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Increased trunk fat is associated with altered gene expression
in breast tissue of normal weight women
Byuri Angela Cho 1, Neil M. Iyengar 1,2✉, Xi Kathy Zhou 3, Hillary Mendieta2, Lisle Winston1, Domenick J. Falcone4,
Jonathan Landa5, Monica Morrow6 and Andrew J. Dannenberg1

Increased trunk fat is associated with an elevated risk of breast cancer in normal-weight postmenopausal women. The main
objective of this study was to determine whether levels of trunk fat are associated with changes in breast gene expression in
normal-weight women. Non-tumorous breast tissue was collected from 32 normal BMI women who underwent mastectomy for
breast cancer risk reduction or treatment. Body composition was measured by dual-energy x-ray absorptiometry. High levels of
trunk fat were associated with a large number of differentially expressed genes and changes in multiple pathways and processes
potentially linked to breast cancer pathogenesis. High levels of trunk fat were also associated with an elevated immune score and
increased levels of leptin, CCL2, VEGF-C, IL6, and aromatase. Collectively, these results help to explain why high levels of trunk fat are
associated with an increased risk of breast cancer in normal BMI women.
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INTRODUCTION
Obesity is a risk factor for numerous cancers, including postmeno-
pausal hormone receptor-positive breast cancer1–3. The link
between excess body fat and malignancy has largely been
established using anthropometric measurements such as body
mass index (BMI), which takes into account weight and height but
does not discriminate between muscle, bone, and fat. Some women
deemed to be healthy because of a normal BMI have underlying
cardiometabolic abnormalities and are commonly referred to as
metabolically obese normal weight (MONW)4. Dual-energy x-ray
absorptiometry (DXA) is used to obtain direct measures of body fat
including trunk fat. In normal BMI women, high levels of body fat
including trunk fat have been associated with enlarged breast
adipocytes and breast white adipose tissue inflammation (B-WATi)5,
as defined by the presence of crown-like structures (CLSs). B-WATi,
in turn, has been associated with an elevated risk of breast cancer in
women who have benign breast disease6. Given this background,
we previously posited that normal BMI women with high levels of
body fat would be at increased risk for postmenopausal breast
cancer7. In a study of more than 3000 normal BMI women who had
enrolled in the Women Health Initiative, we relied on DXA-derived
measures of body fat and found that women in the top two
quartiles of trunk fat had about a doubling in the risk of estrogen-
dependent breast cancer compared to women in the lowest quartile
of trunk fat8. The sample size was too small to determine whether
the amount of trunk fat was also associated with altered risk of
either HER-2/neu-overexpressing or triple-negative breast cancer.
Circulating levels of C-reactive protein, insulin, leptin, and triglycer-
ides were higher, whereas levels of sex hormone-binding globulin
and high-density lipoprotein cholesterol were lower in those in the
highest vs. lowest quartiles of trunk fat mass8. More recently, we
found that high levels of blood C-reactive protein and testosterone
or low blood levels of sex hormone-binding globulin were

associated with an elevated risk of postmenopausal breast cancer
among normal BMI women9.
It has become increasingly clear that normal BMI as a category

includes women with relatively high levels of body fat who are at
increased risk for postmenopausal breast cancer and that
abnormal levels of systemic factors may be contributory4,10.
Increased levels of aromatase, the rate-limiting enzyme for
estrogen biosynthesis, have been reported in the breast tissue
of normal BMI women with B-WATi and higher levels of trunk
fat5,7. Despite these recent advances, very little is known about the
molecular changes that occur in the breast itself in normal BMI
women with high vs. low levels of trunk fat. Accordingly, the main
objective of the current study was to use RNA-sequencing (RNA-
seq) to define the changes in the breast transcriptome that occur
in normal-weight women who have high vs. low levels of trunk fat.

RESULTS
Study population
Subjects were recruited from April 2016 through August 2018 and
underwent DXA scans prior to mastectomy5. RNA-seq data were
obtained from non-tumorous breast tissue of 32 normal-weight
women, which defined the study cohort. To determine the
potential association between levels of trunk fat and breast gene
expression, the 32 women were divided into two groups based on
percent trunk fat and are referred to as high and low groups,
respectively. A comparison was done of 16 normal-weight women
with high levels of trunk fat (equal to or higher than the median of
29.45%) vs. 16 normal-weight women with low levels of trunk fat
(less than the median of 29.45%). Women with high levels of trunk
fat were older (P= 0.01), had a higher BMI (P= 0.003), were more
likely to have B-WATi (P < 0.001) and had larger breast adipocytes
(P < 0.001) (Table 1).
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Excess body fat is associated with changes in the
transcriptome in the breast
Breast tissue was obtained from women who either did or did
not have tumors. If a tumor was present, to minimize the
possibility that the tumor would influence the transcriptome of
non-tumorous tissue, we evaluated tissue from an uninvolved
quadrant of the breast. Principal component analysis of
tissue from women with or without tumors suggested a
homogeneous distribution of cases (Supplementary Fig. 1);
hence, the presence of a tumor did not have a significant effect
on the transcriptome of tissue from an uninvolved quadrant of
the breast. Next, we investigated the effects of high vs. low
trunk fat on the transcriptome in the non-tumorous breast.
A total of 226 upregulated and 137 downregulated differen-
tially expressed genes (DEGs) (P.adj <0.05, |Log2FoldChange| >
0.6) were found in high compared to low trunk fat women
using DESeq2 (Fig. 1a and Supplementary Table 1). These
effects are clearly seen in the heatmap and volcano plot shown
in Fig. 1a and Fig. 1b (top panel), respectively. A similar analysis
was carried out based on BMI. In this instance, high BMI was
defined as equal to or higher than the median of 21.8 kg/m2,
whereas low BMI was defined as <21.8 kg/m2. Interestingly,

when comparing high vs. low BMI, there were no DEGs (Fig. 1b,
bottom panel).
Increased trunk fat is associated with older age, larger breast

adipocytes, and B-WATi. Hence, we posited that there would be an
overlap between the DEGs associated with excess trunk fat and
these other parameters. First, we divided the patients into two age
groups using the age of 45 years, the median age of the cohort. In
an analysis of those 45 years of age and above vs. less than 45
years of age, there were only one upregulated and three
downregulated DEGs (Supplementary Table 2). In a comparison
of postmenopausal vs. premenopausal women, three upregulated
DEGs and nine downregulated DEGs were found (Supplementary
Table 3). In contrast to age and menopause status, a comparison
of nontumorous breast tissue from CLS(+) vs. CLS(−) cases and for
large vs. small breast adipocytes led to the identification of
numerous DEGs. In the case of CLS(+) vs. CLS(−) cases, there were
45 upregulated and 29 downregulated DEGs (Supplementary
Table 4). Using the median value of adipocyte diameter (89.32 µ),
the samples were divided into two groups: small adipocytes
(<89.32 µ) and large adipocytes (> or =89.32 µ). 116 upregulated
and 176 downregulated DEG were found (Supplementary Table 5).
Next, we investigated whether there was an overlap between the

Table 1. Clinical features of normal weight women with high vs. low trunk fat.

Variables All (n= 32) Trunk fat low (n= 16) Trunk fat high (n= 16) P value

Age

Median (IQR) 44.5 (39.5, 49.25) 40.5 (32, 47.25) 47 (44, 51.5) 0.011

Race, n (%)

White 21 (67.74%) 12 (75%) 9 (60%) 0.12

Asian 6 (19.35%) 1 (6.25%) 5 (33.33%)

Black or African American 2 (6.45%) 1 (6.25%) 1 (6.67%)

Other 2 (6.45%) 2 (12.5%) 0 (0%)

Unknown 1 (3.12%) 0 (0%) 1 (6.25%) 1

BMI

Median (IQR) 21.8 (20.1, 22.63) 20.5 (19.67, 21.93) 22.4 (21.75, 23.42) 0.003

Menopausal, n (%)

Post 6 (20%) 1 (6.67%) 5 (33.33%)

Pre 24 (80%) 14 (93.33%) 10 (66.67%) 0.169

Unknown 2 (6.25%) 1 (6.25%) 1 (6.25%) 1

CLS, n (%)

No 22 (68.75%) 16 (100%) 6 (37.5%)

Yes 10 (31.25%) 0 (0%) 10 (62.5%) <0.001

Adipocyte diameter (µ)

Median (IQR) 89.32 (79.48, 100.16) 79.1 (72.78, 87.24) 97.14 (89.86, 106.15) <0.001

Invasive, n (%)

No 8 (25%) 5 (31.25%) 3 (18.75%)

Yes 24 (75%) 11 (68.75%) 13 (81.25%) 0.685

HTN, n (%)

No 30 (93.75%) 16 (100%) 14 (87.5%)

Yes 2 (6.25%) 0 (0%) 2 (12.5%) 0.484

DM, n (%)

No 32 (100%) 16 (100%) 16 (100%)

Yes 0 (0%) 0 (0%) 0 (0%) 1

Dyslipidemia, n (%)

No 30 (93.75%) 16 (100%) 14 (87.5%)

Yes 2 (6.25%) 0 (0%) 2 (12.5%) 0.484

BMI body mass index, CLS crown-like structure, HTN hypertension, DM diabetes mellitus.
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DEGs for high vs. low trunk fat and the DEGs for BMI, menopause,
CLS status, and adipocyte size. There was no overlap in
upregulated or downregulated genes for trunk fat (%) vs. BMI or
trunk fat (%) vs. menopausal status. By contrast, we did identify
significant overlap between trunk fat (%) and upregulated
(Supplementary Fig. 2a and Supplementary Tables 4 and 5) and
downregulated genes (Supplementary Fig. 2b and Supplementary
Tables 4 and 5) for CLS status and adipocyte size.

Interpreting the global transcriptome changes in terms of
biological pathways
Both BioCarta and KEGG databases were used to classify the DEGs
into relevant biological pathways. Numerous pathways were
enriched with upregulated DEGs but not downregulated DEGs
(Fig. 1c). Among the pathways in the non-tumorous breast that
were enriched in association with increased trunk fat were the
complement pathway, inflammation pathway, cytokine-cytokine
receptor interaction, NOD-like receptor signaling pathway and
graft-vs.-host disease. Collectively, these findings suggested that
there were significant immunological alterations associated with
high vs. low levels of trunk fat. Based on the above findings, we
next used Estimate R package11, a computational approach, to
determine an immune score. A significant increase in the immune
score was found in association with high levels of trunk fat (Trunk

fat Low vs. Trunk fat High) (P= 0.002) but not high BMI (BMI Low
vs. BMI High; P= 0.18) (Fig. 2a). In fact, percent trunk fat positively
correlated with the immune score (rho= 0.53, P= 0.002; Fig. 2b,
left hand panel). The same was not true for BMI (rho= 0.28, P=
0.12; Fig. 2b, right hand panel). Additional studies were carried out
to examine the relationship between percent trunk fat and
immune cell populations. xCell was used to estimate immune cell
populations and suggested increased macrophages (M1 and M2),
dendritic cells, and natural killer T cells in association with high
compared with low trunk fat (Fig. 2c). The increase in dendritic
cells and macrophages associated with high vs. low trunk fat was
confirmed using immune cell markers defined by Danaher et al.12

(Supplementary Fig. 3). To validate the increase in macrophages,
CD68 immunohistochemistry was carried out and revealed a
positive correlation between percent trunk fat and density of CLS
(rho= 0.67, P= 2.8e−05) (Fig. 2d, left-hand panel). The same was
not true for BMI (rho= 0.13, P= 0.48) (Fig. 2d, right hand panel).
Levels of CD68, a macrophage marker, also showed a strong
positive correlation with the estimated population of macro-
phages (rho= 0.93, P= 2.9e−14) (Supplementary Fig. 4).
Previously, the chemokine CCL2 has been implicated in the

recruitment of blood monocytes into fat where the cells
differentiate into macrophages contributing to the formation of
CLS13,14. Given the observed increase in macrophages in the
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breast tissue of normal-weight women with high vs. low trunk fat,
we evaluated the relationship between levels of trunk fat (trunk fat
percent) and CCL2 expression. As shown in Fig. 3a, the percentage
of trunk fat positively correlated with CCL2 expression (rho= 0.64,
P= 9.4e−05). Notably, the level of CCL2 expression also positively
correlated with CD68 expression (rho= 0.47, P= 0.007) and the
density of CLS (rho= 0.37, P= 0.04) (Fig. 3b, c). In addition to
CCL2, complement is believed to be important for leukocyte
recruitment into adipose tissue. Activation of the C3A receptor
(C3AR), a component of the complement pathway, attracts
inflammatory cells including monocytes into adipose tissue
contributing to CLS formation15. Consistent with the increased
macrophage population found in the breast tissue of normal BMI
women with high vs. low levels of trunk fat, levels of C3AR1
positively correlated with trunk fat percentage (rho= 0.56,
P= 0.001; Fig. 3d). Levels of C3AR1 expression also positively
correlated with CD68 expression (rho= 0.79, P= 9.3e−07) and
density of CLS (rho= 0.44, P= 0.01; Fig. 3e, f).

Additional molecular changes correlate with the amount of
trunk fat
Obesity has been associated with changes in gene expression in
normal breast tissue that are believed to contribute to the
pathogenesis of breast cancer16. In contrast, little is known about
the expression of select genes linked to carcinogenesis in the breast

tissue of normal-weight women with high vs. low trunk fat. Hence,
we evaluated the relationship between trunk fat percentage and the
expression of several genes that potentially play a role in the
pathogenesis of breast cancer. Some studies have suggested that
leptin contributes to the pathogenesis of breast cancer17. Moreover,
blood levels of leptin are elevated in normal-weight women with
high levels of trunk fat and B-WATi7,8. Here we observed a strong
correlation between trunk fat percentage and leptin expression
(rho= 0.67, P= 2.5e−05; Fig. 4a). Excess body fat has been
suggested to be associated with reduced oxygen levels in adipose
tissue18. Tissue hypoxia is believed to stimulate the synthesis of
reactive oxygen species which can, in turn, damage DNA potentially
contributing to mutagenesis. Both NQO1 and HMOX1 are known to
be induced by reactive oxygen species19. Interestingly, we observed
a positive correlation between trunk fat percentage and the
expression of both NQO1 (rho= 0.68, P= 2.2e−05) and HMOX1
(rho= 0.43, P= 0.01), which may reflect an increase in reactive
oxygen species (Fig. 4b, c). In support of this potential mechanism,
the reactive oxygen species pathway gene set from the Hallmark
database and cellular response to reactive oxygen species from the
Gene Ontology database were both elevated in association with
high trunk fat (Fig. 4d). Obesity has also been reported to cause
lymphatic dysfunction which could, in turn, impact the development
and progression of breast cancer20. With this in mind, it is of
considerable interest that levels of VEGF-C, which can promote the
growth of lymphatic vessels, positively correlated with trunk fat
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percentage (rho= 0.54, P= 0.002; Fig. 4e). Interleukin (IL)-6, a pro-
inflammatory cytokine, may also play a role in tumorigenesis.
Systemic levels of IL-6 are elevated in association with obesity and
B-WATi21. Here we demonstrate a positive correlation between trunk
fat percentage and the expression of IL6 (rho= 0.51, P= 0.003;
Fig. 4f). We also found evidence suggesting that levels of CYP19A1
which encodes aromatase, the rate-limiting enzyme for estrogen
biosynthesis, were increased in association with high vs. low levels
of trunk fat (log2FoldChange= 0.95; P= 0.01). A nearly significant
positive correlation was found between trunk fat percentage and
the expression of CYP19A1 (rho= 0.33, P= 0.07; Fig. 4g).

DISCUSSION
Obesity is widely recognized to be a risk factor for numerous
diseases, including solid and liquid tumors2. The fact that MONW
was recently found to be associated with an increased risk of
cancer suggests that the oncological consequences of excess
body fat are greater than previously estimated in studies limited
to the effects of obesity4,8. Although the association between high
levels of trunk fat and elevated risk of postmenopausal breast
cancer in MONW is now established8, there is a limited
understanding of the underlying mechanisms.
In the current study, we have provided new insights into the

molecular changes that occur in the breast tissue of normal BMI
women with high vs. low levels of trunk fat. The fact that there

were numerous DEGs is consistent with prior evidence that
obesity is associated with significant changes in gene expression
in the normal breast16. In contrast to the findings for high vs. low
levels of trunk fat, we did not see a large difference in gene
expression when relying on measurements of BMI. This finding
underscores both the known limitations of BMI as a measurement
of adiposity and the value of carrying out objective measures of
body fat. Consistent with the previously established link between
excess trunk fat in normal BMI women and B-WATi5, the immune
score was elevated in the breast tissue of women with high
compared with low trunk fat. The fact that both macrophages and
dendritic cells were suggested to be increased in association with
elevated trunk fat is consistent with the increased immune score.
Future studies are warranted to determine whether the function
of these immune cells is altered in association with excess trunk
fat. It is possible, for example, that changes in both the number
and function of these immune cells could contribute to the
pathogenesis of breast cancer in MONW. Our results also provide
insights into the mechanisms underlying the observed increase in
macrophages in association with high trunk fat. The fact that we
found elevated levels of both CCL2 and C3AR1 in association with
high levels of trunk fat is likely to be important for explaining the
link between MONW and B-WATi. In preclinical studies, both CCL2
and activation of the complement pathway have been shown to
impact WATi. CCL2 is a chemokine produced by adipocytes that is
important for the recruitment of monocytes from blood into fat
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leading to the formation of CLS13,14. Levels of C3 complement are
elevated in association with MONW22. C3 is upstream of the
anaphylatoxin C3a, which binds to the C3a receptor, and thereby
attracts inflammatory cells including monocytes into adipose
tissue contributing to CLS formation15.
Several other findings are worth commenting on because of

their potential link to breast carcinogenesis. Some studies have
suggested a role for leptin in explaining the link between obesity
and increased risk of breast cancer17. Leptin is produced by
adipocytes and is known to be elevated in the blood of normal BMI
postmenopausal women with increased trunk fat8. The fact that we
found leptin levels to be increased in the breast tissue of normal
BMI women with high vs. low trunk fat is consistent with the
increase in breast adipocyte size that was observed. Whether this
local increase in leptin contributes to the elevated risk of breast

cancer is uncertain but warrants further consideration. Excess body
fat is associated with hypoxia in adipose tissue which can cause an
increase in reactive oxygen species18. NQO1 and HMOX1 are Nrf-2-
dependent genes that are induced by reactive oxygen species19, a
cause of oxidative DNA damage. Here we demonstrated that
levels of both NQO1 and HMOX1 were elevated in association in
high vs. low trunk fat. Moreover, pathway analysis suggested an
increase in reactive oxygen species in association with high trunk
fat. Taken together, it is possible that excess trunk fat is associated
with an increased risk of breast cancer because the chronic
elevation of reactive oxygen species may increase the likelihood of
mutagenesis. The observed elevation of IL6 in association with
high vs. low trunk fat is consistent with a pro-inflammatory state
and prior evidence from reduction mammoplasty specimens
that obesity led to enrichment for a pathway involving IL616.
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Fig. 4 Levels of trunk fat correlate with the expression of genes implicated in the pathogenesis of breast cancer. a Correlation between
trunk fat percent vs. LEP expression level. b Correlation between trunk fat percent vs. NQO1 expression level. c Correlation between trunk fat
percent vs. HMOX1 expression level. d Pathway enrichment scores of reactive oxygen species pathway from Hallmark and cellular response to
reactive oxygen species pathway from Gene Ontology. **P < 0.01. e Correlation between trunk fat percent and VEGF-C expression level.
f Correlation between trunk fat percent and IL6 expression level. g Correlation between trunk fat percent and CYP19A1 expression level.
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Local increases in IL6 could impact the self-renewal of cancer stem
cells or potentially the growth of breast cancer cells23. Elevated
levels of CYP19A1 which encodes aromatase have previously been
reported in association with excess body fat including in normal
BMI women5,7. This increase could help to explain the elevated risk
of estrogen-dependent breast cancer in normal BMI postmeno-
pausal women8,24.
This study has both strengths and limitations. A major strength

is the use of RNA-seq to describe global changes in the breast
transcriptome in association with high vs. low trunk fat in normal
BMI women. This strategy has provided significant new mechan-
istic insights into the link between MONW and elevated risk of
breast cancer. The fact that we had objective DXA-derived
measurements of trunk fat and didn’t rely on BMI was a major
strength of the study. At the same time, there were limitations
including both the small sample size and the number of
postmenopausal women who were enrolled. In the future, it
would be very useful to both expand the sample size and to
compare the effects of high vs. low trunk fat on gene expression in
postmenopausal vs. premenopausal women. The nontumorous
tissue that we evaluated came from patients either at elevated risk
for breast cancer or with breast cancer. Although in cancer
patients, we utilized tissue from an uninvolved quadrant of the
breast, it is possible that the results could be different in normal
women. Hence, in the future, it would be worthwhile to carry out a
validation study using normal breast tissue from a cohort of
cancer-free patients. Our findings are also limited because we are
not able to delineate individual contribution to the variation in
gene expression from all variables of interest including trunk fat,
age, BMI, CLS status, and adipocyte size due to the limited sample
size and the correlations between these variables. Our separate
analyses provide evidence of the existence of trunk fat-related
gene expression signatures. Nonetheless, such findings should be
validated in larger studies. Finally, bulk RNA-seq allowed us to
identify important differences between normal BMI women with
high vs. low trunk fat, but we were unable to determine whether
the observed differences in gene expression reflect changes in
transcription, cellular composition of the tissue or both. The
current findings provide a strong rationale for future studies
utilizing single-cell RNA-seq.
In summary, we demonstrate that there are significant changes

in gene expression in the breast tissue of normal BMI women with
high vs. low levels of trunk fat that reflect alterations in the
complement pathway, cytokines and inflammatory response,
cytokine–cytokine receptor interaction, and reactive oxygen
species. Changes in immune cells and the expression of numerous
genes linked to the pathogenesis of cancer were found that may
help to explain why MONW is associated with an increased risk of
postmenopausal breast cancer.

METHODS
Study population and clinical data collection
The subjects in this study of normal BMI women represent a subgroup of a
previously reported cohort study that included measurements of body
composition, B-WATi, and breast adipocyte diameter in women of all sizes5.
In the previous study, the breast transcriptome was not evaluated. Informed
consent was provided by women who were scheduled to undergo
mastectomy for breast cancer treatment or risk reduction at Memorial Sloan
Kettering Cancer Center (MSKCC). Institutional Review Board approval was
obtained from MSKCC (IRB Protocol Number 15-235) and Weill Cornell
Medicine (IRB Protocol Number 1511016737) (New York, NY) to conduct this
study. Trunk fat was measured by DXA using a Lunar Prodigy multiple
detector fan-beam densitometer (GE Healthcare) before surgery. Following
calibration, single-beam, whole-body scanning was performed in the supine
position. Weight and height were recorded before surgery and used to
calculate BMI. A standard definition was used to define normal BMI
(18.5–<25 kg/m2). Clinicopathological data (age, menopause status, race)
were extracted from the electronic medical record. Menopause status was

categorized as either postmenopausal or premenopausal based on National
Comprehensive Cancer Network criteria25.

Biospecimen acquisition
Breast WAT specimens were obtained prospectively under a standard
tissue acquisition protocol. In specimens that contained tumors, tissue
from an uninvolved quadrant of the breast was used for research purposes.
For each subject, paraffin blocks were prepared from breast WAT not
involved by a tumor on the day of surgery. Frozen samples were stored in
the presence RNAlater (Ambion).

Detection and measurement of B-WATi
The absence or presence of B-WATi was determined by histologic assessment
as described before26,27. Briefly, B-WATi was detected by the presence of CLS,
which represents a dead or dying adipocyte surrounded by CD68-positive
macrophages28. Five formalin-fixed paraffin-embedded (FFPE) blocks were
prepared from each mastectomy specimen and one section per FFPE block
(approximately 2 cm in diameter, 5 µm thick) was generated such that five
sections were stained for CD68, a macrophage marker (mouse monoclonal
KP1 antibody; Dako). Light microscopy was used to examine immunostained
tissue sections to detect the presence or absence of CLS and record the
number of CLS per slide. Digital photographs were generated and the WAT
area was measured with the Image J Software (NIH, Bethesda, MD). The
number of CLS per square centimeter of WAT (#CLS/cm2) also referred to as
CLS density was calculated to determine the severity of B-WATi.

Adipocyte measurement
Two hematoxylin & eosin-stained sections per case were prepared from
FFPE breast tissue in order to measure adipocyte diameters as previously
described5. Adipocyte diameter is expressed in microns.

RNA isolation and sequencing
Qiagen’s RNeasy minikit was used to isolate total RNA from non-tumorous
breast tissue. Then, using the Illumina TrueSeq Stranded Total RNA Library
preparation protocol with rRNA depletion, the libraries were constructed.
RNA-seq was carried out with paired-end 51 bp using the Illumina HiSeq4000
platform (Weill Cornell Medicine). Raw sequenced reads were pseudoaligned
to the human reference genome (UCSC hg19) using Kallisto29. Then, the
transcript abundance was quantified to obtain raw counts.

DEG analysis
Raw counts acquired from Kallisto were used to characterize DEGs and
DESeq2 R package was used30. The genes with low expression values were
filtered out (baseMean ≤ 15) first. Then, genes with adjusted P value < 0.05
and |Log2FoldChange| > 0.6 were defined as DEGs. Volcano plots were
generated to visually display the most biologically significant genes using
statistical significance vs. fold-change. Two vertical dashed lines corre-
spond to −0.6 and 0.6, which represent one of the cutoffs for the DEG.
The horizontal dashed line corresponds to P adjusted value of 0.05, which
is another cutoff for the DEG.

Pathway enrichment analysis
To determine the molecular function of DEGs in various biological
processes, KEGG31,32 and BioCarta31,33 gene sets from the Molecular
signature database were used.

Immune cell population analyses
To determine whether the overall immune cell population in breast WAT
changed in association with percent trunk fat, Estimate R package was
used to generate an immune score11. Then, specific immune cell-type
changes were determined using a webtool, xCell (https://xcell.ucsf.edu/)34.
To confirm findings from xCell, immune cell expression markers from the
study of Danaher et al. were used12.

Pathway score analysis
To determine whether a given pathway is coordinately upregulated or
downregulated in a sample set, single-sample GSEA (ssGSEA) was used.
ssGSEA calculates an enrichment score for each gene set and the
score represents the activity level of a biological process. The analysis was
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carried out on the public server (https://www.genepattern.org/modules/
docs/ssGSEAProjection/4). Gene sets from Hallmark and Gene Ontology
databases were used31,35–37.

Statistics
Patient characteristics were summarized in terms of counts and proportions
for categorical variables and median and interquartile range for continuous
variables. Fisher’s exact test was used to examine the difference in the
distribution of a categorical variable between two independent groups.
Wilcoxon rank-sum test was used to examine the difference of a continuous
variable between two independent groups. Correlation between two
continuous variables was examined using Spearman’s method. For all
analyses, statistical significance was set at two-tailed P < 0.05. All statistical
analyses were conducted using the R software (R Foundation for Statistical
Computing, Vienna, Austria).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
To protect patient privacy, the data that support this study are not publically
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