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Abstract
This study describes the etiological diversity observed in a severe neonatal diarrhea outbreak with morbidity and mortality 
rates of 80 and 20%, respectively, with detection of mixed infections with viral, bacterial, and protozoan disease agents in a 
dairy calf rearing unit. Diarrheic fecal samples were collected from eight 5 to 18 days of age calves and were submitted to the 
investigation of the presence of rotavirus A (RVA), bovine coronavirus (BCoV), bovine kobuvirus (BKV), bovine viral diar-
rhea virus 1 and 2 (BVDV-1 and BVDV-2), enteropathogenic Escherichia coli (ETEC), Salmonella sp., and Cryptosporidium 
spp. Fragments of the small intestine of one calf with diarrhea that spontaneously died were submitted for histopathological 
analyses. The most frequent infectious agent detected in diarrheic fecal samples was BKV (8/8—100%), followed by RVA 
(5/8—62.5%), BVDV (5/8—62.5%), Cryptosporidium parvum (5/8—62.5%), ETEC (4/8—50%), and Cryptosporidium 
ryanae (1/8—12.5%). These etiological agents were found in mixed infections with two or more pathogens per diarrheic 
fecal sample. The association of viral and protozoan pathogens was the most frequently identified (37.5%) in these samples, 
followed by viral and bacterial (25%); viral, bacterial, and protozoan (25%); and only viral agents (12.5%). BCoV and Sal-
monella sp. were not identified in the diarrheic fecal samples analyzed. Additionally, histopathology of the small intestine 
diagnosed chronic lymphocytic enteritis. In conclusion, in calf rearing units, the adoption and strict monitoring of health 
management practices are critical to the success of this calf creation system.
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Introduction

Neonatal calf diarrhea (NCD) is the most important cause 
of economic losses to dairy and beef cattle herds world-
wide, due to growth disorders, cost of treatment, and/or 
death of sick animals [1]. The main age group affected by 
enteric disorders are calves up to 30 days of age [2]. The 
etiology of the NCD is complex and is considered a mul-
tifactorial disease due to the combination of predisposing 
factors and a variety of infectious disease agents that are 
involved [2, 3]. Predisposing factors associated with the 
development of NCD include age, genetics, unfavorable 
environmental conditions, inadequate management, poor 
nutrition, inefficient immune status, and concomitant dis-
eases [4, 5].

The infectious disease pathogens associated with the 
development of NCD can be divided into viral, bacterial, 
and protozoa agents. Rotavirus A (RVA), bovine coro-
navirus (BCoV), bovine kobuvirus (BKV), and bovine 
viral diarrhea virus 1 and 2 (BVDV-1 and BVDV-2) are 
the more frequently viral pathogens associated with the 
development of NCD [6–10]. The most common bacte-
rial agents are enteropathogenic Escherichia coli (ETEC) 
and Salmonella sp. [11], while Cryptosporidium spp. and 
Eimeria spp. are the most frequent protozoa detected in 
NCD outbreaks [12, 13]. Although these pathogens acting 
individually have been considered as primary agents of 
enteric disorders, currently, there is an increase in con-
comitant infections due to several microorganisms in the 
development of NCD [2, 3].

Dairy calf rearing units were implemented by coop-
erative societies of dairy producers in southern Brazil to 
accelerate the development of calves and heifers, during 
which calves not more than 5-day-old are received from 
different dairy farms and pregnant heifers are returned to 
original farms [8]. However, information relative to the 
immunological and health status of these animals and the 
health consequences of this form of breeding is lacking. 
Consequently, this study describes the etiological diver-
sity observed in a severe neonatal diarrhea outbreak and 
the detection of mixed infections with viral, bacterial, and 
protozoan disease agents in a dairy calf rearing unit.

The farm under study consisted of a Holstein breed 
heifer and calf rearing unit with a total of 948 animals 
located in the Western of Paraná State, Southern Brazil. 
This calf rearing unit receives 3- to 4-day-old calves that 
are separated from their respective dams soon after birth, 
from nine distinct dairy cattle herds. During milk-feed-
ing, all calves are maintained in collective pens; however, 
after weaning, the calves are transferred to grass pickets 
until returned to their original herds, which occurs after 
artificial insemination and the confirmation of pregnancy. 

Although vaccination for the control of neonatal diarrhea 
by RVA, BCoV, and ETEC is recommended at the final 
stage of pregnancy, some original herds do not perform 
immunizations. The commercial vaccine that is used by 
some of the original herds that provide calves to the calf 
rearing unit contains E. coli K99 and J5, Salmonella dub-
lin, BVDV-1 and BVDV-2, bovine respiratory syncytial 
virus, bovine alphaherpesvirus 1 and 5, bovine parainflu-
enza virus 3, Mannheimia haemolytica, and Pasteurella 
multocida. The dairy calf rearing unit recommends to the 
original herds that intake of colostrum starts until 1 h after 
calving birth and should be in an adequate quantity for all 
newborn calves (corresponding to 10% of the calf’s weight 
at the first feeding); however, this recommendation is not 
heeded by all owners of the original herds. The level of 
passive immunity transfer in the calves was not assessed 
at the rearing unit.

In April 2019, a severe neonatal diarrhea outbreak was 
reported at this dairy calf rearing unit. Clinical signs were 
observed in 3- to 4-day-old calves shortly after the arrival 
at the calf rearing unit. The diarrhea outbreak affected 
calves up to 4 weeks of age and contained 120 animals up 
to this group. Initially, most calves had severe watery diar-
rhea that resulted in dehydration, with anorexia, depres-
sion, and fever for approximately five days. Additionally, 
some calves died 5 to 10 days after the onset of diarrhea. 
Some affected animals were treated with broad-spectrum 
antibiotic therapy (florfenicol and ceftiofur), but without 
any clinical improvement. During the neonatal diarrhea 
outbreak, morbidity (80%; 96/120) and mortality (20%; 
24/120) rates were elevated.

Diarrheic fecal samples were collected from eight calves 
with 5 to 18 days of age. These evaluated calves did not 
receive any type of therapy for the treatment of NCD. One 
calf with clinic signs of diarrhea that spontaneously died was 
autopsied at the rearing unit. All diarrheic feces and frag-
ments of the small intestine were collected and submitted for 
microbiological and/or histopathological analyses.

Fecal suspensions at 10 to 20% (weight/volume) were 
submitted to nucleic acid extraction using a combination 
of phenol/chloroform/isoamyl alcohol (25:24:1) and silica/
guanidinium isothiocyanate methods [14]. The RNA pres-
ence of RVA, BVDV-1 and BVDV-2, and BKV was inves-
tigated by RT-PCR assays and BCoV RNA by semi-nested-
RT-PCR assay. The amplifications were performing using 
primers that targeted the RVA VP7 and VP4 genes [15, 16], 
BCoV N gene [17], BVDV 5’ UTR genomic region [18], 
and BKV 3D [19] and VP1 [20] genes. Aliquots of sterile 
ultrapure diethylpyrocarbonate-treated water were included 
as negative controls in all procedures. Samples previously 
known as positive for each of the virus investigated in this 
study were included as positive controls: prototype NADL 
and Mebus strains cell culture (Madin-Darby bovine kidney) 
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adapted for BVDV and BCoV, respectively, and fecal sam-
ples known to be positive for RVA [9] and BKV [21].

The isolation of E. coli from rectal swabs was performed 
on Mueller Hinton agar enriched with defibrinated sheep 
blood and MacConkey agar, both incubated for 24 h at 
37 °C. Suggestive colonies of E. coli, obtained from each 
fecal sample, were identified by their morphological and bio-
chemical characteristics, and thereafter submitted to DNA 
extraction [22]. To classify the isolates as diarrheagenic E. 
coli strains, five colonies of each rectal swab were subjected 
to a multiplex-PCR assay designed to detect 10 different 
virulence genes (stx1, stx2, eae, bfpA, invE, aggR, esth, estp, 
elt, and astA) [23]. Antimicrobial susceptibilities tests were 
performed on Mueller Hinton agar by using the disc diffu-
sion method described by Kirby and Bauer methodology 
according to international standardization (CLSI, 2012), 
including the following antibiotics: ceftiofur (30 µg), chlo-
ramphenicol (30 µg), enrofloxacin (5 µg), florfenicol (30 µg), 
gentamicin (10 µg), sulfazotrim (25 µg), and tetracycline 
(30 µg).

The detection of Salmonella sp. DNA was performed 
directly from the nucleic acid extracted from the feces [14], 
by using a PCR assay designed to amplify the invA virulence 
gene [24].

Oocysts of Cryptosporidium spp. detected from the 
diarrheic fecal samples were submitted to the modified 
Ziehl–Neelsen technique, and the whole slide was read [25, 
26]. Semiquantitative and quantitative technique were used 
to estimate the oocysts concentration in fecal samples. The 
semiquantitative mensuration was achieved by using five 
predetermined scores 0 (no oocysts), 1 (1–3 oocysts per 
slide), 2 (3–5 oocysts per field of slide), 3 (6–10 oocysts per 
field of slide), and 4 (> 10 oocysts per field of slide) as previ-
ously described [27]. To estimate oocysts per gram of feces, 
the total oocysts counted per slide was divided by the weight 
of feces per slide (in grams) using the following formula:

The nucleic acid of the positive fecal sample was 
extracted by a commercial kit (NucleoSpin Tissue®, Mach-
erey Nagel, Düren, Germany) to determine the species of 
Cryptosporidium in infected animals. The DNA was sub-
mitted to a nested-PCR assay designed to amplify the SSU 
rRNA gene [28], and the target sequence was then submit-
ted to restriction fragment length polymorphism technique 
[29, 30]. The length of fragments was visualized by agarose 
gel electrophoresis and compared with previously described 
sequences [29, 30].

Tissue fragments of the small intestine collected at the 
calf rearing unit were fixed by immersion in 10% buffered 
formalin solution and then routinely processed with the 

oocysts per gram of feces =
total oocysts per slide

weight of feces per slide (g)

hematoxylin and eosin (H&E) stain for histopathologic 
evaluation.

To confirm the specificity of the PCR amplicons and to 
determine the G and P genotypes of RVA and subgenotypes 
of BVDV, two amplified products of each viral pathogen 
RVA (VP4 and VP7 genes), BKV (VP1 gene), and BVDV 
(5’UTR region), from different fecal samples, were selected 
for sequencing analyzes. The PCR amplicons were purified 
by the PureLink® Quick Gel Extraction and PCR Purifi-
cation Combo Kit (Invitrogen® Life Technologies, Carls-
bad, CA, USA), quantified using a Qubit® Fluorometer 
(Invitrogen® Life Technologies, Eugene, OR, USA), and 
sequenced in both directions with the same forward and 
reverse primers used in the molecular assays on an ABI3500 
Genetic Analyzer sequencer with the BigDye Terminator 
v3.1 Cycle Sequencing Kit (Applied Biosystems®, Foster 
City, CA, USA). Sequence quality analyses and consensus 
sequences were obtained using PHRED and CAP3 software 
(http:// aspar agin. cenar gen. embra pa. br/ phph/), respectively. 
Similarity searches were performed with nucleotide (nt) 
sequences deposited in GenBank using the Basic Local 
Alignment Search Tool software (https:// blast. ncbi. nlm. 
nih. gov/ Blast. cgi). Multiple and pairwise alignments with 
RVA, BKV, and BVDV strains available in GenBank were 
performed with MEGA software version 7.0.26 [31], and 
the nucleotide sequence identity matrices were constructed 
using the BioEdit software version 7.2.5 [32]. Phylogenetic 
trees based on the nt sequences were obtained using the 
neighbor-joining method [33] with the Kimura 2-param-
eter model [34] using MEGA software version 7.0.26 [31]. 
The bootstrapping probabilities were calculated using 1,000 
replicates.

The most frequent infectious agent detected in diarrheic 
fecal samples during this study from newborn calves was 
BKV (100%; 8/8), followed by RVA, BVDV, and C. parvum 
(62.5%; 5/8), ETEC (50%; 4/8), and C. ryanae (12.5%; 1/8) 
(Table 1). These etiological agents were identified in mixed 
infections that contained two or more pathogens per fecal 
sample. The association of viral and protozoan pathogens 
was the most frequently identified (37.5%) in the fecal sam-
ples, followed by viral and bacterial (25%); viral, bacterial, 
and protozoan (25%); and only viral agents (12.5%). Nucleic 
acids of BCoV and Salmonella sp. were not identified in any 
of the diarrheic fecal samples analyzed.

Escherichia coli was isolated from all fecal samples 
analyzed, but virulence genes were found in only 50% 
(4/8) of the samples and were classified as ETEC strains. 
The in vitro microbial sensitivity profile of E. coli isolates 
from the calves with diarrhea showed 95.2% sensitivity to 
ceftiofur, 42.8% to florfenicol and gentamicin, 38.1% to 
sulfazotrim, 28.6% to chloramphenicol and enrofloxacin, 
and 9.5% to tetracycline. Regarding Cryptosporidium spp., 
a range of 33 to 215,066 oocysts per gram of feces were 
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estimated in fecal samples analyzed. It is important to 
emphasize that the detection of E. coli and Cryptosporid-
ium spp. were carried out by traditional microbiological 
and parasitological methods, respectively, so the detec-
tion rate may be underestimated in comparison with virus 
agents evaluated by molecular techniques.

Through phylogenetic analysis and nucleotide sequence 
identity matrices, the specificity of the amplicons (RVA, 
BKV, and BVDV) obtained from the different diarrheic 
fecal samples was confirmed, and the G and P RVA geno-
types and BVDV-1 subgenotypes were determined. Phylo-
genetic trees, nucleotide sequence identity matrices, Gen-
Bank accession numbers of each viral strain identified in 
this study, and representative strains for each virus were 
presented in the Online Resource. Comparative analyzes 
of the sequences of the VP7 and VP4 genes obtained in 
this study with representative strains of 36 known RVA G 
genotypes and 51 known RVA P genotypes, respectively, 
were performed, and RVA G10P[11] genotype combina-
tion was identified in two fecal samples (nº 3 and 5) from 
this study and was named BRA/PR-2362/2019 and BRA/
PR-2367/2019 (Supplementary Fig. 1 and Table S1 — 
genotype G and Supplementary Fig. 2 and Table S2 — 
genotype P). The comparative analysis between the strains 
identified herein and with 20 other kobuvirus strains was 
performed, and BKV strains derived from fecal samples 
nº 2 and 6 were named BRA/PR-2364/2019 and BRA/
PR-2365/2019, respectively (Supplementary Fig. 3 and 
Table S3). The two wild-type BVDV 5’UTR sequences 
identified in this study were compared with representative 
strains of 21 BVDV-1 subgenotypes and were classified as 
BVDV-1b and BVDV-1d subgenotype and named as BRA/
PR-2361/2019 (fecal sample nº 1) and BRA/PR-2364/2019 
(fecal sample nº 2), respectively (Supplementary Fig. 4 
and Table  S4). Table  1 shows the distribution of the 

amplicons derived from the fecal samples analyzed and 
their respective GenBank accession numbers.

Histopathology of all intestinal segments evaluated had 
similar pathologic alterations with little variation between 
each sample. These lesions resulted in chronic lymphocytic 
enteritis due to mild blunting and fusion of intestinal villa, 
moderate accumulation of lymphocytes at the lamina pro-
pria, and mild cryptal dilation.

Rotavirus A was one of the most detected pathogens in 
this study and is the viral pathogen most frequently associ-
ated with NCD worldwide [2, 11, 14]. The combination of 
the G10P[11] genotype identified herein reinforces the data 
previously obtained that this genotype is the most frequent 
circulating in dairy herds in Brazil [9].

The exact role of BKV in the pathogenesis of diarrhea is 
not fully elucidated; however, the detection rate of BKV in 
fecal samples from calves with clinical signs is higher when 
compared with animals without clinic signs, reinforcing the 
participation of BKV in the pathogenesis of diarrhea [35]. In 
this study, BKV was identified in mixed infections, and simi-
lar findings were previously described [21, 36], suggesting 
that the occurrence of this virus may be associated with the 
concomitant presence of other diarrheic pathogens of cattle.

Bovine viral diarrhea virus is related to different clinical 
manifestations in cattle, including reproductive, respiratory, 
enteric disorders, and immunosuppression in infected ani-
mals [10]. Based on the high frequency of BVDV detection 
in the diarrheic fecal samples of this study and on the vari-
ous effects that this virus can cause to the host, the possible 
immunosuppressive action of BVDV cannot be excluded 
[10], and, therefore, this may have contributed to the con-
comitant infections with other pathogens during the NCD 
outbreak.

In this study, Cryptosporidium spp. was one of the most 
detected enteric agents in calves infected. This protozoan 

Table 1  Microorganisms 
(virus, bacteria, and protozoa) 
identified in a severe neonatal 
diarrhea outbreak in a dairy 
calf rearing unit from Southern 
Brazil

RVA, rotavirus A; BKV, bovine kobuvirus; ETEC, enterotoxigenic Escherichia coli; BVDV, bovine viral 
diarrhea virus; C. parvum, Cryptosporidium parvum; and C. ryanae, Cryptosporidium ryanae
Name of sequences and GenBank accession numbers: aBRA/PR-2361/2019 (MT036102), bBRA/
PR-2364/2019 (MT036103), cBRA/PR-2364/2019 (MN539148), dBRA/PR-2367/2019 (G10: MN539146 
and P[11]: MN539147), eBRA/PR-2362/2019 (G10: MN539144 and P[11]: MN539145), and fBRA/
PR-2365/2019 (MN539149)

Fecal sample Calf age 
(days)

Mixed infection Sequenced amplicons

1 5 BKV + RVA + BVDV + ETEC BVDVa

2 11 BKV + RVA + BVDV + C. parvum BVDVb,  BKVc

3 11 BKV + RVA + BVDV + ETEC + C. parvum RVAd

4 5 BKV + RVA + ETEC -
5 18 BKV + RVA + C. parvum RVAe

6 11 BKV + BVDV BKVf

7 11 BKV + BVDV + C. parvum + C. ryanae -
8 13 BKV + ETEC + C. parvum -
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is considered as a primary infectious agent associated with 
the development of NCD [12]. However, in mixed infection 
with other viral primary infectious disease agents, there is an 
increase in the severity of clinical signs and diarrheic cases 
in susceptible herds [37].

Enteropathogenic Escherichia coli is one of the most fre-
quently identified microorganisms in calves with diarrhea 
worldwide [3]; among the diarrheagenic strains, ETEC is 
the most detected in newborn calves [38, 39]. In most cases, 
ETEC causes diarrhea during the first weeks of life, due to 
the ability to attach to enterocytes in young animals up to 
2 weeks after birth [40] and frequently resulting in death [3, 
11]. Most calves evaluated in this study were less than two 
weeks old, which may have contributed to the infection in 
these animals associated with ETEC.

Finally, the histopathologic findings observed in the small 
intestine are suggestive of viral-induced infections [3], while 
protozoan-associated disease was not identified probably due 
to differences in tissue samples submitted for histopathology 
and parasitology.

A high diversity of infectious agents as RVA, BKV, 
BVDV, ETEC, and Cryptosporidium spp. was detected in 
diarrheic fecal samples of calves in this study. The high fre-
quency of mixed infection detection may be related to the 
diversity of the origin of the calf herds. When transferred 
to rearing units, these calves may present different immu-
nological and microbiological profiles thus being a great 
challenge for health management which may be one of the 
risk factors for the occurrence of disease [41], including as 
NCD. Consequently, adequate health management is rec-
ommended to minimize the effects of the commingling of 
calves from different herds and to equal the immunologi-
cal status. Other risk factors can influence the occurrence 
of NCD are related to the transport stress, changes in the 
environment and nutrition, associate to the immaturity of 
the immune system. These animals can arrive in the rearing 
unit with immunosuppression and may favor infection by 
one or more infectious agents, which can intensify the clini-
cal manifestation [8].

The implementation of a regular vaccination program 
against the main enteric disease pathogens continues to 
be of the most important measures for the prevention of 
NCD. Most commercial vaccines available in Brazil have 
in their composition the most frequent RVA genotypes 
including G10 and P[11], which were detected in this 
NCD outbreak. In this study, the vaccination of pregnant 
cows against enteric pathogens was not a routine practice 
used by all dairy cattle herds, and no herd was vaccinated 
against RVA. If all original dairy cattle herds implemented 
a regular pregnant cow vaccination program, using more 
complete commercial vaccines for neonatal diarrhea con-
trol, in this case, also including the RVA G10P[11] geno-
types that circulate on the farm, maybe, these infections 

could have been prevented and consequently decreased the 
losses caused by diarrhea outbreak. Therefore, good pre-
vention measures to reduce NCD would be the vaccination 
of cows during the final gestational stage: moreover, early 
administration of good quality and quantity colostrum and 
routine cleaning and disinfection of the facilities of the 
breeding unit.

In conclusion, this study reports a severe NCD outbreak 
with high rates of morbidity and mortality in the risk group 
associate with mixed infections viruses, bacteria, and proto-
zoa in a dairy calf rearing unit in Brazil. The commingling 
of calves from different herds may favor the transmission of 
several enteric pathogens, together with other predisposing 
factors present, increasing the immunological challenge of 
newborn calves, favoring the occurrence of severe enteric 
diseases. Thus, the implementation of health strategies 
directed for these rearing units, including immunization pro-
grams and adequate management measures, is necessary for 
the prevention of enteric diseases.
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