest are derived from manufactured compounds classified as
synthetic cannabinoids [162,164,165].

10. Synthetic Cannabinoid-Based Drugs: Cesamet, Marinol, Syndros

Nabilone is a synthetic analogue of ∆9-THC with the trade name Cesamet [166]. The
approved indication for nabilone is cancer chemotherapy-induced nausea and vomiting
(CINV) [164]. While the mechanisms behind CINV are complex, it involves the stimulation
of the dorsal vagal complex in the brainstem, following which the chemoreceptor trigger
zone allows compounds to cross the blood–brain barrier to induce emesis [167,168]. The
dorsal vagal complex is the central emetic structure and contains only CB1R, however both
CB1R and CB2R are present in peripheral emetic structures such as the enteric nervous
system [168]. The ability of nabilone, and other cannabinoids as well, to serve as anti-emetic
agents has been shown to be mediated primarily through interactions with CB1R [169].
In terms of pharmacokinetics, nabilone is a high affinity agonist for CB1R (Ki = 2.89 nM)
and CB2R (Ki = 1.84 nM) [166,170]. It also reaches peak plasma concentrations 2–4 h after
administration, and has a half-life of about 2 h [171]. In contrast, the pharmacological
profile of ∆9-THC varies depending on route of administration, although it has been shown
to reach peak plasma concentrations within minutes of inhalation, and has a half-life of
21.5 h [172].

Dronabinol is another cannabinoid that contains synthetically manufactured ∆9-THC [173].
This compound is marketed under the brand name Marinol as a capsule, and Syndros as
an oral solution [160,168]. Dronabinol is approved for CINV, and acts via a mechanism
of action similar to nabilone to alleviate nausea and vomiting [169]. It is also indicated
for anorexia associated with weight loss in acquired immunodeficiency syndrome [169].
Cannabinoids, such as ∆9-THC, can stimulate appetite through activation of CB1R in
areas of the CNS that regulate energy balance, specifically the hypothalamus and brain-
stem [174–176]. CB1R is also localized in mesolimbic system, the area of the brain associated
with reward-related feeding, and in metabolically active peripheral organs [176]. Since
dronabinol is a synthetic form of ∆9-THC, it is similarly an agonist for both CB1R and
CB2R [149,150]. Dronabinol reaches peak plasma concentrations after approximately
1–1.5 h, and has a half-life of 2–6 h depending on its formulation (capsule: 2–4 h, oral
solution: 5–6 h) [173].

11. Phytocannabinoid-Containing Drugs: Epidiolex, Sativex

Epidiolex is an oral solution of CBD that is used for treating seizures in the Lennox-
Gestaut and Dravet syndromes [177]. Although CBD’s mechanism of action in ameliorating
epileptic symptoms in humans remains unknown, one of its proposed pathways involves
the TRP ion channels [177,178]. The expression of transient receptor potential cation
channel subfamily V member I (TRPV1) is increased in epilepsy, and linked to elevated
neuronal hyperexcitability [179,180]. In rat hippocampal brain slices perfused with artificial
cerebrospinal fluid, which serves as an in vitro model of epileptiform activity, CBD has
been shown to activate and then rapidly desensitize TRPV1 [179]. This is associated with
downregulated neuronal excitability and may be a potential mechanism linked to CBD’s
anti-convulsant effects [179].

Finally, nabiximols is marketed under the trade name Sativex as an oromucosal spray
containing ∆9-THC and CBD in equimolar amounts [181]. It is utilized as an adjunctive
treatment for spasticity and neuropathic pain associated with multiple sclerosis [181]. Simi-
lar to Epidiolex, the mechanism of action for nabiximols is poorly understood. However,
nabiximols has been shown to inhibit cortical and spinal excitability, which is then asso-
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ciated with improved spasticity [182]. These effects are suggested to occur through the
modulation of inhibitory γ-aminobutyric acid and excitatory glutamate neurotransmitter
release following CB1R activation [183,184]. While nabiximols is characterized as a par-
tial agonist for CB1R and CB2R, an analysis of its inhibitory constant values is not yet
available [182].

12. Conclusions

Human pregnancy presents a unique dilemma wherein the maternal immune sys-
tem must accept the fetus, which is comparable to a semi-allogenic graft, and create a
microenvironment conducive to its growth. The interactions between uNK cells and
EVTs are necessary for this process, particularly since these cell types work together for
successful decidual invasion and remodelling of the maternal vasculature. Furthermore,
components of the ECS are involved in regulating diverse biological processes, includ-
ing immune and reproductive events in pregnancy. In cases of maternal cannabis use,
however, endocannabinoid homeostasis and signalling may become dysregulated. An im-
portant consideration is that phytocannabinoids lack the retrograde feedback mechanism
utilized by endocannabinoids and can thus continuously activate the cannabinoid recep-
tors. In particular, activation of CB1R by phytocannabinoids is associated with inhibited
decidualization through a cAMP-dependent mechanism. As a consequence of cannabis
exposure, the crosstalk between uNK cells and EVTs can become compromised, resulting
in impaired invasion, angiogenesis, and potentially, later pregnancy events that promote
fetal development.

In addition, while some synthetic cannabinoids are approved by the U.S. FDA and
Health Canada, other formulations are unregulated and lack data pertaining to drug inter-
actions and long-term outcomes. If consumed by pregnant women, synthetic cannabinoids
may have consequences for pregnancy establishment, maintenance, and success. Therefore,
further molecular and clinical research is necessary to ascertain how endocannabinoids,
phytocannabinoids, and synthetic cannabinoids may impact immune–reproductive interac-
tions during pregnancy.
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157. Stasiulewicz, A.; Znajdek, K.; Grudzień, M.; Pawiński, T.; Sulkowska, J.I. A Guide to Targeting the Endocannabinoid System in

Drug Design. Int. J. Mol. Sci. 2020, 21, 2778. [CrossRef]
158. Pi-Sunyer, F.X.; Aronne, L.J.; Devin, J.; Rosenstock, J. Effect of Rimonabant, a Cannabinoid-1 Receptor Blocker, on Weight and

Cardiometabolic Risk Factors in Overweight or Obese Patients-RIO-North America: A Randomized Controlled Trial. JAMA 2007,
295, 761–776. [CrossRef]

159. Xia, L.; de Vries, H.; Yang, X.; Lenselink, E.B.; Kyrizaki, A.; Barth, F.; Louvel, J.; Dreyer, M.K.; van der Es, D.; IJzerman, A.P.; et al.
Kinetics of Human Cannabinoid 1 (CB1) Receptor Antagonists: Structure-Kinetics Relationships (SKR) and Implications for
Insurmountable Antagonism. Biochem. Pharmacol. 2018, 151, 166–179. [CrossRef] [PubMed]

160. Sam, A.H.; Salem, V.; Ghatei, M.A. Rimonabant: From RIO to Ban. J. Obes. 2011, 2011. [CrossRef]
161. Smith, J.S.; Lefkowitz, R.J.; Rajagopal, S. Biased Signalling: From Simple Switches to Allosteric Microprocessors. Nat. Rev. Drug

Discov. 2018, 17, 243–260. [CrossRef] [PubMed]
162. Drug Trials Snapshots: Epidiolex|FDA. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/drug-

trials-snapshots-epidiolex (accessed on 16 December 2020).
163. FDA Regulation of Cannabis and Cannabis-Derived Products, Including Cannabidiol (CBD)|FDA. Available online:

https://www.fda.gov/news-events/public-health-focus/fda-regulation-cannabis-and-cannabis-derived-products-including-
cannabidiol-cbd (accessed on 16 December 2020).

164. Hanan, A.P.D.; Sophie-Anne, L.; George, M.P.D. Information for Health Care Professionals: Cannabis (Marihuana, Marijuana)
and the Cannabinoids. Available online: https://www.canada.ca/en/health-canada/services/drugs-medication/cannabis/
information-medical-practitioners/information-health-care-professionals-cannabis-cannabinoids.html#authorship (accessed on
16 December 2020).

165. Alves, V.L.; Gonçalves, J.L.; Aguiar, J.; Teixeira, H.M.; Câmara, J.S. The Synthetic Cannabinoids Phenomenon: From Structure to
Toxicological Properties. A Review. Crit. Rev. Toxicol. 2020, 50, 359–382. [CrossRef]

166. Pergolizzi, J.V.; Taylor, R.; LeQuang, J.A.; Zampogna, G.; Raffa, R.B. Concise Review of the Management of Iatrogenic Emesis
Using Cannabinoids: Emphasis on Nabilone for Chemotherapy-Induced Nausea and Vomiting. Cancer Chemother. Pharmacol.
2017, 79, 467–477. [CrossRef]

167. Borison, H.; Wang, S. Physiology and Pharmacology of Vomiting. Drugs 1953, 5, 193–230.
168. Liano, H.C.; Zakowicz, P.; Mikołajczak, P. Cannabinoids as Antiemetics: A Short Review. Acta Pol. Pharm.-Drug Res. 2018, 75,

1063–1068. [CrossRef]

http://doi.org/10.1186/s12245-020-00311-y
http://doi.org/10.1186/s40360-016-0085-6
http://doi.org/10.1542/peds.2018-1889
http://doi.org/10.1016/j.ajog.2015.03.021
http://www.ncbi.nlm.nih.gov/pubmed/25772211
http://doi.org/10.1016/0024-3205(89)90380-9
http://doi.org/10.1016/0041-008X(87)90338-3
http://doi.org/10.1016/j.pharmthera.2017.08.014
http://doi.org/10.1038/sj.bjp.0707442
http://www.ncbi.nlm.nih.gov/pubmed/8819477
http://doi.org/10.1016/j.bcp.2004.08.033
http://www.ncbi.nlm.nih.gov/pubmed/15588725
http://doi.org/10.1016/S0014-2999(98)00392-6
http://doi.org/10.1038/sj.mp.4000999
http://www.ncbi.nlm.nih.gov/pubmed/11920149
http://doi.org/10.1093/brain/awg143
http://doi.org/10.3390/ijms21082778
http://doi.org/10.1001/jama.295.7.761
http://doi.org/10.1016/j.bcp.2017.10.014
http://www.ncbi.nlm.nih.gov/pubmed/29102677
http://doi.org/10.1155/2011/432607
http://doi.org/10.1038/nrd.2017.229
http://www.ncbi.nlm.nih.gov/pubmed/29302067
https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-epidiolex
https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-epidiolex
https://www.fda.gov/news-events/public-health-focus/fda-regulation-cannabis-and-cannabis-derived-products-including-cannabidiol-cbd
https://www.fda.gov/news-events/public-health-focus/fda-regulation-cannabis-and-cannabis-derived-products-including-cannabidiol-cbd
https://www.canada.ca/en/health-canada/services/drugs-medication/cannabis/information-medical-practitioners/information-health-care-professionals-cannabis-cannabinoids.html#authorship
https://www.canada.ca/en/health-canada/services/drugs-medication/cannabis/information-medical-practitioners/information-health-care-professionals-cannabis-cannabinoids.html#authorship
http://doi.org/10.1080/10408444.2020.1762539
http://doi.org/10.1007/s00280-017-3257-1
http://doi.org/10.32383/appdr/84913


Biomedicines 2021, 9, 267 19 of 19

169. Darmani, N.A. ∆9-Tetrahydrocannabinol and Synthetic Cannabinoids Prevent Emesis Produced by the Cannabinoid CB1 Receptor
Antagonist/Inverse Agonist SR 141716A. Neuropsychopharmacology 2001, 24, 198–203. [CrossRef]

170. Gareau, Y.; Dufresne, C.; Gallant, M.; Rochette, C.; Sawyer, N.; Slipetz, D.M.; Tremblay, N.; Weech, P.K.; Metters, K.M.; Labelle, M.
Structure Activity Relationships of Tetrahydrocannabinol Analogues on Human Cannabinoid Receptors. Bioorganic. Med. Chem.
Lett. 1996, 6, 189–194. [CrossRef]

171. Lemberger, L.; Rubin, A.; Wolen, R.; DeSante, K.; Rowe, H.; Forney, R.; Pence, P. Pharmacokinetics, Metabolism and Drug-Abuse
Potential of Nabilone. Cancer Treat. Rev. 1982, 9, 17–23. [CrossRef]

172. Heuberger, J.A.A.C.; Guan, Z.; Oyetayo, O.O.; Klumpers, L.; Morrison, P.D.; Beumer, T.L.; van Gerven, J.M.A.; Cohen, A.F.;
Freijer, J. Population Pharmacokinetic Model of THC Integrates Oral, Intravenous, and Pulmonary Dosing and Characterizes
Short- and Long-Term Pharmacokinetics. Clin. Pharmacokinet. 2015, 54, 209–219. [CrossRef]

173. Parikh, N.; Kramer, W.G.; Khurana, V.; Cognata Smith, C.; Vetticaden, S. Bioavailability Study of Dronabinol Oral Solution versus
Dronabinol Capsules in Healthy Volunteers. Clin. Pharmacol. Adv. Appl. 2016, 8, 155–162. [CrossRef]

174. Mattes, R.D.; Engelman, K.; Shaw, L.M.; Elsohly, M.A. Cannabinoids and Appetite Stimulation. Pharmacol. Biochem. Behav. 1994,
49, 187–195. [CrossRef]

175. Morton, G.J.; Cummings, D.E.; Baskin, D.G.; Barsh, G.S.; Schwartz, M.W. Central Nervous System Control of Food Intake and
Body Weight. Nature 2006, 443, 289–295. [CrossRef]

176. Di Marzo, V.; Ligresti, A.; Cristino, L. The Endocannabinoid System as a Link between Homoeostatic and Hedonic Pathways
Involved in Energy Balance Regulation. Int. J. Obes. 2009, 33, S18–S24. [CrossRef]

177. Cheung, K.A.K.; Peiris, H.; Wallace, G.; Holland, O.J.; Mitchell, M.D. The Interplay between the Endocannabinoid System,
Epilepsy and Cannabinoids. Int. J. Mol. Sci. 2019, 20, 6079. [CrossRef] [PubMed]

178. De Petrocellis, L.; Ligresti, A.; Moriello, A.S.; Allarà, M.; Bisogno, T.; Petrosino, S.; Stott, C.G.; Di Marzo, V. Effects of Cannabinoids
and Cannabinoid-Enriched Cannabis Extracts on TRP Channels and Endocannabinoid Metabolic Enzymes. Br. J. Pharmacol. 2011,
163, 1479–1494. [CrossRef]

179. Iannotti, F.A.; Hill, C.L.; Leo, A.; Alhusaini, A.; Soubrane, C.; Mazzarella, E.; Russo, E.; Whalley, B.J.; Di Marzo, V.; Stephens, G.J.
Nonpsychotropic Plant Cannabinoids, Cannabidivarin (CBDV) and Cannabidiol (CBD), Activate and Desensitize Transient
Receptor Potential Vanilloid 1 (TRPV1) Channels in Vitro: Potential for the Treatment of Neuronal Hyperexcitability. ACS Chem.
Neurosci. 2014, 5, 1131–1141. [CrossRef]

180. Gray, R.A.; Whalley, B.J. The Proposed Mechanisms of Action of CBD in Epilepsy. Epileptic Disord. 2020, 22, S10–S15. [CrossRef]
181. Darkovska-Serafimovska, M.; Serafimovska, T.; Arsova-Sarafinovska, Z.; Stefanoski, S.; Keskovski, Z.; Balkanov, T. Pharmacother-

apeutic Considerations for Use of Cannabinoids to Relieve Pain in Patients with Malignant Diseases. J. Pain Res. 2018, 11, 837–842.
[CrossRef] [PubMed]

182. Russo, M.; Calabrò, R.S.; Naro, A.; Sessa, E.; Rifici, C.; D’Aleo, G.; Leo, A.; De Luca, R.; Quartarone, A.; Bramanti, P. Sativex in the
Management of Multiple Sclerosis-Related Spasticity: Role of the Corticospinal Modulation. Neural Plast. 2015, 2015. [CrossRef]
[PubMed]

183. Zachariou, M.; Alexander, S.P.H.; Coombes, S.; Christodoulou, C. A Biophysical Model of Endocannabinoid-Mediated Short
Term Depression in Hippocampal Inhibition. PLoS ONE 2013, 8, e58926. [CrossRef]

184. Rea, K.; Roche, M.; Finn, D.P. Supraspinal Modulation of Pain by Cannabinoids: The Role of GABA and Glutamate. Br. J. Pharmacol.
2007, 152, 633–648. [CrossRef]

http://doi.org/10.1016/S0893-133X(00)00197-4
http://doi.org/10.1016/0960-894X(95)00573-C
http://doi.org/10.1016/S0305-7372(82)80031-5
http://doi.org/10.1007/s40262-014-0195-5
http://doi.org/10.2147/CPAA.S115679
http://doi.org/10.1016/0091-3057(94)90475-8
http://doi.org/10.1038/nature05026
http://doi.org/10.1038/ijo.2009.67
http://doi.org/10.3390/ijms20236079
http://www.ncbi.nlm.nih.gov/pubmed/31810321
http://doi.org/10.1111/j.1476-5381.2010.01166.x
http://doi.org/10.1021/cn5000524
http://doi.org/10.1684/epd.2020.1135
http://doi.org/10.2147/JPR.S160556
http://www.ncbi.nlm.nih.gov/pubmed/29719417
http://doi.org/10.1155/2015/656582
http://www.ncbi.nlm.nih.gov/pubmed/25699191
http://doi.org/10.1371/journal.pone.0058926
http://doi.org/10.1038/sj.bjp.0707440

	Introduction 
	Uterine Natural Killer Cells in the Decidua 
	Trophoblasts in the Placenta 
	Interactions between uNK Cells and EVTs 
	ECS Signalling in the Immune System 
	ECS Signalling in the Female Reproductive System 
	Crosstalk between ECS Signalling in the Immune and Reproductive Systems 
	Effects of Maternal Cannabis Use during Pregnancy 
	Therapeutic Applicability of Cannabinoids 
	Synthetic Cannabinoid-Based Drugs: Cesamet, Marinol, Syndros 
	Phytocannabinoid-Containing Drugs: Epidiolex, Sativex 
	Conclusions 
	References

