
Predictive combinatorial design of
mRNA translation initiation regions for
systematic optimization of gene
expression levels
Sang Woo Seo1*, Jae-Seong Yang2*, Han-Saem Cho1, Jina Yang1, Seong Cheol Kim2, Jong Moon Park1,
Sanguk Kim3,4 & Gyoo Yeol Jung1,2

1Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang,
Gyeongbuk, Korea, 790-784, 2School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and
Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk, Korea, 790-784, 3Division of Molecular and Life Science, Pohang
University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk, Korea, 790-784, 4Division of IT
Convergence Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk,
Korea, 790-784.

Balancing the amounts of enzymes is one of the important factors to achieve optimum performance of a
designed metabolic pathway. However, the random mutagenesis approach is impractical since it requires
searching an unnecessarily large number of variants and often results in searching a narrow range of
expression levels which are out of optimal level. Here, we developed a predictive combinatorial design
method, called UTR Library Designer, which systematically searches a large combinatorial space of
expression levels. It accomplishes this by designing synthetic translation initiation region of mRNAs in a
predictive way based on a thermodynamic model and genetic algorithm. Using this approach, we
successfully enhanced lysine and hydrogen production in Escherichia coli. Our method significantly
reduced the number of variants to be explored for covering large combinatorial space and efficiently
enhanced pathway efficiency, thereby facilitating future efforts in metabolic engineering and synthetic
biology.

B
alancing expression levels between genes encoding pathway enzymes is a prerequisite for achieving opti-
mized performance of the designed metabolic pathway1,2. Imbalances among pathways often cause a toxic
accumulation of metabolic intermediates that may pose an undue metabolic burden and result in failed

production of target products. However, it still remains a challenge to develop reliable and precise methods for
exploring broad expression levels of pathway enzymes in a predictive manner to increase the pathway efficiency.

Expression levels of genes along a given pathway have typically been altered using overexpression or knockout
strategies; however, optimal expression levels usually lie somewhere between these extremes1,3. Although pro-
moter engineering has been widely used to modulate gene expression at the transcriptional level4, it is also
necessary to control mRNA structural elements around the translation initiation region (TIR) including the
59-untranslated region (59-UTR) and 59-proximal coding sequence of mRNAs. These mRNA structural elements
have a great impact on gene expression levels, especially in cases where inherent regulatory features or design
constrains make it impractical or impossible to further modify promoter regions5,6. However, performing random
mutagenesis of the 59-UTR to investigate optimal expression levels without knowledge of mutations that spe-
cifically affect expression levels is impractical because it normally results in sampling of small range of solution
space and requires exploration of exceedingly large libraries. These impractical combinations of mutations might
limit our ability to search large solution space and consequently yield few beneficial phenotypes by exhausting
extremely high costs due to the current technical limitations in library generation as well as screening/selection
throughputs7. Thus, a novel method that can explore expression levels across a broad range while minimizing the
number of mutations is required to generate a practical library that covers a large, but feasible, space for
performing systematic combinatorial optimization of pathway efficiency.
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In this study, we developed a method, called UTR Library
Designer, for the combinatorial design of TIR based on a thermodyn-
amic model and genetic algorithm to facilitate systematic optimiza-
tion of gene expression levels. This method generates TIR sequences
(one-to-many) that varies gene expression levels between a min-
imum and maximum level with a selected number of intermediate
points. Furthermore, we applied this method to enhance the lysine
and hydrogen productivities by controlling expression levels of ppc
and gapA, respectively. Our approach enabled us to efficiently
enhance the efficiencies of metabolic pathways compared to random
mutagenesis.

Results
Model-driven combinatorial design of mRNA TIR. We developed
UTR Library Designer to search the combinatorial space of gene
expression levels by designing mRNA TIR sequence that covers a
desired range of gene expression levels (Fig. 1). The design solution
was optimized by applying a thermodynamic energy model to a
genetic algorithm. Briefly, our thermodynamic energy model
(DGUTR) calculates the difference in Gibbs free energy before and
after the 30S complex assembles onto an mRNA transcript by
considering ribosome binding affinity and accessibility to mRNA5.
Using a linear relationship between (DGUTR) and log expression
level, we can design sequences that meet a specific expression level.
We used this relationship for the forward engineering mode of UTR
Designer with the genetic algorithm. Briefly, an initial sequence
population was randomly generated and the fitness of each
sequence was evaluated by the difference between desired and
predicted expression levels. Only top n closest sequences in
expression with desired level can be remained in the population
and others are eliminated. Then, each remained sequence is
changed with little mutations on its sequence. These selection and
mutation steps were conducted until a sequence was found that has
desired level of expression.

UTR Library Designer also utilized this energy model to generate
59-UTR variants to achieve a desired range of gene expression levels.
The difference between UTR Designer and UTR Library designer is
that UTR Library designer finds minimum- and maximum-express-
ion sequences at the same time and has post-analysis step to find
desired number of intermediates. The algorithm has been optimized
to find sequences that can change its expression level from desired
maximum to minimum expression levels by the limited number of
mutations (Supplementary Fig. 1). Specifically, our method takes
a 59-UTR template and coding sequence, desired minimum/
maximum expression levels, and constraints (e.g., expression-level

intermediates, nucleotide constraints) for design. Our method finds
sequences that could generate desired maximum expression level
and minimum expression level with genetic algorithm described
above with n 5 1, separately. Then, it mutates nucleotide sequences
in the 59-UTR to create a pool of mRNA sequences to analyze the
effect of mutation in a certain position of the sequences. For example,
it ranks mutation positions that change expression levels from major
to minor amount. If mutated sequences for maximum and minimum
expression achieve the desired levels, the two sequences are com-
bined into a sequence capable of covering a diverse range of express-
ion. As such, the algorithm selectively adds mutations to match the
desired number of mutations. After several different trials, the algo-
rithm gives the best solution. Since UTR Library Designer employs a
genetic algorithm that mimics an evolutionary process to search
optimal sequences in nature8, it reaches a desired range of gene
expression levels much faster than random trials. For example,
UTR Library Designer easily achieved 59-UTR variants yielding
5,000-fold changes in expression level with 16 expression-level inter-
mediates, which is an extremely rare event (4 in 50,000 trials) using
random sequences (Supplementary Fig. S2 and Supplementary
Tables S1 and S2). Even when applied to comparisons of greater than
2,000-fold changes, UTR Library Designer is at least 200 times faster
than random trials (Supplementary Table S3). We tested two differ-
ent libraries with 16 expression-level intermediates obtained above
using green fluorescent protein (sgfp) in vivo. We could observe that
the fluorescence level in vivo was matched well with the predicted
expression level in silico (Fig. 2).

Verification of UTR Library Designer for library generation. The
ability of UTR Library Designer was also validated by designing large
number of variants using fluorescent proteins. Using non-optimized
coding sequences of two different fluorescent reporters (green and
red fluorescent proteins encoded by gfp and rfp), we designed 59-
UTR libraries containing 128 sequences for each reporter gene to
have broad range of expression levels (designed library) and
compared them with random library which randomize consecutive
five nucleotides around the Shine-Dalgarno (SD) sequence (Supple-
mentary Fig. S3). The maximum expression level covered by these
libraries (designed library) was predicted to be 3- to 10-fold higher
than that of libraries generated by consecutive random mutations
(random library) (Supplementary Fig. S3b and c). When we
randomly sampled 1,000 variants among all possible combinations
of gfp and rfp libraries in silico, the range of expression levels covered
by designed library was predicted to be much larger than that of
random library (Fig. 3a and b). Furthermore, combinatorial design
after additional codon optimization of the N-terminal region of each
reporter gene further increased the predicted maximum expression
level of the libraries (reoptimized codon-based designed library) by
3- to 5-fold compared to that of designed library (Supplementary Fig.
S3a). Consequently, the difference was 10- to 50-fold higher than that
of random library. Thus, the predicted expression-level space
covered by reoptimized codon-based designed libary was much
larger even than that of designed library (Fig. 3c).

To verify the utility of UTR Library Designer in vivo, we analyzed
three combinations of gfp and rfp libraries (random, designed, and
reoptimized codon-based designed libraries) by co-transformation
of two plasmids simultaneously. As shown in Materials and
Methods, we first conducted low-throughput analysis by manually
isolating 50 clones of each case that have expression levels as broad as
possible based on the fluorescence colors. They showed that the
patterns of expression-level coverage were similar to those from in
silico analysis (Fig. 3d–f). Each fluorescent protein variant showed
a linear relationship between the DGUTR predicted by UTR
Designer and log fluorescence intensities, and the average error
was 1.98 kcal/mol with standard deviation of 1.60 kcal/mol
(Fig. 4). To observe the entire population, we analyzed non-isolated
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clones by using two-color FACS. The difference in expression levels
between libraries was similar to that expected from in silico analysis
as well as low-throughput analysis. The range of expression levels of
reoptimized codon-based designed library (Supplementary Fig. S4c)

was larger than that of random library (Supplementary Fig. S4a) and
even than that of designed library (Supplementary Fig. S4b).
Although we also found non-uniform density of sampling points
between libraries from FACS analysis (Supplementary Fig. S4), we
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each reporter gene generated by different design methods ((a) and (d): random library; (b) and (e): designed library; (c) and (f): reoptimized codon-based

designed library) was examined both in silico (a–c) and in vivo (d–f). For the in silico analysis, 1,000 events were randomly sampled out of a possible

16,384 libraries for each case. For the in vivo analysis, 50 clones randomly selected from agar plates were grown, and fluorescence for each case was
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believe that it is originated from experimental artifact during library
construction because the higher density region is concentrated at the
lower expression level. It can be due to either transformation of
plasmid library with non-functional fluorescent protein (error
caused by library preparation during PCR) or non-uniform synthesis
of degenerate oligonucleotides. Nevertheless, these results indicate
that our method facilitates the investigation of specific expression-
level combinatorial-space in a predictive manner.

Enhanced pathway efficiency driven by UTR Library Designer.
Next, we applied UTR Library Designer to control the expression
level of a gene encoding one of the pathway enzymes that plays a key
role in determining pathway efficiency. When the high-throughput
colorimetric, fluorescent, and growth-coupled screening methods
are available, the number of expression-level intermediates of
library can be large enough depending on the number of genes
along the pathway to cover a larger feasible space. However, when
the throughput of screening is limited, it should be low enough to
verify the performance of the constructed variants.

First, we chose the lysine metabolic pathway, seeking to balance
the flux distributions of anaplerotic and glycolytic pathways around
the phosphoenolpyruvate (PEP) node using a high-throughput
screening method based on the Lysine Riboselector comprised of a
lysine-responsive riboswitch and a selection marker gene to enable
cells showing high lysine production to survive under selection pres-
sure9. To achieve this, we attempted to determine the expression level
of ppc for increased lysine production by combinatorially designing
59-UTR libraries (256 variants) of ppc encoding PEP carboxylase, a
key anaplerotic enzyme, yielding more than a 105-fold range of
expression levels (Fig. 5a; Supplementary Fig. S5). As noted, the
library was large enough to cover a broader, but feasible, space since
a high-throughput screening method was available. After three
rounds of screening process as in our previous study9, twenty col-
onies were randomly selected, and the plasmids were extracted and
sequenced. All isolated clones had the same 59-UTR sequence at the
region upstream of ppc without any selective mutations in the pro-
moter region, and the expression level of the particular sequence was
predicted to be in approximately the middle of the range of the entire
library (Supplementary Fig. S5). As expected, this enriched strain
(WLREU) showed a dramatic increase in lysine production com-
pared to the parental strain (WL3), which showed very little lysine
accumulation in the culture broth (Fig. 5b). Interestingly, the ability
of the strain to produce lysine was similar to those of the strains
previously enriched from a promoter library9. There are two possible

reasons why we could isolate only one variant out of library. When
we used promoter libraries in the previous study, we could isolate
three different clones that showed similar lysine production.
However, in that case, we used 107 size of library that might cover
the range of expression level in a finer way than these 256 variants
from 59-UTR modifications, and thus there could be only one can-
didate clone that can satisfy the cutoff level of lysine production.
Also, since our model is not 100% accurate (R2 5 0.7–0.8), it is
plausible that there might be additional factors determining gene
expression level besides the binding energy calculation given that
only one particular sequence was enriched even if there are other
potential sequences predicted to have similar binding energies.
Collectively, these results indicate that a particular strain with a
ppc expression level for increased lysine production can also be suc-
cessfully enriched through predictive library design of the 59-UTR.

Finally, we applied our method to the biological production of
hydrogen, which has been intensively studied even in the absence
of an appropriate screening system. Of the various biological hydro-
gen production methods, we chose to implement a dark fermentation
system by coexpressing NADPH-dependent-[FeFe]-hydrogenase
(Hyd), ferredoxin (Fd), and NAD(P)H:ferredoxin oxidoreductase
(NFOR) in which protons are reduced to hydrogen through electron
transfer using NADPH generated by the pentose phosphate pathway
(Fig. 5c)10,11. In order to modify the flux around glyceraldehyde-3-
phosphate node, we used the previously established glycolysis shut-
down system12 and attempted to control the expression level of gapA
encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
The designed 59-UTR library (8 variants) was predicted to yield more
than a 100-fold range of expression levels (Supplementary Figure
S6a). In addition, the specific enzymatic activity produced by each
variant was linearly correlated with the predicted expression level
even if four data points at the extreme low end are removed (R2 5

0.64 without data at the low end and R2 5 0.91 with all data points;
Supplementary Fig. S6b). When each strain was cultured, the hydro-
gen formation was not linearly correlated with the activity of
GAPDH in this particularly designed system and rather had local
maxima in H2 and H7 strains and the highest maximum in H5 strain,
indicating that hydrogen production shows dramatic non-linear
behavior with changes in gapA expression levels as other systems
did1 (Fig. 5d). The one variant (H5) showed a 2.5-fold increase in
the yield of hydrogen production. The total amount of hydrogen
evolved in the H5 strain was also about 4-fold higher than that of
the control strain (H0) (Supplementary Fig. S6c). These results indi-
cate that the increase in yield was not due to a retarded growth rate or
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reduced glucose consumption rate of the H5 strain. Interestingly,
although the difference of the predicted expression level between
H5 and H6 strains was around 30% and that of the measured activity
was around 20%, they showed completely different capacity of
hydrogen production meaning that this change was substantial for
controlling the metabolic flux in the cell.

Discussion
Identifying biologically relevant maximum and minimum levels of
enzyme expression and exploring the optimal level between them is a
key to successful optimization of enzyme expression for performance
of designed tasks1,3. However, applying a random approach to solve
this long-standing issue is often impractical because of two reasons.
First, the designable number of variants for optimizing expression
level is limited when relying on a random approach because it is
virtually impossible to cover such a large solution space. Second,
the size of the potential solution space dramatically exceeds the
physiologically obtainable search space once the number of muta-
tions are increased7. However, in this study, we showed that our
method, UTR Library Designer, could vary expression levels of a
target gene across a broad range, while minimizing the number of
mutations, through generation of 59-UTR variants and further
optimization of 59-proximal coding sequences (TIR).

Because of its model-driven library design, our method could be
used to examine a broad range of expression levels of target genes
(ppc and gapA) to enhance pathway efficiencies. In case of in silico
analysis, UTR Library Designer generated sequence libraries that
achieved 105- and 102-fold expression changes for ppc and gapA,
respectively. In contrast, with the same number of expression-level
intermediates as used for UTR Library Designer (256 for ppc and 8
for gapA), a random approach that generated 10,000 different sets of
library pools was largely unable to achieve such expression changes
from in silico analysis (P-value , 1024, Supplementary Fig. S7 and
S8). Moreover, the probability of the random library including a
variant with an expression level similar (95%–105%) to that of the
optimal value obtained was approximately 10% (11.31% for ppc and
5.25% for gapA out of 10,000 library pools), indicating that our
method efficiently facilitated achieving the specific value.

Since pathway optimization requires fine-tuning of expression
levels over a subtle range1, our method could be used for a grid search
with a broad range of expression levels to find a sub-optimal express-
ion level in the first round of the screening process, while providing
an opportunity for additional search by further narrowing the range
of expression levels to be explored in subsequent screening rounds.
When considering a complicated pathway composed of several dif-
ferent enzymes, it is necessary to optimize multiple target genes
through simultaneous searches of each gene’s expression level. In
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contrast to random approaches, our method would be surprisingly
efficient to apply in such cases because it does not rely on searching
unpredictable random sequences, which could result in a combin-
atorial explosion. In addition, designing 25-bp 59-UTR variants
without additional genetic components can reduce failures that arise
from using repetitive sequences during the generation of libraries13,14.
Since robust methods for assembling DNA constructs and editing
genomic DNA with high efficiency are readily available15,16, our
method could plausibly be used to optimize the expression of mul-
tiple enzymes simultaneously for various purposes by covering a
practical range of library space.

Methods
Software implementation. A software implementation of the combinatorial design
method developed in this study (UTR Library Designer) is available on our web server
(http://sbi.postech.ac.kr/utr_library). Users can apply this software to generate 59-
UTR variants and optimized coding sequences (optional within the same codon
preference) to meet a specific target range of expression levels with a selected number
of intermediate points. Users have to input template 25-bp 59-UTR sequences and
constraints for designing 59-UTR variants (or default sequences) as well as at least 35-
bp of coding sequence after start codon. We suggest the use of a proportional range of
1 to 1,000,000, although a wider range is also potentially feasible for this system. The
software provides outputs depending on the sequences and the number of expression-
level intermediates that users have input. We recommend to reoptimize codon
contents with same codon preference on our web server when the 59-UTR variants fail
to satisfy the desired range of expression levels.

Reagents, bacterial strains, plasmids, and primers. Phusion polymerase and
restriction endonucleases were purchased from New England Biolabs. pACYC-Duet,
pCDF-Duet, and pET-Duet vectors were purchased from Novagen. The E. coli
bacterial strains and plasmids used in this study are listed in Supplementary Table S4.
The oligonucleotides used for the construction of plasmids and libraries were
synthesized by Bioneer (Daejeon, Korea) and are listed in Supplementary Table S5.
All other reagents were obtained from Sigma unless otherwise indicated.

Construction of the 59-UTR library and strains. pCDF-mCherry and pCDF-
mCherryOpt plasmids were generated by amplifying pCDF-Duet using the 59-
phosphorylated pCDF-M-F-P and pCDF-pET-M-R-P primers followed by blunt-
end ligation. The internal XbaI site was removed by site-directed mutagenesis using
the pCDF-del-XbaI-F and pCDF-del-XbaI-R primers, as described in a previous
study17. The mCherry and mCherryOpt genes were amplified using XbaI-mCherry-
F/SphI-mCherry-R and XbaI-mCherryOpt-F/SphI-mCherry-R primer pairs,
respectively, and were inserted into the XbaI and SphI sites of the modified pCDF
vector. To test algorithm’s ability, we generated 59-UTR libraries with 16 expression-
level intermediates by using pACYC-sgfpOpt as a template in polymerase chain
reactions (PCR) employing 59-phosphorylated primers. Each PCR mixture consisted
of 50 ng of template, 10 pmol of each primer, 0.5 U Phusion DNA polymerase,
250 mM each dNTP, 10 ml of the 53 buffer provided by the manufacturer, and H2O
to a final volume of 50 ml. Reactions were carried out on an Applied Biosystems
Thermal Block (Applied Biosystems, Foster City, CA, USA) under the following
conditions: 30 s at 98uC followed by 20 cycles of 10 s at 98uC, 15 s at an annealing
temperature determined based on the Tm of the primers and 3 min at 72uC, followed
by a final extension at 72uC for 10 min. The resulting PCR products were purified
using a QIAquick PCR Purification Kit (Qiagen GmbH, Germany), and the template
DNA was eliminated by treating with DpnI at 37uC for 1 h. The PCR products were
blunt-end ligated using T4 DNA ligase (TaKaRa, Kyoto, Japan) at 16uC overnight,
and then used to transform the E. coli ElectroMAX DH5a-E strain (Invitrogen,
Carlsbad, CA, USA). Purified plasmids were sequenced by Solgent (Daejeon, Korea)
using an ABI 3730XL capillary DNA sequencer. In case of 59-UTR variants for
random, designed, and reoptimized codon-based designed searches of fluorescent
proteins, we used each constructed plasmid as a template—pACYC-sgfp and pCDF-
mCherry for random/designed searches; pACYC-sgfpOpt and pCDF-mCherryOpt
for reoptimized codon-based designed searches. Other steps were same as described
above except for co-transformation of two different plasmid libraries (sgfp and
mCherry) into a same competent cell simultaneously.

The 59-UTR library for ppc was constructed by PCR-based blunt-end ligation with
59-phosphorylated ppc-UTR-lib-F-P and ppc-UTR-lib-R-P primers using pCDF-ppc
as a template9. The PCR products were blunt-end ligated using T4 DNA ligase
(TaKaRa, Kyoto, Japan) at 16uC overnight, and then used to transform the E. coli
ElectroMAXTM DH5a-ETM strain (Invitrogen, Carlsbad, CA, USA). The purified
plasmids were transformed into WLR4 for subsequent enrichment.

The KanR-cassette was amplified from pKAN using gapAHkanF and gapAHkanR
primers to enable subsequent deletion of chromosomal gapA in HC101 with the Red
recombination system using pKD46 and pCP2018, as described in a previous study12.
pCDF-fd-nfor was generated by amplifying fd and nfor using XbaI-fd-F/XhoI-fd-R
and XhoI-nfor-F/BamHI-nfor-R primer pairs, respectively, and inserting the
resulting PCR products into the corresponding sites of the modified pCDF vector.
pETDuet-gapA was generated by amplifying pETDuet using the 59-phosphorylated
pET-M-F-P and pCDF-pET-M-R-P primers followed by blunt-end ligation. The

gapA genes were amplified using XbaI-gapA-F and SphI-gapA-R primers and
inserted into the XbaI and SphI sites of the modified pET vector. To generate 59-UTR
variants, we performed PCR using the resulting construct as a template with 59-
phosphorylated primers (gapA-UTR-lib-F-P and gapA-UTR-lib-R-P). The remain-
ing step was the same as that described above except that the purified, sequence-
verified plasmids were transformed into HC102 for hydrogen production.

Growth and fluorescence measurements. The isolation of E. coli DH5a clones
containing the various combinations of sgfp and mCherry variants was manually
conducted by using Safe ImagerTM 2.0 Blue-Light Transilluminator (Invitrogen,
Carlsbad, CA, USA) so that the range of expression levels becomes as broad as
possible. They were grown overnight at 37uC in M9 minimal medium containing
4 g/l D-glucose, 0.1% casamino acids, and appropriate antibiotics or inducers using
Bioscreen C MBR (Oy Growth Curves Ab, Helsinki, Finland). A fresh 100-well plate
containing 200 ml of the same M9 minimal media was then inoculated with triplicate
15100 dilutions of the overnight cultures. After incubation for 5 h at 37uC with
vigorous shaking, 100 ml of each culture was transferred to a 96-well fluorescence-
measuring plate, and fluorescence was detected with a VICTOR3TM 1420 multilabel
counter (PerkinElmer, Wellesley, MA, USA) using a 486-nm excitation filter and a
535-nm emission filter for sgfp and a 570-nm excitation filter and a 610-nm emission
filter for mCherry, both with a 1-s measurement time. The fluorescence intensity
depicted in the figures is given using the arbitrary units (a.u.) provided by the
instrument, per OD600. The non-isolated E. coli DH5a library clones were grown as
described above and, after washing and resuspending in phosphate-buffered saline
(PBS), were analyzed using a two-color fluorescence activated cell sorter
(FACSCalibur; BD Biosciences, San Jose, CA, USA) to observe the entire population.

Lysine and hydrogen production, detection of metabolites, and gapA activity
assay. The enriched strain for lysine production (WLREU) was grown overnight in
complemented M9 medium containing 40 mg/ml of streptomycin and 25 mg/ml of
chloramphenicol. Fresh seeds were prepared by diluting overnight cultures to a final
OD600 of ,0.1 and culturing in the same fresh medium until reaching an OD600 of 0.8
(,8 h). The culture broths were inoculated at a final OD600 of ,0.1 into 20 ml of
complemented M9 media in a 300-ml flask and incubated at 37uC with shaking
(200 rpm). The concentration of glucose consumed was determined by high-
performance liquid chromatography (HPLC) with an Aminex HPX-87H column
(Bio-Rad Laboratories, Richmond, CA, USA) at a flow rate of 0.6 ml/min at 65uC
using 5 mM H2SO4 as the mobile phase. The glucose signal was monitored using a
Shodex RI-101 detector (Shodex, Klokkerfaldet, Denmark). The lysine concentration
in the broth was determined using a pre-column o-phthalaldehyde (OPA)
derivatization method19 coupled with a reversed-phase liquid chromatography (LC)
column (Acclaim 120 C18; Dionex, Sunnyvale, CA, USA) using an UltiMate 3000
analytical HPLC system (Dionex). Derivatized lysine was eluted at a flow rate of
1.5 ml/min with gradient of acetonitrile5methanol5water solution (v/v % 45545510)
and 50 mM sodium acetate buffer (pH 6.5), and was detected using a UV-VIS diode
array detector at 338 nm. For hydrogen production, cells were grown as described
previously11 with a modification of supplemented antibiotics, and hydrogen gas
evolved after culturing at 25uC for 24 h was analyzed by gas chromatography (Model
6890N, Agilent Technologies, Palo Alto, CA, USA) using a pulsed-discharge
ionization detector at 240uC and a Supelco Carboxen-1010 PLOT capillary column
(30 m 3 0.32 mm) with helium as a carrier gas. To allow measurement of gapA
activity, cell lysates were prepared using BugBuster from EMD Millipore (Darmstadt,
Germany); total protein was measured by Bradford Assay, as described in a previous
study20. The enzymatic activity of gapA-encoded glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was measured using a Colorimetric GAPDH Assay Kit
according to the manufacturer’s instructions (ScienCell Research Laboratories, CA,
USA) and expressed relative to the amount of total protein to yield specific enzymatic
activity (Units/mg total protein).

Statistics and error analysis. Statistical tests (P-value) were conducted by Python
(SciPy stats). The squared correlation coefficient R2 for linear regression is calculated
by according to R2 5 (NS(xiyi) 2 SxiSyi)2/[(NS(xi

2) 2 (Sxi)2)(NS(yi
2) 2 (Syi)2)],

where y 5 log (expression level) or GAPDH activity, x 5 DGUTR or relative predicted
expression level and N 5 number of data points.
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