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Abstract: The treatment of coronavirus disease 2019 (COVID-19) has been a challenge. The efficacy
of several drugs has been evaluated and variability in drug response has been observed. Pharma-
cogenetics could explain this variation and improve patients’ outcomes with this complex disease;
nevertheless, several disease-related issues must be carefully reviewed in the pharmacogenetic study
of COVID-19 treatment. We aimed to describe the pharmacogenetic variants reported for drugs used
for COVID-19 treatment (remdesivir, oseltamivir, lopinavir, ritonavir, azithromycin, chloroquine,
hydroxychloroquine, ivermectin, and dexamethasone). In addition, other factors relevant to the
design of pharmacogenetic studies were mentioned. Variants in CYP3A4, CYP3A5, CYP2C8, CY2D6,
ABCB1, ABCC2, and SLCO1B1, among other variants, could be included in pharmacogenetic studies
of COVID-19 treatment. Besides, nongenetic factors such as drug–drug interactions and inflammation
should be considered in the search for personalized therapy of COVID-19.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is a complex disorder affecting several organ
systems caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In
most cases, this disease clinically manifests with self-limiting mild-to-moderate symptoms
of an upper respiratory tract infection, as well as general symptoms such as myalgia and
fatigue. In severely affected patients, an uncontrolled immune response occurs, leading to
an increase of pro-inflammatory cytokines and chemokines, and hospital and ICU care are
required [1]. In severe COVID-19 patients, complications such as acute kidney injury, renal
failure, myocardial injury, liver dysfunction, blood leukocyte abnormalities, septic shock,
and disseminated intravascular coagulation have been described [2].

The mortality rate of COVID-19 varies among countries and the clinical conditions of
the patients. The higher death rates have been associated with age, male gender, ICU care
requirements, obesity, and chronic diseases (mainly oncologic, cardiovascular, metabolic,
and neurodegenerative diseases) [3].

To date, there is a lack of a completely effective drug to treat COVID-19. The available
treatment of COVID-19 is mainly symptomatic and is based on disease severity; however,
several antimicrobials have been used for the disease treatment. The use of antiviral agents
(remdesivir, lopinavir/ritonavir, oseltamivir), antibiotics (azithromycin), antiparasitics
(chloroquine, hydroxychloroquine, ivermectin), and corticosteroids (dexamethasone) have
been reported in the literature [4].

The evidence of the COVID-19 treatments’ effectiveness and recommendations for
prescribing remains controversial, and information from clinical trials is continuously
generated. Nevertheless, a lack of drug response or the occurrence of adverse drug
reactions (ADR) in specific patients has been observed. For instance, some patients with
COVID-19 treated with lopinavir/ritonavir have presented diarrhea, while others reported
nausea and vomiting [5].
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In this sense, pharmacogenetics could explain the inter-individual variability on drug
response based on the genetic of COVID-19 patients [6]. Variants in genes encoding drug-
metabolizing enzymes, transporters, or receptors have been reported, and they could
provide the insight to achieve a personalized therapy leading to a better outcome of this
emerged disease (Figure 1) [7–9]; nevertheless, several disease-related issues must be
carefully reviewed in the pharmacogenetic study of COVID-19 treatment. Therefore, we
aimed to describe the pharmacogenetic variants reported for drugs used for COVID-19
treatment. Besides, other factors relevant to the design of pharmacogenetic studies in this
regard were mentioned.
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concentrations within the therapeutic range, leading to several advantages in the disease’s clinical outcome. Created with
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We performed a search in pharmacogenomic databases (e.g., Pubmed, PharmGKB,
Pharmacogene Variation Consortium, CYPalleles, UGTalleles), and pharmacogenomic
guidelines (Clinical Pharmacogenetics Implementation Consortium, U.S. Food and Drug
Administration, European Medicines Agency) about available information of genetic
variants related to the drugs currently prescribed for the COVID-19 treatment. Infor-
mation about pharmacogenes’ expression in inflammatory diseases and pharmacologic
interactions, relevant to the enzymes and transporters identified for COVID-19 treatment,
was investigated.

2. Current Drugs Employed in the COVID-19 Treatment
2.1. Remdesivir

Remdesivir (GS-441524) is a monophosphoramidate nucleoside analog pro-drug de-
veloped initially to treat Ebola virus disease. It binds to the viral RNA-dependent RNA
polymerase, inhibiting viral replication through premature RNA transcription termina-
tion [10]. Studies in animal models have reported some efficacy for this drug in treating
coronavirus diseases such as SARS-CoV-2 and the Middle East Respiratory Syndrome coro-
navirus (MERS-CoV) [11,12]. Data from clinical trials have shown low-certainty evidence
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that remdesivir may be useful in reducing time to clinical improvement, reducing severe
adverse events, and decreasing mortality in patients with severe COVID-19 [13,14].

Remdesivir is converted into its active triphosphate form, GS-443902, through metabolic
conversion in cells and tissues. CYP2C8, CYP2D6, and CYP3A4 are involved in the
metabolism of remdesivir, but it is considered that it is predominantly metabolized by
hydrolases [15,16]. Several variants are described for the CYP genes with a relevant impact
on the enzyme activity (Table 1).

Table 1. Relevant pharmacogenetic variants in cytochrome P450 enzymes 1.

Pharmacogene Variants Clinical Function

CYP2C8
*1A Normal function

*5, *7, *11 No function

CYP2D6
*1, *2, *27, *33, *34, *35, *39, *45, *46, *48, *53 Normal function

*9, *10, *17, *29, *41, *49, *50, *54, *55, *59 Decreased function
*3, *5, *6, *7, *8, *11, *12, *13, *14, *15, *18, *19, *20,
*21, *31, *36, *38, *40, *42, *44, *47, *51, *56, *57,
*60, *62, *68, *69, *81, *92, *96, *99, *100, *101,

*114, *120, *124, *129

No function

CYP3A4
*1A Normal function

*8, *11, *13, *16A, *17, *22 Decreased function

CYP3A5
*1A, *1D Normal function
*3, *6, *7 No function

1 Data from Pharmacogene Variation Consortium at pharmvar.org, accessed on 19 February 2021.

CYP2C8 presents a low genetic variation, but alleles with no function have been
well described [17]. Contrary, according to the Pharmacogene Variation Consortium
(pharmvar.org, accessed on 19 February 2021), more than 141 CYP2D6 alleles are identified
with different enzyme activity impact. For instance, there are variants related to a lack of
protein activity (e.g., CYP2D6*3, *4, *6); while CYP2D6*10, *17, *29 or *41 are associated
with reduced enzyme activity, and the duplication or multiplication of active alleles (e.g.,
CYP2D6*1xN, *2xN) are related to increased activity of the enzyme [18]. The frequencies
of CYP2D6 variants present a significant interethnic variability, and some variants with
an impaired activity can be commonly found in some populations, which can lead to
differences in response to CYP2D6 substrates. For example, the CYP2D6*4 allele frequency
is higher among Caucasians than in other ethnic groups, while CYP2D6*10 is shared
among East Asians, CYP2D6*41 and duplication/multiplication of active alleles in Middle
Easterns, and CYP2D6*17 in Black Africans [19]. The combination of CYP2D6 alleles could
predict the metabolic phenotype of a subject. For instance, individuals carrying two null
alleles can be classified as poor metabolizers; those with one functional allele and one null
allele as intermediate metabolizers; while the presence of two functional alleles classify the
individuals as extensive metabolizers, and the phenotype ultrarapid metabolizers can be
assigned if the functional alleles are duplicated or multiplied [20].

CYP3A4 is abundantly expressed in the liver of the majority of individuals. To date,
more than 34 allelic variants have been reported, but the clinical impact of some of them re-
mains unknown [17]. However, of considerable relevance in the COVID-19 treatment is that
CYP3A4 presents a cytokine-mediated down-regulation in the course of the inflammatory
response via JAK/STAT pathway, mainly by the interleukin-6 (IL-6) [21].

In addition, remdesivir has been observed to be a substrate of the organic anion
transporting polypeptide 1B1 (OATP1B1) and P-glycoprotein (P-gp) [16,22]. The OATP1B1
transporter is a member of the transmembrane family transport proteins responsible for
the uptake of substances into the cells of various organs, mainly of the liver [23]. It is
encoded by the SLCO1B1 gene in which several variants with impact in drug disposition
have been identified. For instance, the rs2306283 c.388A > G is associated with a decreased
transporter function and is commonly found in Africans, Asians, and Caucasians. Other
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variants present a low frequency among different populations but have been related to
a decreased function of the transporters SLCO1B1 rs56101265, rs56061388, rs72559745,
rs4149056, rs72559746, rs55901008, rs59502379, and rs56199088 [24].

P-gp is an efflux pump encoded by the ABCB1 gene, a member of the superfamily
of the adenosine triphosphate (ATP)-binding cassette (ABC) genes. This transporter is
expressed in the liver, small intestine and colon, kidney, and blood-brain barrier. P-
gp putatively plays a role in viral resistance and trafficking cytokines and enveloped
viruses [25]. Several ABCB1 variants have been reported, however the rs1128503 c.1236C
> T, rs2032582 c.2677G > T/A, and rs1045642 c.3435C > T have been of great relevance in
pharmacogenetics studies. These three variants are located in the gene coding region and
are in linkage disequilibrium; the main effects of the nucleotide changes in the protein have
been related to a variation on transporter expression levels and an altered activity due to
the c.3435C > T and c.2677G > T/A variants, respectively [26,27]. As will be described
below, several drugs are P-gp substrates, and some of them can act as an inhibitor of the
transporter modifying the disposition of the other drugs.

2.2. Lopinavir/Ritonavir

Lopinavir is a human immunodeficiency virus (HIV) protease inhibitor, which can
suppress viral replication in combination with ritonavir. Lopinavir is rapidly and exten-
sively metabolized by the CYP3A4 enzyme [28]. It is co-administrated with a low dose of
ritonavir, a potent inhibitor of CYP3A4, to increase the plasma concentrations of lopinavir
to achieve antiretroviral activity [29,30]. Besides the inhibition of CYP3A4, ritonavir also
inhibits the P-gp in the gut wall, improving lopinavir absorption [31]. Therefore, the
CYP3A4 and ABCB1 variants above described could also impact the pharmacokinetic and
pharmacodynamics for lopinavir and ritonavir.

In addition to CYP3A4 and ABCB1, the impact of variants in CYP3A5, ABCC2, and
SLCO1B1 in plasma concentrations of lopinavir have also been evaluated in different phar-
macogenetic studies, but controversial results were observed. For instance, the SLCO1B1
c.521T > C rs4149056 variant has been related to a reduced transport activity in vivo and
variations of lopinavir plasma concentrations [32] and clearance [33]. The C allele’s ho-
mozygous state was associated with 37% lower clearance and 14% for the heterozygous
condition [33]. Additionally, a reduced dosage requirement of lopinavir/ritonavir in
patients with CYP3A4*22/*22, alone or in combination with SLCO1B1 c.521CC, has been ob-
served [34]. However, other studies have failed to found an association of CYP3A4, CYP3A5,
SLCO1B1, and ABCC2 variants with lopinavir/ritonavir plasma concentrations [35] and
virologic outcome [36]. Likewise, genotypes and haplotypes of ABCB1 variants could not
predict lopinavir’s plasma concentrations in one study [37].

ABCC2 (adenosine triphosphate (ATP)-binding cassette subfamily C member 2) en-
codes the human canalicular multispecific organic anion transporter, also called the mul-
tidrug resistance-associated protein 2 (MRP2). MRP2 is a specific nonbile acid organic
anion transporter, which mediates the primary active export of conjugates of lipophilic
compounds from cells using ATP [38]. Variants in ABCC2 have been related to an altered
transport of MRP2 substrates and the response to antiepileptic drugs [39]. The c.4544G > A
rs8187710 variant in ABCC2 has been associated with a higher accumulation of lopinavir
in peripheral blood mononuclear cells of HIV-treated patients [40]. In contrast, a lower
estimated glomerular filtration rate has been observed in patients carrying the T allele of
ABCC2 -24 C > T rs717620 compared to CC homozygotes [41].

CYP3A5, in conjunction with CYP3A4, accounts for approximately 30% of hepatic
cytochrome P450, and nearly half of the commercialized drugs are metabolized by CYP3A
enzymes. It is expressed in the liver and intestine, but this enzyme is the predominant
form expressed in extrahepatic tissues. CYP3A5 is polymorphic, more than 25 variants
in this gene have been reported, and some have been related to an altered enzymatic
function (Table 1). CYP3A5*3 is the most frequent among all populations, and it is a well-
studied variant allele of CYP3A5 in which an altered mRNA splicing occurs. Carriers of
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CYP3A5*3/*3 genotypes are considered CYP3A5 non-expressors [42], and they could need
lower dosages of CYP3A5 substrates such as lopinavir and ritonavir.

2.3. Oseltamivir

Oseltamivir is an ethyl ester pro-drug used for the treatment of influenza A and
influenza B infection. To exert the antiviral effect, oseltamivir must be taken up by pep-
tide transporter 1 (PepT1) and has to be converted to the active metabolite oseltamivir
carboxylate through the enzyme carboxylesterase 1 (CES1) in the liver [43]. Although this
antiviral has been used to treat COVID-19 [44,45], its effectiveness in this disease has not
been wholly demonstrated [46].

Oseltamivir carboxylate inhibits viral neuraminidase (NEU2), blocking the release
of progeny virions from infected cells and viral entry into uninfected cells [47]. Besides,
oseltamivir is also a substrate of P-gp, which can eliminate the drug before being ac-
tivated [48]. Wide inter-individual variability in the pharmacokinetics, response, and
ADRs occurrence to oseltamivir has been observed [49]; thus, pharmacogenetic studies
have investigated the CES1 genetic variants’ relation with the variation observed in the
oseltamivir treatment [43].

Variants in CES1 have been found associated with variations in the pharmacokinet-
ics of oseltamivir. The rs71647871 p.Gly143Glu has been related to variation in plasma
concentration-time curve of oseltamivir [50], while a decrement in the antiviral drug
bioactivation was found associated with the rs200707504 c.662A > G in CES1 [51].

Another study evaluated the association of oseltamivir ADRs with variants in ABCB1,
CES1, NEU2, and SLC15A1, the gene encoding the transporter PepT1. Authors found
that ABCB1 rs1045642 was related to ADRs under the recessive model; the C allele was
more frequently found among patients who did not present ADRs, while the T allele was
predominant in the group of individuals who did report ADRs [52].

3. Pharmacogenetics of Azithromycin

Azithromycin is an azalide antimicrobial agent and structurally related to the macrolide
erythromycin. It interferes with bacterial protein synthesis by binding to the 50S com-
ponent of the 70S ribosomal subunit [53]. Due to its structural properties, azithromycin
does not interact with cytochrome P450 enzymes, but it is a substrate of the transporters
P-gp and MRP2 [54]. The interaction of azithromycin with P-gp suggests being the reason
for its efficacy in the COVID-19 treatment and its synergistic effect when combined with
hydroxychloroquine [55,56].

A pharmacogenetic study in 20 Chinese Han healthy volunteers found significant
differences in Cmax and Tmax of azithromycin related to the ABCB1 c.2677G > T/c.3435C
> T genotype [57]. Likewise, a significant variation in Cmax and AUC related to ABCB1
genotypes in Pakistani subjects has been observed [58].

4. Pharmacogenetics of Antiparasitics Used for COVID-19 Treatment
4.1. Chloroquine and Hydroxychloroquine

Chloroquine and hydroxychloroquine drugs are used in the treatment and prophylaxis
of malaria. Both drugs are widely metabolized in the liver by CYP2C8, CYP3A4, CYP3A5,
and, to a lesser extent, by CYP2D6 [59]. Genetic variants of these enzymes have been
previously described (Table 1), and a study have suggested that CYP2C8, CYP2C9, and
CYP3A5 genetic variants influence chloroquine malaria treatment; however, there is not
enough evidence of their impact on the chloroquine pharmacokinetics or response [8,60].
Transporters’ variants could be critical in the pharmacogenetics of chloroquine [61]. In this
sense, a pharmacogenetic study, including Brazilian patients with malaria, reported an
association of SLCO2B1 and SLCO1A2 variants with chloroquine response [62].

Regarding the pharmacogenetics of hydroxychloroquine, the CYP2D6*10 variant has
been found associated with the drug’s metabolic ratio [63], while variants in the gene of
the transporter ABCA4 have been related with hydroxychloroquine toxicity [64].
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In addition, international health agencies have warned about the use of chloro-
quine and hydroxychloroquine in patients with known glucose-6 phosphate dehydro-
genase deficiency because hemolysis, and hemolytic anemia, can occur [65]. Although
a recent study does not support this warning among African Americans [66], a case of
hydroxychloroquine-induced hemolytic anemia in a 32-year-old patient of sub-Saharan
African origin with glucose-6 phosphate dehydrogenase deficiency and COVID-19 has
already been reported [67].

4.2. Ivermectin

Ivermectin is a semisynthetic derivative of avermectin B1 used as an antiparasitic drug.
It is extensively metabolized by cytochrome P450 enzymes, predominantly by the CYP3A4
isoform, which converts ivermectin to at least 10 metabolites, most of them hydroxylated
and demethylated derivatives [68,69].

Ivermectin also interacts with P-gp [70], and nonsense mutations in ABCB1 has been
related to severe neurologic ADRs induced by the antiparasitic [71], probably due to an
altered function of the transporter at the blood–brain barrier that leads to toxic levels of
ivermectin in the brain [72].

Besides, ivermectin’s interaction with OATP1A2 and OATP2B1 has been reported [73];
although, to the best of our knowledge, no pharmacogenetic studies evaluating the impact
of SLCO1A2 and SLCO2B1 variants in the ivermectin therapy have been performed.

5. Pharmacogenetics of Corticosteroids Used for COVID-19 Treatment
Dexamethasone

Dexamethasone is a glucocorticosteroid used to suppress cytokine release and inhibit
lung infiltration by neutrophils and other leukocytes. CYP3A4 extensively metabolizes
it into 6-hydroxydexamethasone and other metabolites in the human liver [74]. It is
a substrate of P-gp, which is considered that contributes to steroid resistance [75]. In
PharmGKB (pharmgkb.org, accessed on 19 February 2021), several variants are reported to
influence the response and/or the toxicity to dexamethasone, including variants in ABCB1
and other genes (Table 2). Nevertheless, the reported variants’ association should be taken
with caution because patients treated with different drugs were included in the studies.

Table 2. Pharmacogenetic variants described for dexamethasone response 1.

Pharmacogene Name Variant Drug Phenotype

ABCB1 ATP Binding Cassette Subfamily B
Member 1

rs2032582
rs1045642

Efficacy 2

Efficacy 2

DOK5 Docking Protein 5 rs117532069 Toxicity 3

SERPINE1 Serpin Family E Member 1 rs6092 Toxicity 3

LINC00251 Long Intergenic Non-Protein
Coding RNA 251 rs141059755 Toxicity 3

BMP7 Bone Morphogenetic Protein 7 rs79085477 Toxicity 3

PYGL Glycogen Phosphorylase L rs7142143 Efficacy 4

DOK5 Docking Protein 5 rs117532069 Toxicity 3

CTNNB1 Catenin Beta 3 rs4135385 Efficacy 4

1 Data from PharmGKB (pharmgkb.org, accessed on 19 February 2021), 2 Survival in multiple myeloma, 3 Risk of
osteonecrosis in children with Precursor Cell Lymphoblastic Leukemia-Lymphoma, 4 Risk of relapse in children
with Precursor Cell Lymphoblastic Leukemia-Lymphoma.

In addition, a study based on an expression quantitative trait loci (eQTL) analysis using
>300 expression microarrays from lymphoblastoid cell lines in dexamethasone-treated and
untreated cells derived from asthmatic subjects has identified significant pharmacogenetic

pharmgkb.org
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loci including rs6504666 and rs1380657 (SPATA20), rs12891009 (ACOT4), rs2037925 and
rs2836987 (BRWD1), rs1144764 (ALG8), and rs3793371 (NAPRT1) [76].

6. Considerations in Pharmacogenetic Studies of COVID-19 Treatment

COVID-19 has been a challenge for worldwide science and public health. Treatment
recommendations with available drugs for this emerging disease have been established
and adjusted since the beginning of the pandemic. Proposed drugs have been used for
other infectious and non-infectious diseases, and therefore there is a background for the
design of pharmacogenetic studies related to COVID-19 treatment [7]. However, other
genetic and nongenetic factors should be taken into account, particularly for the treatment
of COVID-19.

6.1. Drug-Drug Interactions

Most of the drugs used for the COVID-19 treatment are metabolized by CYP3A4 and
are the substrate of P-gp and OATPB1 (Figure 2). Nevertheless, there are well-known drug-
drug interactions related to the enzyme and the transporters, which should be considered
in the study of drug response variability. For instance, relevant transporter interactions
of chloroquine, hydroxychloroquine, ivermectin, ritonavir, lopinavir, favipiravir, and
remdesivir with the ABCB1/P-gp, ABCG2/BCRP, and ABCC1/MRP1 exporters, as well as
the OATP2B1 and OATP1A2 uptake transporters, have been reported [73].
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Figure 2. Schematic summary of drug-metabolizing enzymes and transporters of drugs used for the COVID-19 treatment.
A yellow-star has been added in drugs with relevant pharmacogenetic knowledge considering if the enzyme or transporter
meets the following: (1) it is considered as a Pharmacogenomic Biomarker according to the FDA (https://www.fda.
gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling, accessed on 19 February
2021); (2) it is included as pharmacogene variant in Pharmgkb (https://www.pharmgkb.org/, accessed on 19 February
2021); and/or (3) it has been associated with the pharmacokinetics and/or pharmacodynamics of the corresponding
drug in a scientific report. AZT, azithromycin; CHL, chloroquine; DEX, dexamethasone; HCL, hydroxychloroquine; IVE,
ivermectin; LOP, lopinavir; OSE, oseltamivir; REM, remdesivir; RIT, ritonavir. Created with BioRender.com, accessed on 19
February 2021.

https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling
https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling
https://www.pharmgkb.org/
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As a complex disease, polypharmacy could be shared among patients with COVID-19,
besides their routine treatment if they present chronic co-morbidities. In this sense, patients
with COVID-19 could be treated with antimicrobial, anti-inflammatory, as well as chronic
treatments (e.g., antidiabetic and antihypertensive agents), and the potential effect of the
co-treatment in the drug response variability should be evaluated. In Table 3, several drugs
considered as substrates, inhibitors, and inducers of CYP3A4, ABCB1, and OATPB1 are
included. As observed, commonly prescribed drugs can be involved in drug interactions,
including those for the COVID-19 treatment.

Table 3. Examples of drugs reported as substrates, inhibitors and/or inducers of CYP3A4, P-glycoprotein, and OATPB1 1.

Protein Substrates Strong Inhibitors Strong Inducers

CYP3A4

Alfentanil, avanafil, buspirone,
conivaptan, darifenacin, darunavir,

ebastine, everolimus, ibrutinib,
lomitapide, lovastatin, midazolam,
naloxegol, nisoldipine, saquinavir,
simvastatin, sirolimus, tacrolimus,
tipranavir, triazolam, vardenafil,

budesonide, dasatinib, dronedarone,
eletriptan, eplerenone, felodipine,
indinavir, lurasidone, maraviroc,

quetiapine, sildenafil,
ticagrelor, tolvaptan

Boceprevir, cobicistat, danoprevir
and ritonavir, elvitegravir and

ritonavir, grapefruit juice,
indinavir and ritonavir,

itraconazole, ketoconazole,
lopinavir and ritonavir,

paritaprevir and ritonavir,
posaconazole, ritonavir,
saquinavir and ritonavir,
telaprevir, tipranavir and
ritonavir, telithromycin,

troleandomycin, voriconazole

Apalutamide, carbamazepine,
enzalutamide, mitotane,

phenytoin, rifampin,
St. John’s wort

P-gp Dabigatran etexilate,
digoxin, fexofenadine

Amiodarone, carvedilol,
clarithromycin, dronedarone,

itraconazole, lapatinib, lopinavir
and ritonavir, propafenone,

quinidine, ranolazine, ritonavir,
saquinavir and ritonavir,
telaprevir, tipranavir and

ritonavir, verapamil

-

OATPB1

Asunaprevir, atorvastatin, bosentan,
danoprevir, docetaxel, fexofenadine,

glyburide, nateglinide, paclitaxel,
pitavastatin, pravastatin, repaglinide,

rosuvastatin, simvastatin acid

Atazanavir and ritonavir,
clarithromycin, cyclosporine,

erythromycin, gemfibrozil,
lopinavir and ritonavir,

rifampin, simeprevir

-

1 Data from Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers, US Food and Drug Administra-
tion. Available in https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-
inhibitors-and-inducers#table3-1, accessed on 19 February 2021.

6.2. Orphane Nuclear Receptors

Regarding the inhibition or induction of enzymes and drug transporters, it is also
worth mentioning that two genes encode relevant nuclear receptors that contribute to
both auto-induction of drug clearance and drug–drug interactions in combined therapies.
The orphan nuclear receptors PXR (pregnane X receptor, encoded by NR1I2) and CAR
(constitutive androstane receptor, encoded by NR1I3) are xenobiotics’ sensors that mediate
drug-induced changes by increasing transcription of genes involved in drug clearance and
disposition. Therefore, genetic variability in these nuclear receptors could also contribute
to the drugs’ response [77,78].

PXR is an approximately 434-amino acid, 50-kDa protein, mainly expressed in the
liver and intestine. It contains an N-terminus region; a DNA binding domain consisting
of two zinc fingers (amino acids 41–107); a hinge region (amino acids 107–141) and a
ligand-binding domain containing the ligand-binding pocket, and a ligand-depending
activation factor domain (amino acids 141–434) [79,80]. When a ligand binds to PXR, the
receptor is activated, and it forms a heterodimer with 9-cis retinoic acid receptor RXR-alpha,
which binds to the specific DNA region of the target genes to induce their expression [81].

https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers#table3-1
https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers#table3-1
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PXR ligands include drugs, carcinogens, food additives, pesticides, and environmental
pollutants. A wide variety of drugs that bind to PXR have been described, including
antibiotics, anticancer drugs, antihypertensive, antifungal [82], and examples of these
drugs are included in Table 4.

As it has been mentioned before, the target genes include phase I and II drug-
metabolizing enzymes, as well as uptake and efflux drug transporters (Table 4). The
expression of these genes can be modified when a PXR ligand binds to the receptor, but an
impact of NR1I2 genotype in the enzyme and transporter induction and/or in the DNA
binding has also been observed [80]. The effect of several NR1I2 variants on different
drugs’ metabolism can be found in the literature. For instance: rs3814055 in erythromycin
metabolism [83]; rs1464603 and rs1464602 in midazolam clearance [84]; and, rs3814058 and
rs2276707 in doxorubicin clearance [85].

Table 4. Ligands and target genes of the nuclear receptor PXR [80,82,86].

Nuclear Receptor Drug Ligands Target Genes

PXR

Amoxicillin, ampicillin, penicillin,
cefuroxime, cephalexin, cefradine,

sulfamethazine, erythromycin,
rifampin, tetracycline, topiramate,

carbamazepine, phenytoin, valproic
acid, terbinafine, griseofulvin,

clotrimazole, miconazole, nifedipine,
cyclophosphamide, cisplatin,

docetaxel, paclitaxel, vinblastine,
troglitazone, rosiglitazone,

atorvastatin, simvastatin, efavirenz,
nevirapine, ritonavir,

omeprazole, lansoprazole

CYP2B6, CYP2C8, CYP2C9,
CYP2C19, CYP3A4, CES2,

UGT1A1, UGT1A6, ABCB1,
ABCC2

CAR is encoded by the NR1I3 located in chromosome 1, and it consists of nine exons.
The exons 2, 3, and 4 determine the DNA binding domain, while the ligand-binding
domain is encoded by the sequence of DNA comprised between the end of the exon 4
and the beginning of the 9 [78]. CAR forms a heterodimer with retinoid X receptor that
binds to retinoic acid response elements and activates target genes. It shares with PXR
significant cross-talk in both target gene recognition by binding to the similar xenobiotic
responsive elements in their target gene promoters and accommodating a diverse array
of xenobiotic activators. CAR target genes include CYP2B6, CYP2C8, CYP2C9, CYP2C19,
CYP3A4, UGT1A1, ABCB1, ABCC2, ABCC3, and ABCC4 [86]. Although this receptor has
been less studied than PXR, several genetic variants affecting the DNA and ligand-binding
domains have been described [78].

6.3. CYP450 Enzymes’ Expression in Inflammation and Infection Processes

Although inflammation and/or infection have not been commonly considered in
pharmacogenetic studies, both processes are associated with decreased hepatic expres-
sion and/or activities of hepatic and extrahepatic CYP enzymes, drug metabolism, and
drug transporters, resulting in a disturbance of the bioavailability of oral drugs [87,88].
Furthermore, the regulation of CYP enzymes’ expression mediated by several cytokines
has been reported. In addition, mRNAs down-regulation of several CYPs by interleukin-6
have been observed in human hepatocytes [89], and this interleukin plays a crucial role
in the cytokine storm of COVID-19 [90]. Moreover, IL6 and IL6R variants have been re-
cently proposed as prognostic and pharmacogenetic biomarkers of COVID-19, mainly for
monoclonal antibodies targeting IL6 and IL6R [91].

Standard dosages in patients with the infectious and inflammatory process, as COVID-
19, could increase exposure to the drugs, resulting in a higher possibility of ADR incidence.
Simultaneously, for pro-drugs activated by metabolism, the impairment of P450 activities
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due to inflammation could reduce their therapeutic efficacy. In this sense, inflammatory
markers and genes related to the immune response could also be considered in evaluating
the inter-individual variability in the responses to COVID-19 treatment.

7. Discussion

Several pharmacogenetic biomarkers related to the metabolic pathway of drugs used
for COVID-19 treatment have been described in the present review. In agreement with
previous reports [7–9], there are variants in CYP2C8, CYP2D6, CYP3A4, CYP3A5, SLCO2B1,
ABCB1, ABCC2, CES1, and G6PD that could help to improve the clinical outcome of the
COVID-19. The scientific evidence supports the study of variants in CYP2D6, CYP3A4,
SLCO2B1, ABCB1, and ABCC2 with the response to specific drugs (Figure 2). Nevertheless,
the remaining pharmacogenes should not be discarded because the recommendations and
association results are substrate-depending [92], and there is an important influence of the
ethnic origin of the studied population [93].

In addition, it is necessary to consider that the drug response results from the gene-
environment interaction, in which nongenetic factors (e.g., age, gender, co-treatment,
disease severity) must be considered in the pharmacogenetic studies [94]. In this sense,
drug-drug interactions and the inflammation and infection processes in COVID-19 could
represent relevant sources of therapeutic failures and/or drug toxicity; thus the pharmaco-
genetic studies should identify the impact of these factors in drug response to determine
the precise influence of genetic variants in the COVID-19 treatment [95,96].

8. Conclusions

Pharmacogenetics provides insight for the treatment improvement of several dis-
eases, particularly for those treated with drugs presenting a wide inter-individual vari-
ability. Several pharmacogenetic markers could be evaluated in the COVID-19 treatment,
which is currently based on antivirals, antibiotics, antiparasitics, and/or anti-inflammatory
drugs previously used for other infectious and non-infectious diseases. Nevertheless,
there are characteristics of the complex disease and the pharmacogenetic biomarkers that
should be considered in the design of pharmacogenetic studies of COVID-19. Prospec-
tive studies, preferably, besides adequate control of the disease and treatment variables,
could lead to valid results for treatment recommendations on the way to personalized
therapy in COVID-19.

Besides, future pharmacogenetic markers should be identified for the drugs designed
explicitly for the SARS-CoV-2, in which the evaluation of the virus variants in the drug
response is warranted.
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