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Abstract: Improving the durability and sustainability of concrete structures has been driving the
enormous number of research papers on self-healing mechanisms that have been published in the
past decades. The vast developments of computer science significantly contributed to this and
enhanced the various possibilities numerical simulations can offer to predict the entire service life,
with emphasis on crack development and cementitious self-healing. The aim of this paper is to
review the currently available literature on numerical methods for cementitious self-healing and
fracture development using Phase-Field (PF) methods. The PF method is a computational method
that has been frequently used for modeling and predicting the evolution of meso- and microstructural
morphology of cementitious materials. It uses a set of conservative and non-conservative field
variables to describe the phase evolutions. Unlike traditional sharp interface models, these field
variables are continuous in the interfacial region, which is typical for PF methods. The present
study first summarizes the various principles of self-healing mechanisms for cementitious materials,
followed by the application of PF methods for simulating microscopic phase transformations.
Then, a review on the various PF approaches for precipitation reaction and fracture mechanisms is
reported, where the final section addresses potential key issues that may be considered in future
developments of self-healing models. This also includes unified, combined and coupled multi-field
models, which allow a comprehensive simulation of self-healing processes in cementitious materials.

Keywords: self-healing; phase-field; cement-based systems; precipitation; reaction; fracture; transport

1. Introduction

Concrete is characterized by its high compressive strength, a wide availability of its raw materials,
and simple production methods, which is the main reason that it became the most commonly used
construction material in the world [1,2]. However, its low tensile strength is the main reason that
various types of cracks can occur in a concrete element that may adversely affect its service life [3].
While under internal, external, or environmental load, open or closed micro- and/or meso cracks
may develop inside a concrete element that may successively result in a loss of structural integrity [4].
Open surface cracks may also allow water or hazardous substances to enter and thereby severely
impairing its durability [5,6]. Therefore, improving the durability of concrete structures, asks for
a limitation or reduction of the number of cracks where self-healing strategies could be solution.
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In the last decades, enormous efforts have already been done to develop various kinds of self-healing
methods for cementitious systems [7-15]. Most comprehensive scientific report so far is the RILEM
TC-221-SHC [16], that summarizes the current research progress and defines the difference between
“autogenic” and “autonomic” self-healing methods, depending on whether crack closure happens due
to either the material itself [17-20], or is triggered by means of engineered additions [13,14,21-30].

From a modeling point of view, the presently existing numerical approaches can be grouped
according to the nature of their particular self-healing mechanism into (1) chemical reaction-based
models [12,31-34], for predicting carbonation, hydration, polymerization and precipitation phenomena;
(2) transport phenomena-based models [35,36], in which the phases affecting the healing processes
are transported through the concrete pore-structure network; and (3) fracture-based models,
smeared [37-46] and discrete [47-53] crack approaches for predicting strength recoveries of
self-healing systems.

When considering the number and type of experiments required to study the performance
of self-healing concrete, it turns out that optimizing self-healing mechanisms through extensive
experimental studies is a very demanding task. However, this task becomes more doable when
employing numerical simulation models. However, most existing models do not incorporate
physically/chemically driven boundary movements for an accurate simulation of solid-liquid
interfaces. To overcome these difficulties, phase-field (PF) methods have been proposed as a powerful
tool for handling moving interfaces caused by phase transitions [54-56]. In conventional numerical
models for phase transformations and microstructural evolutions, interfaces are considered to be
infinitely sharp and have to be schematized explicitly [57-59]. It leads to incompatibilities that makes
calculations very complex and difficult to implement in a computer program. Contrarily, PF methods
are based on thermodynamic principles and assume a diffuse interface, which makes them suitable
for solving complex morphological evolutionary processes. The evolution of the “field”, over time
and space, is controlled by the nonlinear Cahn-Hilliard diffusion equation and its relaxation by the
Allen—Cahn equation [60,61]. For concrete, a self-healing mechanism is physically almost similar to a
dissolution and/or precipitation principle that evolves at the cracked surfaces. It makes a PF modeling
approach very suitable for solving this type of moving interface problems at cracked surfaces, caused
by phase transformations.

This article provides a review on existing models to simulate self-healing in cracked concrete,
with emphasis on PF methods. After the introduction in Section 1, the currently available self-healing
methods for concrete are reported in Section 2. In Section 3, the possibility of using PF methods for
simulating self-healing in concrete is presented and discussed. Then, in Section 4, the basic equations
of a PF method are presented. Next, in Sections 5 and 6 existing PF techniques for precipitation and
fracture in concrete are reported, respectively. Finally, items that should be addressed in self-healing
models along with future research priorities and a concluding discussion on the whole article is given
in Section 7.

2. Self-Healing Mechanisms in Concrete

In general, self-healing processes in cement-based materials can be divided into two categories:
(1) autogenous self-healing and (2) autonomous self-healing [9,62,63]. Autogenous self-healing
involves only the original components of a concrete. These components may, due to their specific
chemical compositions, promote crack healing under favorable environmental conditions, driven by
chemical reactions or transitions [10,64,65]. However, autonomous self-healing processes can only
take place with the help of healing additives, such as microcapsules that may contain healing agents
like polymers or bacterial spores [14,66]. Autogenous healing mechanisms have a limited healing
capacity, typically only being able to heal cracks of about 100-150 pm in width [67]. In contrast to
this, autonomous mechanisms can easily heal cracks up to 300 um and sometimes even more than
1 mm [67]. These self-healing mechanisms are described below in detail.
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2.1. Autogenous Self-Healing

Autogenous self-healing has been extensively investigated in the last decades [9,10,65,68,69],
mainly by using experimental techniques. Figure 1a shows three main categories: physical, chemical,
and mechanical healing. The physical healing mechanism is the process where the crack surface inside
a cement matrix absorbs water and causes volume expansion [70,71]. The chemical healing mechanism
consists of two main reactions, namely, a further hydration of the still unhydrated cement clinker
inside a concrete, generating additional Calcium Silicate Hydrates (C-5-Hs), and carbonation of the
additionally formed portlandite [65,72-74]. Finally, mechanical healing mechanisms refers to the filling
of a crack with fine cement particles, which appear in a crack by water transport or diffusion [72].
The chemical mechanism is the primary and most promising healing method for hardened concrete
at a young age [16]. Due to the relatively high content of unhydrated cement particles in these
concretes, continuing hydration will still be possible and may result in a healing of cracks [18,64].
At later ages after crack initiation, the formation and growth of calcium carbonate crystals (CaCO;)
becomes the main healing mechanism [75]. Figure 1b,c shows the main healing products and their
chemical components.
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Figure 1. The autogenous self-healing mechanisms, products, and their corresponding chemical
composition. (a) Schematic representation of the mechanisms of autogenic self-healing. Reproduced
with permission from the authors of [70]. Copyright 2013, Springer. (b) Morphology of healing
products (GHP refers to the gel-like healing product and CHP refers to the crystal-like healing product).
Reproduced with permission from the authors [76]. Copyright 2013, Elsevier. (c) Ratios of Ca/Si and
Al/Si of healing products with time. Reproduced with permission from the authors of [76]. Copyright
2013, Elsevier.

To improve the effectiveness of autogenous crack repair, an improved self-healing method called
Dissoluble Encapsulated Particles (DEP) has been proposed [11,12,77]. In this self-healing method a
certain amount of cement in a concrete mixture remains unhydrated for a predefined period of time
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because of the pre-encapsulation of certain cement fractions which are covered with a thin membrane
that can dissolve whenever it is affected by a crack (Figure 2). A crack in a cementitious surface may
open the DEP membrane due to either (1) a dissolution mechanism caused by low pH-conditions,
i.e., due to increased CO, ingress, or (2) by mechanical fracture. After this happened, the original
unhydrated cement will be exposed to the local environmental temperature and humidity conditions

causing the cement to react and finally close the crack [77].
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Figure 2. Self-healing with Dissoluble Encapsulated Particles (DEP): (a) Schematic representation
of regular cement blended DEP cement [12]. (b) Initial state of microstructure by vol.—10% cement
replacement by DEP [12]. (c) A high pH value will cause the DEP capsule to rupture, the healing agent

will be released and a special hydration reaction with accompanying volume expansion will begin [77].

2.2. Autonomous Self-Healing

Autonomous self-healing is a method to improve the effectiveness of self-healing mechanisms for
concrete, by either embedding encapsulated or non-encapsulated additions [62,67]. Until now, addition
of encapsulated agents (micro/meso < 1 mm, macro > 1 mm) is the most preferred method adopted
for autonomous self-healing concrete [67], which may contain mineral [78,79], bacteria [14,28,80-88],
and polymers [15,89,90]. Non-encapsulated additions may also contain these listed substances, but are
added to a mixture in a pure, non-encapsulated, form where they become active directly after mixing
of the concrete [91-93].

2.2.1. Self-Healing Based on Mineral Admixtures

Mineral admixtures are materials that are mixed in a concrete and react with water to form
reaction products with an expanded volume to heal cracks developed in an already hardened concrete.
With this healing mechanism [13,91,94,95], crack widths up to 120 pm can be repaired [67]. Depending
on the type of mineral additives, three subcategories can be identified: (1) expansive additives,
(2) geo-material based additives, and (3) chemical agents (crystalline additives) (Figure 3). Expansive
additives develop reaction products with an increased volume that can fill the cracks [96]. Commonly
used are sulfoaluminate based expansive additives (C-S-A) [78]. The geo-material-based additives
consist of silicon dioxide, sodium aluminum silicate hydroxide, and bentonite clay, which have the
capacity to swell [79,97,98]. When this type of geo-material is exposed to water, its volume may
increase 15-18 times its initial dry volume [79]. The most basic crystalline additive is tricalcium silicate
(C5S), which is the main clinker component in cement and reacts with water to form calcium silicate
hydrate C-S-H phases [26].
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(8) Precipitated term (Chemical agents)

Figure 3. Three main self-healing mechanisms using mineral admixtures. Reproduced with
permission from the authors of [79]. Copyright 2010, JCI.

2.2.2. Self-Healing Based on Bacteria

A certain category of bacteria can be applied for healing cracks in concrete [28]. It results in a
closed crack which is watertight and has a limited capacity to restore the mechanical strength of a
concrete [80-82]. The maximum crack width that can be healed with this system are ~150 um [83],
which is rather limited whenever compared with other healing systems. Figure 4 shows a schematic
impression of a fractured concrete with microencapsulated bacterial spores and the results of previous
experiments [80,81,99].

Bacteria provide an important reaction component in a self-healing mechanism, where they are
enhancing the calcium carbonate CaCOj; production, needed for crack closing [100]. During healing,
the mechanism passes the following two sequential steps; (1) conversion of calcium lactate
and (2) hydrolysis of urea through (ureolytic) bacterial metabolism. In the first mechanism, oxygen
and water penetrate into the concrete interior through cracks where the bacteria are activated to
convert calcium lactate into CaCQOj crystals and CO,. Portlandite particles near the cracks will further
react with CO, to produce more CaCO; which precipitates at the crack surfaces [81]. In the second
mechanism, many components capable of producing organic urea (e.g., Bacillus cohnii, Sphaericus,
Subtilis, Pasteurii, Megaterium, and Sporosarcina ureae) can act as a catalyst during the self-healing
process [101]. As it undergoes demineralization, negatively charged bacterial cells take up components
from the cell wall and then react to CaCO; precipitates [102].

The efficiency of the precipitates generated by bacterial induction is determined first by the
available water content and moisture movement in the concrete matrix [103,104], and second by the
concentration of calcium ions, the pH of the pore solution, the concentration of inorganic carbon and by
the presence of nucleation sites [105,106]. The first three are available in the concrete matrix, while the
last one is related to the type of bacteria used [82]. In addition, factors that affect the effectiveness
of healing include (1) the type of carrier (direct [107], encapsulated [108] containers like clay and
aggregates [109,110]) and (2) the concrete compatible chemical reactions taking place in producing
CaCO; [86,111].
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Figure 4. Self-healing mechanism using bacterial spores. (a) Schematic diagram of bacterial repair of
concrete cracks. Bacteria on the surface of the crack are activated by water and precipitate minerals such
as calcite to seal the crack and protect the reinforcement from external chemical attack. Reproduced
with permission from the authors of [99]. Copyright 2018, Elsevier. (b) ESEM photomicrograph (15,000
magnification) of B. cohnii spores, showing that spore diameter sizes are up to 1 um. Reproduced
with permission from the authors of [80]. Copyright 2010, Elsevier. (c) Mineral precipitates (20-80 um
sized) on crack surfaces (250x magnification). Reproduced with permission from the authors of [80].
Copyright 2010, Elsevier. (d) Stereomicroscopic images of crack-healing process in bio-chemical
agent-based specimen before and (e) after 100 days healing. Reproduced with permission from the
authors of [81]. Copyright 2011, Elsevier.

2.2.3. Self-Healing Based on Adhesive Agents

This method is based on injecting adhesives into a crack to induce manual healing [112,113].
The crack widths which can be healed with these systems vary from 50 pm up to 250-300 um [67,114].
Adhesive agents can be divided into one-component and multicomponent systems. Commonly used
one-component adhesive agents are polyurethane [115] and epoxy [116]. Multicomponent adhesives
are methylmethacrylate [117] and ureaformaldehyde/epoxy [113]. Adhesive agents are encapsulated
in spherical capsules [112], tubular-shaped capsules [117,118], and hollow fibers [119-121] that are
mixed with fresh concrete (Figure 5). When cracks occur, rupture of the encapsulation takes place,
where the adhesive will be released into the crack by capillary action, initiating crack healing with time.
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Figure 5. Self-healing mechanism based on adhesive agents. (a) Test setup used to determine the
tensile strength of laboratory-scale hollow glass tubes with an outer hole of diameter 5 mm and an
inner pin of diameter 3 mm. Reproduced with permission from the authors of [117]. Copyright 2015,
Elsevier. (b) Hollow glass fibres of 60 pm external diameter with a hollowness of 50%. (c) Cross
section through impact damaged hybrid solid glass/hollow glass/epoxy laminate. Reproduced with
permission from the authors of [120]. Copyright 2005, Elsevier. (d) Spherical microcapsules with
diameter of 120 £ 33 um. Reproduced with permission from the authors of [122]. Copyright 2012,
Elsevier. (e) Short glass/ceramic capsules attached to reinforcement, Reproduced with permission
from the authors of [118]. Copyright 2015, Elsevier.
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3. Phase-Field Methods for Modeling Concrete Self-Healing

The Phase Field (PF) method for simulating lower scale micro- and/or mesostructural cracking in
materials has got an enormous upswing in the last decades. However, so far classical PF applications were
focusing on the distribution of non-reactive multi-phase systems [123]; solidification problems [55,124];
solid-state phase changes [125,126]; grain growth, nucleation, and coalescence processes [127-129];
dislocation dynamics [130]; temperature inducing phase transformations [131]; liquid-phase
sintering [132]; mass transport phenomena [133]; hydrodynamics [134]; and electromigration [135].
Recently, many problems in solid mechanics deal with the use of PF for describing fracture phenomena
and to capture complex crack patterns [136-140]. Based on the present literature review, the following
can be summarized.

e  PFisan extremely powerful mathematical modeling scheme for accurately describing physical
movements of phase boundaries.

¢  PFwas mainly employed for solving solidification dynamics, material phase changes/separations,
growing phases driven by chemo-kinetics and transport phenomena, nucleation and coalescence
processes between particles in micro-to-mesostructures.

¢ PF has been successfully employed in fracture mechanics to capture the cracking response of
brittle/ductile materials without the need for employing Discrete Crack Approaches (DCAs)
and/or Smeared Crack Approaches (SCA).

Because of this, and as also supported by various state-of-the-art reports [55,56,141-144],
PF models can be employed for self-healing of brittle or plastic (ductile) materials in a fundamental
and consistent way. It will combine the impact of two main phase changes that occur simultaneously in
a self-healing mechanism, i.e., chemical reactions and fracture. Gradual changes from the fully-cracked
(failure) to the uncracked configuration can be driven through the so-called Phase-Field order
parameter (¢). It will provide a smooth transition of all relevant phenomena between the fully
cracked configuration and the intact material phases: this strength and crack recoveries actually
represent the self-healing process. The governing equations of the proposed unified model will be
derived in the framework of thermodynamics concepts, in terms of kinematics and balance equations,
dissipation inequality and constitutive laws. Particularly, the free energy will be considered as the
sum of the contributions due to elasticity, reaction PF and fracture PE. The free energy of the system
is described in a unified form over the entire phase transition region. In this regard, the advantage
of the PF method over other competitive numerical methods is its enormous capability of capturing
movements of interfaces, without the need for introducing any additional ad hoc technique, criteria
and/or remeshing strategies, and also without any explicit tracking of the actual interface positions of
these coupled processes. The governing equations of PF models for chemical /moisture reactions and
fracture processes, associated with self-healing, as well as the coupling among them, can be formulated
in a unified PF framework. The next sections report a review on the available formulations for a unified
and coupled set of PF approaches for modeling reactions and fracture of self-healing mechanisms
in concrete.

4. Main Equations of a Phase-Field Approach

The phase-field (PF) approach is a very powerful technique to simulate complex physical
phenomena in multi-field environments. The main attributions of this approach are simplicity and
generality. A popular PF application is a diffusion interface model that is frequently used to simulate
phase transformation problems in materials research [145-147]. The classical PF method is formulated
based on the theory of Ginzburg and Landau, elaborated in the 1950s [148]. Compared with the sharp
interface model, the PF diffusion interface model has the important advantage that no boundary
conditions are specified on the interface between the different domains (Figure 6). A diffusive order
parameter ¢ is a continuous function coordinate of time and space, which indicates each phase to
convert between 0~1 or —1~1 within a thin translation layer [54,144]. Moreover, ¢ is controlled by a
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set of coupled partial differential equations that can be discretized and solved numerically by evolving
the equations. Any phase transformation is driven by a reduction of the free energy of the system F,
which can be described by a set of conserved c¢; and non-conserved ¢; field variables. The domain of
the model is the entire phase transition system. The free energy of the system consists of the energy
contributions from the homogenous bulk phases Fy,j; and the diffuse interface region F;;;, according
to [146]

F(¢,¢) = Fputic + Font = /V [Froe(®,€) + fint (Y, V)] AV 1)

where fj,. defines the local free energy density (including chemical, interfacial and elastic strain free
energy density), while f;,; defines the diffusive interface energy density.
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Figure 6. Schematic representation of sharp interface model and phase-field model.

From the computational point of view, monolithic or staggered algorithms can be computed to
solve the problem unknowns, in which mechanical, chemical, interface, and phase-field variables
are computed simultaneously or sequentially, respectively. For more details the interested reader is
referred to the works in [136,149,150]. In those works, robust and efficient monolithic schemes were
employed for the numerical implementation.

4.1. Evolution Equation

The generalized PF method is represented by the Ginzburg-Landau or Onsager kinetic equation
combined with the well fitted Landau—- or Redlich-Kister-type free energy density functionals,
which are dependent on both conserved and non-conserved field variables [146]. The time-dependent
evolution of the conserved field variables (chemical concentration) is defined using a modified
Cahn-Hilliard equation [151], while the Allen—-Cahn equation describes the transformations with
non-conserved variables (e.g., crystal orientation, long-range order, crystal structure, and elastic
strain) [152].

The Cahn-Hilliard equation is

dci(r,t) oF
o Y Mcvéci(r,t)

where ¢; is the conserved concentration field variable, M, is the kinetic coefficient of diffusion
(associated mobility), t is the time and r is the spatial coordinate, V is a vector of partial derivative
operator, and ¢ denotes the variational derivation of the functional F.

@
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The Allen-Cahn equation is

a(pi(r, t) _ OF
ot ogi(r,t)
where ¢;(r,t) are the i different structure field variables with i =1, 2 ..., n, while Ly is the kinetic

structure operators (order parameter mobility). Depending on the problem, L, has different
expressions [124,153,154].

®)

4.2. Local Free Energy Function

The local free energy function is a key component in the PF model [155]. This function describes
the free energy density of each bulk phase, whose coefficients are obtained from thermodynamic
data [153]. The expression of the local free energy depends on the problem of interest. For example,
a double-well form is often used for solidification [147,156]. When dealing with an electromigration
problem, a double-obstacle potential is usually applied [55,157]. A crystalline energy function is used
to describe an overlapped dislocation of an elastically anisotropic crystal [158-160]. When the problem
is temperature-controlled, as in the melting and solidification processes of crystals, the local free energy
function contains a temperature field [161,162]. In such cases, the phase-field is needed to be coupled
with a temperature field [161-165]. Furthermore, a Landau-type polynomial potential can be applied
for the treatment of a solid-state phase transformation [166-171]. Table 1 summarizes examples of the
universal expressions, the graphs of the local free energies and existing phase-field applications.

Table 1. Expressions, graphs, and applications of the local free energy.

Double-well
f9) = A (=3 +1¢*) 50 € (-1,1)

where A is the height of the potential energy between the two states at the minimum free energy.

solidification [54,55,147,154,156,172-180]

coarsening and grain growth [127,128,181-183]

dislocation dynamics [184,185]

crack propagation [136-140] H

crystal growth under stress [186,187] H

biological application [188,189] B

phase transformations in thin films  [190] g e e e
electrochemical process [191-195] ¢

Double-obstacle

f(@) =) +I_11(9),

where, P(¢) = A(1— ¢?); | (~1,1( { (o)o Ig} z 1 . when the phase transition only occurs in the narrow
interface layer ¢ € (—1,1) instead of in regions outside the interfacial layer.
solidification [196,197] .
cell dynamical system [198,199]
stiffness maximization [170] =
electromigration [200,201] s
1 1 0. 0 0. 1 1
¢
Crystalline energy

f((P) = ASinz(n‘P);‘P € (=00, +0),
where A is the energy barrier between two neighboring minima. This function is formulated with an infinite
number of degenerated minima.

dislocation system [158,159,202,203]

spiral growth [160,204]
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Table 1. Cont.

Potential with temperature field
f,T) = g (1= %) = (Ti = Tw)¢,

where T; — Tj, is the difference between the current temperature and the melting temperature; a is a positive constant.

solidification [161-165]

Landau-polynomial
f(‘P) = fdis +Ap+ B(pz + C¢3 + D¢4 + E¢5 + F¢6,
where fgs is the free energy of the disordered phase; A ~ F are expansion coefficients related to temperature.

solidification [168,205-208]
solid-state phase transformations [166,167,209-211]
electrochemical process [169,212]

crystal growth under stress [170]

phase transformations in thin films ~ [171,213,214]

5. Phase-Field Modeling of Precipitation Reaction Mechanisms

Self-healing of concrete can be numerically treated as a precipitation process of solutes at the
solid-liquid crack interface [215,216], which is time-dependent and controlled by chemical reactions
and diffusion [36,217]. When the rate of the chemical reactions at the interface is sufficiently high
and there is no fluid flow, diffusion will be the only mechanism left for solute transport. The whole
process is then a diffusion-controlled precipitation one [216]. However, when the chemical kinetics is
slow enough, the precipitation process becomes chemically determined [218]. A review of existing
models for self-healing that are based on chemical reactions show that these models are employing
a reaction-diffusion process to describe the self-healing evolution [12,31-34]. These models focus on
two processes: (1) the diffusion mechanism where dissolved ions (e.g., calcium ions) are transferred
from the concrete interior toward the surface of the crack, and (2) the precipitation of mineral ions
reacting with, for example, carbon dioxide or carbonate ions to form calcium carbonate. They mostly
consider how the chemical environment affects the formation of self-healing products and how to
achieve agreement with experimental results [12,32-36,41,45,219].

However, these models have several limitations. First, they only simulate chemical reactions
in solution and do not explicitly account for the change of the initial solid phase boundary due to
the dissolution of soluble minerals at the fracture surface. Reaction diffusion models only include
precipitation reactions in solution and do not simulate the dissolution reactions of the solid phase
with a solution. Second, these models only uniformly simulate the healing process at the crack
and do not accurately simulate the change in micro-morphology of the crack. The change in crack
morphology is directly influenced by the concentration of aqueous substances and precipitations inside
the solution [111]. In return, the change in crack morphology does affects the local concentrations of
aqueous substances and precipitations in the solution. This interaction between the two factors is not
reflected by existing models.

A PF method can fill these gaps. Figure 7 shows schematically a potential application of a PF
model for an autogenous self-healing mechanism. The solid-liquid phase distribution is described
by an eigenfunction in the value range [0, 1]. The solid phase can be subdivided into an initial solid
phase (¢1) and a healing solid phase (¢7), while ¢3 represents the solution phase. The solid—solid (I5s)
and solid-liquid (Igy ) interfaces are simulated continuously. In addition to the solution (Dr), diffusion
constants are distinguished between the concrete (Dg1) and the healing region (Ds;) due to differences
in the meso- and microstructures. Neumann boundary conditions (Zero composition flux) were
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applied at the top, bottom, left and right (the light gray part) boundary for the solute concentration c;
and the order parameter ¢;. The Dirichlet boundary condition (c3 = 0.1 and ¢3 = 1) was applied at the
right boundary (the blue part). The initial conditions are set based on the initial concentration in each
phase. In this model, we chose to use the diffusion equation instead of Cahn-Hilliard equation because
there is no phase separation. The Allen-Cahn equation is applied for solving the order parameter ¢;.

This approach can accurately capture information about the alteration of the crack morphology
due to solidification by the hydration reactions or the accumulation of precipitates [65,68,69].

e % =0: =0
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Univdrated 1. Soluble substances In concrete:
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Figure 7. Schematic of the phase field model for the autogenous self-healing mechanism. I's and I',
are the solid and liquid boundaries with coordinates s and ry, respectively; n is the outward unit
normal vector.

With this, an overview of the PF approaches to the solute precipitation [180,220] and precipitation
in binary alloys [179,221,222] is provided that are instructive for simulating self-healing mechanisms
of concrete. The following models are presented in chronological order (Table 2).

Table 2. PF models for precipitation mechanisms.

Main Application PF Model Reference Feature
Discontinuity of the solute
Solute Xu-Meakin model [180,220,223-225] concentration gradient at the interface.
precipitation Single-phase free boundary problem with
Noorden-Eck model [179,221,222,226]  a dynamic conditions at the moving boundary.
Solid-state precipitation controlled
Wang-Chen model [178,227] by transformation-induced elastic strains.
Mgtal . Rubin-Khachaturyan model [168,228] 3D stochastic PF model.
precipitation

Kinetic data of existing databases
Chen-Ma model [177,229] CALPHAD applied into the PF model.

5.1. Solute Precipitation

Solute precipitation is the process at which a solute changes from a liquid phase to a solid phase
and precipitates outside its solution [230,231]. In fact, precipitates are mostly insoluble [232].

5.1.1. Xu-Meakin Model, 2008

Xu and Meakin [180,220] developed a PF model for studying the dynamics of liquid-solid
interfaces due to precipitation and/or dissolution of phases, based on the Karma—-Rappel model [154]
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for pure melt solidifications. Discontinuities in the solute concentration at the interface are explicitly
considered. An additional term has been added to the solute diffusion equation to describe the
discontinuity of the solute concentration gradient at the interface. In addition, a detailed asymptotic
analysis was used to establish a connection between the sharp interface and the PF model by correlating
the reaction rate parameter k with the microscopic PF parameters. This ensures that the PF model will
converge to the corresponding sharp-interface limit. A modified solute diffusion equation is built up
as follows,

dac ¢ o¢p /ot o¢p

= =DVic+A;=L +A DVZp— -1, 4
o = DVietAig + 2 Vel Vo @)
where the second additional term of the equation is corresponding to the discontinuity the solute
concentration gradient at the interface. While the third additional term represents the net source or
sink of the solute coming from the discontinuity in the solute concentration across the interface; D is

the diffusion coefficient; A; and A, are two constants, which can be determined by the sharp-interface

boundary conditions.

5.1.2. Noorden-Eck Model, 2011

Van Noorden and Eck [179] proposed a PF model for a precipitation and/or dissolution process.
The model describes a single-phase free boundary problem with dynamic conditions at the moving
boundary. The concentration on the precipitate side of the interface is specified, and the velocity
normal to the interface is nonlinear dependent to the concentration on the other side of the interface.
The evolution equation of ¢ and c is described according to

% _Lap L) Lpe ) [0+ ) ®
dc K (¢)
5 =DV Vc+(p—c)k(¢)v¢ , ©)

where p(¢) is a double-well potential; f(c) is a rate function; k(¢) is an interpolation function; «, , D,
and p are physical parameters; and € is the thickness of an interfacial layer.

Redeker and Rohde [221,222] extended the Noorden-Eck model by incorporating curvature
effects between two fluid phases to simulate precipitation in a porous medium. The model contains
two immiscible fluids and one solid phase. Dissolved ions in one of the fluids can precipitate at the
pore boundaries. Bringedal et al. [226] considered not only the diffusion of ions in the fluid phase,
but also the effect of fluid flow on precipitation.

5.2. Metal Precipitation

Unlike solute precipitation, metal precipitation occurs in a supersaturated solid solution.
Metals and metal oxides exist in the form of crystals. A crystal is a structure in which its atoms
or molecules are arranged in an orderly fashion according to certain rules. A crystal is pure when
all the components are just a single substance or a compound. If there is another substance involved
that occupies the original atomic location and does not destroy the original structure, then this is a
solid solution [233]. The original component is equivalent to a solvent and the foreign component is
equivalent to a solute. As with a solution, when the solute in a solid solution is supersaturated in the
solvent, it can no longer remain stable in the crystal structure and eventually precipitates [234].

The precipitate particles are generally metallic compounds, but may also be formed by aggregation
of solute atoms in supersaturated solid solutions in a number of small solute-rich regions [235].
The precipitated particles act as barriers to dislocation movement, allowing significant increase in
strength and hardness of most structural alloys of aluminum, magnesium, nickel, and titanium, as well
as some steels and stainless steels [236]. The precipitation mechanisms of different binary and ternary
alloys have been intensively studied by using PF models [182,237,238].
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5.2.1. Wang—Chen Model, 1993

In the earlier study by Wang et al. [178], a PF model based on a microscopic kinetic model and
elastic strain theory was developed to study the morphological evolution of the solid-state precipitation,
controlled by transformation-induced elastic strain. The free energy of an inhomogeneous solid
solution is given by the following equation,

F(c) = % ;W(r —1)e(r)e(r) + kBTZr: [c(r)Inc(r) + (1 —c(r)) In(1 — c(r))] )

where ¢(r,t) is the non-equilibrium single crystal sites of solute atoms, r is the crystal lattice site,
W(r — ') is the pairwise interaction energy of two atoms at the lattice site r and 7/, and kg is the
Boltzmann'’s constant. The drawback of this model is that the matrix phase and the precipitates
are iso-structurally treated. However, this assumption does not apply to the simulation of Al-Li
alloy precipitation.

5.2.2. Rubin-Khachaturyan Model, 1999

Rubin and Khachaturyan [168] developed a 3D stochastic PF model for simulating the
microstructural evolution of Ni-Al superalloys. This model considers the coherency strain in an
elastic anisotropic system. The coarse grained stress-free free energy was expressed as

1 3
F :/V [2 (lxl’jvicvj‘c + Z ﬁi]'(}?)vi%v]‘%) + fc, 4)1,472,¢3)‘| a3r (8)
p=1

where «;; and ,Bl-]-( p) are the gradient coefficients, V;. and Vjc denote the gradient terms of
multi-composition profile c(r, t), Vi, and V, are the gradient terms of multi-component long-range
order parameter ¢(r,t), the specific free energy f(c, 1,2, ¢3) is approximated by a polynomial,
and the second integral term is the total strain energy functional based on the Fourier transform
microelasticity method.

5.2.3. Chen—Ma Model, 2004

Chen et al. [177] designed a quantitative PF modeling scheme for multicomponent
diffusion-controlled precipitate growth and dissolution in Ti-Al-V system in which the thermodynamic
and kinetic data of existing databases CALPHAD was directly inserted into the PF model. The total
Gibbs free energy is described as follows,

n

—1 k. k
Gu(T,ci,p) + Y §|vCi|2 + 7"’|Vqr>|2 dv. ©)
i=1

1
C(Tep) =3 |,

where Gy, is the local molar Gibbs free energy; k; and k; are the gradient-energy coefficients for
concentration and order parameter inhomogeneities, respectively; Vj, is molar volume.

The temporal evolution of the composition is governed by Cahn-Hilliard diffusion equation on
the basis of the phenomenological Fick-Onsager equations

1 aCk

n—1 5G
V- v ]; My (T, ci, ) VE (10)

where Mj; are chemical mobilities related to atomic mobilities.
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6. Phase-Field Modeling for Fracture Mechanisms

Fracture mechanics of concrete is a topic of intensive research during the last years. Simulation
technology for analyzing crack initiation and propagation in concrete are numerous [58,239-255].
Besides boundary and finite element methods for linear elastic fracture analysis, different versions of
the so called eXtended Finite Element Method (XFEM) are frequently applied [256,257].

Starting with the works of Bourdin et al. [258] and Miehe et al. [141], fracture processes were
modeled explicitly by a PF approach. Due to its simplicity this methodology gained a wide interest
and started to be used in the engineering community since 2010. From there on many scientist have
worked in this field and developed PF approaches for finite elements methods (FEM), isogeometirc
analysis (IGA), and recently also for the virtual element methods (VEM). The main driving force
for these developments is the possibility to handle complex fracture phenomena within numerical
methods in various dimensions. Thus, research on PF approaches is still actual and points in many
different directions.

In this review article, the simulation of fracture processes in concrete is achieved by utilizing the
continuum PF method, which is based on the regularization of sharp crack discontinuities. This avoids
the use of complex discretization methods for crack discontinuities and can account for multi-branched
cracks within a solid skeleton (e.g., hydrated cement paste, unhydrated clinker particles, and stones).
In particular due to the over-complicated geometry and content of concrete at multi-scales, in Figure 8
an example for PF modeling of water-induced failure mechanics in concrete microstructure is presented.
In recent years, several brittle [259-296] and ductile [149,297-324] PF fracture formulations have
been proposed in literature. These studies range from modeling 2D/3D small and large strain
deformations, variational formulations, multi-scale/physics problems, mathematical analysis, different
decompositions and discretization techniques with many applications in science and engineering.
All these examples demonstrate the potential of PF method for crack propagation.

The aforementioned PF approaches consider the fracture behavior of concrete, i.e., as a crack
initiation and propagation. However, an important aspect in concrete is the treatment of the
crack-closure effects. This response was firstly investigated in the works [325,326] for fatigue
crack closure under cyclic tension. Thereby, the results indicate a fatigue crack, propagating under
zero-to-tension loading may be partially or completely closed at zero load. A review of this physical
phenomena can be seen in [327-329]. To the author’s best knowledge, a PF approach for modeling
crack closure is still an open issue. To this end, cohesive elements along the crack path will be coupled
with the PF formulations to prevent overlapping of the crack faces. Another future direction is to use a
contact scheme at the crack faces similar to the work developed by [330]. A further important aspect is
the PF modeling of crack-closure induced by a self-healing mechanism (introduced in Section 3) in
cementitious systems. These topics await investigation.

6.1. Fundamental Variational Formulations

In Griffith-type fracture formulations, the mechanical deformation denoted generally by “state”
and the sharp crack surface I in a brittle elastic solid (e.g., cement paste) are determined by the
incremental minimization problem developed by Francfort and Marigo [331] as

E(state,T) = /V\r F(state) dV + G H(T) — Min! (11)

where G, is the Griffith critical surface energy release and #(I') is the Hausdorff surface measure of the
crack set I'. In Equation (11), the functional E has a structure identical to that for image segmentation
developed by Mumford and Shah [332]. It consists of the strain energy stored in the solid as well as
the energy release due to fracture.



Materials 2020, 13, 5265 15 of 31

6.2. Regularized Variational Theory

The numerical evaluation of the sharp crack interface in the functional E (Equation (11)) is not
suitable within a standard finite element framework, as outlined in the work of Bourdin et al. [258].
Therefore, a regularized crack interface using a specific regularization profile v is introduced in the
studies of Miehe et al. [141,297]. It is based on a geometric regularization of sharp crack discontinuities
that is governed by a crack PF

¢ €[0,1] with ¢>0 (12)

It characterizes locally for the initial condition ¢ = 0 the unbroken and for ¢ = 1 the fully broken
state of the material. Thus, the critical fracture energy is approximated by

GeH(D) ~ [ Ger(@,Vg)av with (g, V¢) = g (VP (13)
‘ v 21 2

in terms of the crack surface density function per unit volume of the solid. The regularization is
governed by a fracture length scale /1. Note that the limit for vanishing the fracture length scale [y — 0
gives the sharp crack surface I'.

Therefore, the minimization problem represented by Equation (11) can be expressed in the
following form,

E(state,T) = /V W (state, ¢, V) dV — Min! (14)

defined in terms of the total work density function W as

W (state, ¢, V) = g(¢) f(state) + G.y(p, V) , (15)

contains a degraded elastic work density and the crack energy release per unit volume. g(¢) is a
degradation function defined as g(¢) = (1 — ¢)?. It describes the degradation of the solid with the
evolving crack phase-field ¢, as depicted in Figure 8b—d.

| 0.0
45

d

Figure 8. Concrete failure in poro-elasto-plastic media. (a) Schematic of the concrete idealized
microstructure: Light gray color refers to the hydrated cement paste, dark gray color stands for
the unhydrated clinker particles, and blue color depicts the water content. (b—d) Evolution of crack
phase-field ¢ for different deformation states up to final failure, as outlined in [150].

7. Discussion and Conclusions

Based on the above literature review, it can be observed that PF methods have a great potential
for simulating self-healing mechanisms in concrete. Therefore, it can be applied to solve problems
that cannot be addressed by commonly applied models. It has the potential of an unprecedented
breakthrough. As self-healing of concrete is a rather complex process, it is an interaction between
physical, chemical and mechanical mechanisms. Obtaining a novel, versatile model for self-healing
concrete is a multidisciplinary study involving civil engineering, materials science, and chemistry.
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Many studies have been conducted in these fields using the PF approach, while it will be a great
reference for the development of a self-healing PF model.

In future research, it would be recommended to include in the polynomial system of the PF
approach the pore structure, concrete matrix, water dissolution, and hydration product phases at the
crack front. In this way, the free-energy equations will combine hydration kinetics, crystallization
kinetics, polymerization reaction kinetics, mass transport and chemical energies to provide a detailed
description of the phase nucleation and growth mechanisms at the crack front. Coupling a reactive
PF model with a fracture PF model allows to simulate the crack development and its mechanical
self-healing recovery effects at different stages and under different environmental conditions. In order
to achieve this goal, there are several self-healing mechanisms that need to be studied in great detail.
Validating these models should be continuously done by comparing them with experimental results.
The following potential future steps are identified:

1. Evolution of the pore structure at the crack surface:

During the process of autonomous self-healing, soluble substances at the crack surface enter
the solution and undergo various dissolution reactions, followed by hydration and carbonation
crystallization reactions. Part of the solution will diffuse into the capillary pores of the concrete
matrix, where crystallization and precipitation also occur. The growth of the cracked surface also
forms a new pore structure, which further affects the diffusion and chemical reaction processes.
Thus, the pore structure of the crack boundary is constantly changing with ongoing reaction.
Its interaction with the crack morphology, reactant concentration, and mass transport needs to be
investigated in the future.

2. Influencing factors and simulations for mechanical repair of cracks:

The fracture PF part is a combination of elastic and fracture energies. Elastic free energy will follow
the classical assumptions while the fracture part will account for the fracture toughness, order
formulation, evolution equations, and healing regain laws. Moreover, both are closely related to
the packing density field. This is because the mechanical properties at fracture mainly depend
on the solid-phase continuity. The mechanical properties are enhanced in a homogeneously
dense position of the filler and, conversely, worse in the disconnected parts of the solid phase.
The packing density field, in turn, is related to the mass transport. Therefore, a numerical
transport-mechanical coupling strategy shall be developed to simulate the overall performance
of the self-healing mechanism.

3. Evolution of crack healing morphology:

The morphology of the crack greatly influences its local healing effect. At the crack tip, healing
products are produced faster and more frequently because of the higher concentration of reactants.
The movement of the crack tip is faster than at other locations. Thus the crack morphology
changes continuously with the healing process. As the PF model avoids tracking the boundary
conditions at the interface and instead simulates the evolution of the auxiliary field. Therefore,
the evolution of the interfacial morphology is easier to simulate. In addition, the simulation of
interfacial morphology will take into account the distribution of bacteria, adhesive agents and
mineral admixtures. Therefore, the macroscopic representation of a crack healing morphology
shall be simulated from a micro-level point of view.

4.  Free energy to distinguish between various product phases:

Self-healing products contain multiple substances (CSH, CH, or additional byproducts) that,
although they have the same healing mechanism (aggregation, crystallization and precipitation),
their chemical reaction kinetics are different. This affects the rate of healing of the cracks as a whole.
Therefore, the free energies of the various product phases and the corresponding thermodynamic
parameters will be distinguished in the future and reflected in specific simulations.
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5. Determination of PF parameters:

A formulation for the determination of the PF parameters needs to be provided. Information
on the PF parameters and their interrelationships will be obtained from thermodynamic and
diffusion databases in combination with experimental data. Combined with the second law of
thermodynamics and non-equilibrium thermodynamics, the self-diffusion, mutual diffusion,
and chemical diffusion coefficients will be related to the diffusion mobility (M). The order
parameter mobility (L) will be derived and their relationship to other phase-field parameters will
be investigated.

6. Development of a three-dimensional model:

As a self-healing process includes complex physical-chemical-mechanical processes, these
mechanisms can only be accurately simulated in a fully three-dimensional system. Therefore,
a three-dimensional simulation of the self-healing process need to be performed with realistic
boundary conditions. The simulation results need to be verified and compared with 3D computed
tomography scan (CT scan) results of concrete specimens.

In conclusion, the use of a PF method is feasible and has a significant application advantages in
the field of self-healing concrete applications. Although this method still has a long way to go before it
becomes a fully fledged simulation tool, these early studies are considered to be an important step
towards reaching this goal.
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