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ABSTRACT
The roles of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting
rhizobacteria (PGPR) in improving nutrition uptake and soil quality have been well
documented. However, few studies have explored their effects on root morphology
and soil properties. In this study, we inoculated Elymus nutans Griseb with AMF
and/or PGPR in order to explore their effects on plant growth, soil physicochemical
properties, and soil enzyme activities. The results showed that AMF and/or PGPR
inoculation significantly enhanced aboveground and belowground vegetation
biomass. Both single and dual inoculations were beneficial for plant root length,
surface area, root branches, stem diameter, height, and the ratio of shoot to root, but
decreased root volume and root average diameter. Soil total nitrogen, alkaline
phosphatase, and urease activities showed significant growth, and soil electrical
conductivity and pH significantly declined under the inoculation treatments. Specific
root length showed a negative correlation with belowground biomass, but a positive
correlation with root length and root branches. These results indicated that AMF
and PGPR had synergetic effects on root morphology, soil nutrient availability, and
plant growth.
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INTRODUCTION
Almost 25% of the Earth’s biodiversity is composed of soil microorganisms that have
interacted with animals, plants, and soil in ecosystems around the world for millions of
years (Fierer, 2017; Wagg et al., 2019; Whitman, Coleman & Wiebe, 1998). Numerous
beneficial microorganisms play critical roles in biogeochemical circulation that fulfill
global carbon (C) and nutrient cycling that allow ecosystems to function and improve their
productivity. However, the plant-microbe interaction has still been undervalued in studies
on the direct plant-soil feedback effects and links between plant communities and soil
microbes, such as in nutrient acquisition and hormone stimulation (Fierer, 2017;
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Morgan, Bending & White, 2005). Plant diversity has been shaped by microorganisms via
their symbionts in terrestrial ecosystems (Wagg et al., 2014). Generally, rhizosphere
microbes can assist the growth and development of plants by recycling nutrients,
producing hormones, improving tolerance toward potentially hazardous compounds,
keeping the soil healthy, and exercising other indispensable functions such as soil
formation and decomposition of organic matter (Wallenstein, 2006). When plants lack
essential mineral elements such as phosphorus (P) or nitrogen (N), this kind of symbiont
can enhance and benefit plant growth. Soil microorganisms, including mutualists and
pathogens, drive abiotic properties and regulate individual plant growth and species
coexistence with successive mutual interactions (Li et al., 2020). This plant-associated
microbiota involves various groups of organisms, including bacteria, archaea, and fungi,
acting as a symbiont or pathogen (Berendsen, Pieterse & Bakker, 2012; Hussain & Khan,
2020; Vorholt, 2012).

Arbuscular mycorrhizal fungi (AMF), assigned to the Glomeromycotina phylum, are
one of the most important components of the soil ecosystem. They maintain symbiotic
relationships with over 70% of terrestrial plants and provide nutrients and water to plants
in exchange for sugars through their arbuscules, which is where the exchange of necessary
nutrients between host plants and fungi occurs (Schussler, Schwarzott & Walker, 2001;
Wagg et al., 2019). AMF have the capacity to expand the exhaustion zone using an
extensive hyphal network to acquire extra water and nutrients that can significantly
improve a host plants’ fitness (Bonfante & Genre, 2010; Ezawa & Saito, 2018; Field &
Pressel, 2018; van der Heijden et al., 2015). AMF also enhance the ability of host plants and
adjacent plants that are connected with common mycorrhizal networks (CMN) to resist
drought, heavy metals, and pathogens (Bonfante & Genre, 2010; Giovannetti et al.,
2001; Pepe, Giovannetti & Sbrana, 2016). The area around the mycorrhizal hyphae, called
the hyphosphere (Patel, Thakkar & Subramanian, 2015; Rasmann et al., 2017), contains
helper bacteria that promote the plant-mycorrhizal fungus symbiotic associations,
plant-growth-promoting rhizobacteria (PGPR) that work collaboratively with AMF to
facilitate plant growth and productivity, and mycophagous bacteria that are dependent on
fresh hyphaes (Yuan et al., 2021). PGPR include Azospirillum, Pseudomonas, Azotobacter,
Klebsiella, Enterobacter, Alcaligens, Arthrobacter, Burkholderia, and Bacillus spp., which
are important members of the plant-associated microbiome (Bashan et al., 2014;
Muzammil et al., 2014). Bacillus spp. promotes plant growth by fixing N, solubilizing
and mineralizing P and other nutrients, stimulating phytohormones, producing
siderophores, inducing systemic resistance (ISR), and enhancing their tolerance to abiotic
stresses (Bonfante & Genre, 2010; Saxena et al., 2020). Bacteria rely on lignin and
cellulose-hydrolysed fungus to produce primary bacterial materials and provide
nourishment to fungus for exchange (Clausen, 1996; Romaní et al., 2006). Fungal hyphae
form hyphal networks to connect soil patches and build “fungal hyphae highways” for
bacteria to transfer substrates (Warmink et al., 2011).

Numerous studies have shown that utilizing PGPR and AMF is a feasible ecological
approach to enhance soil health and plant productivity (Aini, Yamika & Ulum, 2019;
Vessey, 2003). AMF and PGPR symbionts can enhance resistance to salinity by shifting
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individual root morphology and root-to-shoot communication, keeping ion homeostasis,
diminishing oxidative damage, and increasing photosynthetic capacity (Chandrasekaran
et al., 2014; Egamberdieva et al., 2017; Pan et al., 2019), as well as significantly elevating
aboveground biomass, stem branches, and plant height (Pan et al., 2020). Additionally,
the combination of AMF and PGPR promoted the projected area, total volume, and total
root length of trifoliate orange under limited P conditions (Wang et al., 2016), and
aboveground organs under deficient organic N (Saia et al., 2015), N, P, potassium (K), and
sulfur (S) concentrations in the rhizospheres of onion and maize (Mohamed et al., 2014).

However, there is still a lack of detailed insight and evidence to verify the key functions
of AMF, PGPR, and their combined effects on the growth and development of dominant
species of the grassland community. Elymus nutansGriseb is a dominant perennial species in
the Qinghai-Tibet Plateau, China (Chu et al., 2016) that plays an important role in animal
husbandry and the ecological conservation of this region. Therefore, this study was
conducted to investigate the effects of AMF and PGPR on plant traits of Elymus nutans
Griseb and the surrounding soil properties.

We hypothesized that: (1) AMF and PGPR could mutually symbiose and enhance the
plant growth of Elymus nutans Griseb, and (2) the co-existence of AMF and PGPR could
improve plant traits and soil quality better than their individual applications.

MATERIALS AND METHODS
Plant materials
This pot experiment had a fully randomized one-factor experimental design with four
treatments. The soil was excavated (0–15 cm depth) in March 2020 from the
Qinghai-Tibet Plateau, China, (53�19′2.44″N and 13�51′48.03″E), which has a typical
plateau continental climate and clay loam type soil. Precipitation is greatest between June
and September (Wei et al., 2021). The sampled soil was air-dried for about two weeks and
sieved through a 2 mm screen to ensure homogeneity. The sieved soil was sterilized at
121 �C for 2 h and put into a 2 L pot (17 cm height × 12 cm internal diameter × 14 cm
external diameter) for the later experiment.

Elymus nutans Griseb seeds were collected from Haibei Autonomous Prefecture,
Qinghai Province, China (36�55′N, 100�57′E, 3,029 m a.s.l.). Before sowing, the seeds were
surface-sterilized with 10% H2O2 and rinsed three times with sterile water (Schweiger,
Baier &Mueller, 2014). The seeds were then sowed in a 3:2 mixture of clay:sand and laid in
the climate chamber (20 �C, 12/12 h: light/dark, 60–70% r.h.). After two weeks, 50 Elymus
nutans Griseb seedlings were transferred into experimental pots. They were stored in
the dark at 4 �C for 3 d and then transferred to a greenhouse (Tomczak, Schweiger &
Müller, 2016) where they were watered twice a week with a standard quantity of water
(1,800 ml/week were added in each pot based on the experimental pot size).

AMF inoculum
The inoculum of mycorrhizal fungus Funneliformis mosseae (accession no. BGCYN05),
obtained from the Beijing Academy of Agriculture and Forestry Sciences, was isolated
from red clover and contained spores, mycelium, sand, and root fragments The inoculant
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used in this experiment was a rhizosphere soil mixture of spores, extrarhizoma hyphae,
and root segments of infected plants, and contained 129 spores per gram. The mycorrhizal
fungus spores were placed almost 2 cm below the soil surface before sowing the seeds.

PGPR inoculum
The Bacillus megaterium (accession no. ACCC10011) that were provided by the Institute
of Agricultural Resources and Regional Planning (ACCC). Bacillus was grown in 10 g of
beef extract peptone AGAR medium with peptone, 3 g of beef extract, 5.0 g of NaCl,
and 1,000 mL of distilled water, then 20 g of agar was added. We sterilized the AGAR
medium at 121 �C for 30 min, and Bacillus was grown overnight with constant shaking at
220 rpm (Constantino et al., 2008). We regulated the cell suspension to 109 CFU mL−1

and then used it as a standard inoculum. The seeds were immersed in a bacterial
suspension before sowing, and the seedling were inoculated with 20 ml of same bacterial
suspension after sowing.

Experimental design
Four treatments were used to explore the effects of fungus-bacteria symbiont on Elymus
nutans Griseb, including one dual inoculation treatment (30 g-AMF inoculum and
25 ml-Bacillus suspension), two single inoculation treatments (25 ml-Bacillus suspension
and 30 g AMF inoculum, respectively), and one controlled treatment (AMF and PGPR
were both autoclaved). Each treatment included six replicates.

Determination of parameters
AMF colonization
Mycorrhizal infection was examined using Kormanik & McGraw’s (1982) method.
The receiver plant roots were randomly collected per treatment, washed with distilled
water, cut into 1 cm segments, immersed in 10% KOH, and heated in water under 90 �C
for 60 min. The roots segments were watered to eliminate the alkali, and the remaining
alkali was neutralized in 2% hydrochloric acid for 10 min. Then we added 0.01% acid
fuchsin to stain the root segments, heated them in 90 �C for 30 mins after separating them
from the acid solution, and then immersed them in the mixture solution of glycerol/
lactic/water acid (1:1:1) for 24 h to destain them. After that, the treated samples were
observed using a regular optical microscope in 40× to qualify the levels of mycorrhizal
colonization (Dalpé & Séguin, 2013).

Mycorrhizal colonization ð%Þ ¼number of infected root bits=

total number of root bits observed� 100%

Analysis of parameters
Plant parts
The plant samples were separated into shoots and washed roots, dried at 60 �C for 72 h,
and weighed to determine the biomass of dry shoots and roots (Bourles et al., 2020).
To determine the total C and N content, leaf tissues were milled with a ball mill (Retsch
MM400; Retsch, Haan, Germany), 0.15 g of the sieved plant sample was weighed, wrapped
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in the tin cup required by the instrument, and measured using an elemental analyzer
(Vario MAX CNS; Elementar, Hanau, Germany). The plants were thoroughly washed with
deionized water to remove all soil particles and dust, and were then divided into two
parts: shoot and root parts. The shoot and root parts were then scanned using EPSON
Perfection V700 PHOTO andWinRHIZO Pro software (Regent Instruments Inc., Quebec,
Canada) to look at the shoot size, root/shoot ratio, root surface area, root length (mm),
mean root diameter (mm), and root branches.

Soil parts
Soil total P content was measured using the sodium hydroxide melting-molybdenum
antimony colorimetric method (Yang et al., 2018). Soil total C and N were milled using a
ball mill (Retsch MM400; Retsch, Haan, Germany), and weighing 0.15 g of the sieved soil
sample, wrapping it in the tin cup required by the instrument, and using the elemental
analyzer (Vario MAX CNS, Elementar, Hanau, Germany). Soil ammonium N (NH4+-N)
and nitrate N (NO3−-N) levels were measured after extraction using 50 mL of 2 mol/L KCl
on a 10 g subsample and a potassium chloride leaching-flow-solution analyzer. Soil
available P was measured using Xiao et al. (2018) and Yang et al. (2018). Soil urease
enzyme (UE), and alkaline phosphatase activities (ALP) were examined using the Solarbio
soil urease kit (Solarbio, BC0120, Beijing, China) and soil alkaline phosphatase kit
(Solarbio, BC0280, Beijing, China), respectively.

Data analysis
Plant traits, soil properties, and soil enzyme activities were analyzed using a one-way
analysis of variance (ANOVA) test in the “agricolae” package of R software.
The correlation between specific root length and plant traits was analyzed using the
“corrplot” package. The statistical analysis figures were produced with R software version
4.1.0 (Frew, Powell & Johnson, 2020). The differences were considered to be significant at a
0.05 level.

RESULTS
Plant traits and nutrient uptake
There were significant differences across all treatments (P < 0.05). The aboveground and
belowground biomass from dual inoculation with AMF and Bacillus had maximum values
of 3.15 g·pot−1 and 1.59 g·pot−1, respectively. Compared with the control group, mixed
inoculations were twice as high for aboveground biomass and four times higher for
belowground biomass (Fig. 1A).

Stem diameter and plant height with inoculations were greater than those with no
inoculation (CK) (P < 0.05) (Fig. 1B), and both stem diameter and height were significantly
highest in the dual inoculation (Am + Bm) (P < 0.05) group, followed by only AMF
inoculation (Am), and least in only Bacillus inoculation (Bm). The stem diameter and
height values ranged from 0.57 mm to 0.86 mm and 27.72 to 37.19 cm, respectively. Single
and dual inoculations (Table 1) increased the concentration of plant total C and N, but
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decreased plant total P compared with the CK group. There were no significant differences
in plant total C and N (P > 0.05).

Dual inoculation with AMF and PGPR did not significantly affect mycorrhizal
colonization (Table 2). There were statistically significant differences across the four
treatments in root length, root surface area, root branches, and root average diameter
(P < 0.05). Inoculations with AMF and/or PGPR enhanced root length, root surface area,
shoot to root ratio, and root branches (P < 0.05). However, root volume and root average
diameter showed the greatest discrepancy in the Am and Bm groups, respectively.
In the presence of AMF, the root length, root surface area, and root branches were much
greater than in the other groups, and Bm had a positive effect on root surface area and root
to shoot ratio (P < 0.05).
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Figure 1 Effect of different inoculations on the aboveground and belowground biomass (A) and stem diameter and height (B).Different letters
represent significant differences at P = 0.05 using one-way ANOVA. The error bars in the figure legends represent the standard deviation. CK, no
inoculation; (Am), only AMF inoculation; Bm, only Bacillus inoculation; Am + Bm, both symbionts. Full-size DOI: 10.7717/peerj.13080/fig-1

Table 1 Effect of different inoculations on plant traits and soil properties.

Treatments Plant traits Soil properties

Total carbon
(%)

Total nitrogen
(%)

Total phosphorus
(g·kg−1)

Total carbon
(%)

Total nitrogen
(%)

Total phosphorus
(g·kg−1)

Available phosphorus
(g·kg−1)

CK 42.64 ± 0.33a 2.10 ± 0.16a 0.06 ± 0.02b 3.43 ± 0.12a 0.21 ± 0.02ab 0.43 ± 0.14a 2.26 ± 0.18a

Am 42.96 ± 0.41a 1.98 ± 0.17a 0.02 ± 0.002a 3.45 ± 0.06a 0.22 ± 0.02a 0.46 ± 0.06a 2.21 ± 0.13a

Bm 42.65 ± 0.38a 1.97 ± 0.17a 0.04 ± 0.01b 3.43 ± 0.06a 0.19 ± 0.01b 0.48 ± 0.04a 2.12 ± 0.10a

Am + Bm 42.64 ± 0.64a 1.89 ± 0.22a 0.03 ± 0.003a 3.46 ± 0.04a 0.21 ± 0.01ab 0.47 ± 0.01a 2.85 ± 0.46a

Note:
Different letters represent significant differences at P = 0.05 in using one-way ANOVA. Data (average ± SE, n = 6) in the same column with different letters indicates
significant differences according to LSD test (P < 0.05). CK, no inoculation; (Am), only AM fungi inoculation; Bm, only bacillus inoculation; Am + Bm, both symbionts.
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Soil properties
Single AMF inoculation significantly improved the content of soil total N (Table 1), which
was decreased in the Bm group (P < 0.05). Am and Bm treatments showed less soil
available P compared with the control group. Inoculations significantly enhanced the
content of soil NH4+-N but decreased soil NO3−-N (Fig. 2A).

The ALP and UE activity results showed that single or multiple inoculations enhanced
ALP activities, and ALP was greater in the presence of AMF than in CK and Bm
treatments, which increased to 2,620.76 U·L−1 and 2,899.35 U·L−1, respectively. In the
meantime, AMF enhanced UE activities more than other treatments by about 218.07 U·L−1

(P < 0.05) (Fig. 2B). The dual inoculation group (Am + Bm) had the lowest pH value but
the highest electrical conductivity, while the control group had the opposite results
(Fig. 2C).

The N:P ratio was not significantly influenced by any inoculations (Fig. 3A), but there
were significant differences in C: N ratio across all treatments (P < 0.05) (Fig. 3B), and
PGPR inoculation promoted the C:N ratio, but decreased N:P ratio.

Correlations among traits and related variables
Pearson analysis between specific root length and plant traits showed that specific root
length was positively correlated with root length and root branches, but was negatively
correlated with belowground biomass (Fig. 4).

DISCUSSION
Plant trait responses to inoculations
Plant-soil microorganism interactions play an essential role in nutrient acquisition and
ecosystem functions. However, few studies have focused on soil microorganism responses,
especially fungi-bacteria co-occurrence, to plant root growth. In this study, we quantified
how plant-associated microbial symbionts affected plant growth and traits, as well as
changes in soil physicochemical properties. The aboveground and belowground biomass
of the experiment species were significantly promoted in the presence of AMF and Bacillus

Table 2 Effect of different inoculations on the root length and root surf area (a) and root/shoot radio and root branches (b) and root volume
and root average diameter.

Treatments Root
colonization

Root length
cm

Root surf area
cm2

Root volume
cm3

Root branches Root ADV
mm

Root to shoot
ratio

Specific root
length

CK 0 ± 0b 318.56 ±
68.5c

786.34 ± 82.28b 161.18 ±
14.03a

1,313.11 ±
334.57b

8.41 ± 1.13a 0.35 ± 0.07b 5.94 ± 1.88a

Am 59.77 ± 10.44a 610.87 ±
77.2a

883.65 ± 64.79a 105.27 ±
14.55c

4,160.78 ±
1594.83a

4.75 ± 0.55c 0.45 ± 0.04a 4.82 ± 0.58a

Bm 0 ± 0b 446.82 ±
100b

880.37 ± 78.69a 146.39 ±
34.53b

2,265.39 ±
879.79 b

6.64 ± 1.43b 0.44 ± 0.06ab 6.01 ± 1.14a

Am + Bm 58.07 ± 9.37a 712.70 ±
113a

859.8 ± 51.54ab 86.32 ± 17.16c 3,629.00 ±
667.67a

4.00 ± 0.67c 0.51 ± 0.12a 4.67 ± 1.31a

Note:
Different letters represent significant differences at P = 0.05 in using one-way ANOVA. CK, no inoculation; Am, only AM fungi inoculation; Bm, only bacillus inoculation;
AM + BM, both symbionts.
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compared to a single symbiont (Fig. 1). The AMF-PGPR symbiont increased P and N
acquisition (Aliasgharzad, Neyshabouri & Salimi, 2006), indicating the positive and
synergistic effects of combining AMF and PGPR in the host plant (Bourles et al., 2020;
Shockley, McGraw & Garrett, 2004; Xie et al., 2020). PGPR + AMF also influenced AMF
colonization, which was suggested by earlier studies that found that multiple inoculations
increase AMF colonization (Aini, Yamika & Ulum, 2019; Constantino et al., 2008; Juge
et al., 2012) as well as root length and resource acquisition. In general, higher root
hydraulic conductivity and proliferation rate were demonstrated by a higher specific root
length (Rewald Email et al., 2013). We observed that specific root length decreased with
microbial inoculations (but was increased by Bm). This may be due to that AMFmycelium
replace the absorption function of the root system, and that the specific compounds
secreted by PGPR and AMF provide more nutrition and eliminate toxic ions in the
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rhizosphere, which facilitates the host to develop a thicker root system and larger
absorption area (Brundrett, 2002; Solomon & Rajeshkanna, 2013). Therefore, it is not
necessary for Elymus nutans Griseb inoculated with AMF and PGPR to develop a larger
specific root length as a substitute for its diameter in order to obtain more resources
(Hodge, 2004).

Our results found that height, root, biomass, and root surface area increased following
the mixed inoculation, which confirmed the results found by Toro, Azcon & Barea (1997),
Ma, Rajkumar & Freitas (2009) and Xie et al. (2020). Additionally, our findings also
showed that the presence of AMF and PGPR promoted biomass and N and P
accumulation in plant tissues. This is possibly due to AMF and PGPR effectively
influencing the calculation of N compounds (like amino acids and soluble proteins) in the
host plant (Xie et al., 2020), and their coexistence mediates the production of
phytohormones or enzymatic activities to further root evolution and growth (Abdel-
Rahman & El-Naggar, 2014), as well as enhance the foundation and development of
rhizobial or mycorrhizal symbioses (Patten & Glick, 2002). In our findings, the root:shoot
ratio was significantly magnified by mixed or single inoculations, while root biomass,
length, branches, and root surface area in dual inoculations were significantly higher than
in single inoculations (Table 1), demonstrating that mycorrhizal plants have more
advanced root systems, as well as more potential for nutrient acquisition, and the
co-occurrence of PGPR and mycorrhizae have benefits for plant growth and improve each
other’s development. This shows that PGPR facilitate mycorrhizae hyphal growth when
colonizing the host root (Artursson, Finlay & Jansson, 2006; Bianciotto et al., 2001;
Hildebrandt et al., 2006; Jeffries et al., 2003; Pivato et al., 2009), increasing the amount and/
or length of lateral roots (Chamam et al., 2013; Combes-Meynet et al., 2011) by mediating
the hormone pathways and balances (Dodd et al., 2010; Moubayidin, Di Mambro &
Sabatini, 2009; Peret et al., 2012; Stepanova & Alonso, 2009) and modifying root
morphology (Aloni et al., 2006). It has been well documented that greater special root
length is positively correlated with higher resource absorbing efficiency in root systems
assimilating nutrients (particularly N and P) from the soil (Cantarel et al., 2015; Comas,
Bouma & Eissenstat, 2002; Larson & Funk, 2016; Legay et al., 2014), which can also
diminish nitrous oxide release and N extracted from the soil (Abalos et al., 2014; de Vries &
Bardgett, 2016; Moreau et al., 2015).

Soil property responses to inoculations
There is evidence of a tradeoff between different N forms (NO3−-N and NH4+-N) uptake
among coexisting grass species that have no relationship with root morphology (Maire
et al., 2009). Roots and their related mycorrhizal fungi regulate the long-term soil C pool
by impacting organic substance decadence (Clemmensen et al., 2013; Phillips, Brzostek &
Midgley, 2013) and promoting soil aggregation (Rillig et al., 2015). Additionally, the
mixed inoculation of AMF and Bacillus significantly increased soil NH4+-N compared to
the single inoculations of AMF or Bacillus in our results (Fig. 2B), which may be linked to
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PGPR’s potential in enhancing the NO3−-N assimilation rate (Sondergaard, Schulz &
Palmgren, 2004) as well as the nitrification limitations of the AMF and PGPR combination
(Arif et al., 2016). Consequently, the consumption and absorption of NHþ

4 -N also was
lower and better than NO−

3 -N (Hawkins, Johansen & George, 2000). Soil ALP and UE for
both inoculations performed significantly better than the single symbiont in our study,
and these results were consistent with recent research (El-Sawah et al., 2021; Zai et al.,
2014). AMF may contribute to facilitating soil ALP activity, and its propagules have
capacities to synthesize and release soil enzymes (Wang et al., 2006). Additionally, PGPR
contribute to P mobilization (Krey et al., 2011), indicating that microorganisms
increase the activity of phosphatase, as well as catalyze the hydrolysis of organic P into
inorganic P that can be absorbed by plants. At the same time, they can secrete metabolites
into the soil matrix during growth and reproduction, promote soil humification,
accelerate the degradation of organic matter, and increase the content of organic matter
(Mazzoncini et al., 2010). The increase of soil UE also promotes the N concentration
in rhizosphere soil. Consequently, the promotion of soil enzyme activities could
significantly facilitate the decomposition of organic matter and the remobilization of
nutrients in rhizosphere soil (Zai et al., 2014). Inoculations significantly increased soil pH
but decreased soil electrical conductivity compared with the control group, and there is
similar evidence that Glomalin released by AMF can promote soil physicochemical
properties (Mazzoncini et al., 2010).

CONCLUSION
We evaluated the effects of AMF and PGPR on root morphology, plant growth, and soil
properties. A dual inoculation of AMF and PGPR was the most effective for improving
plant growth regulation, nutrient acquisition, and soil properties, and should be used as
bio-fertilizer to promote local forage production and soil quality in the Qinghai-Tibet
Plateau, and provide practical guidance for agricultural management.
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