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Diabetes mellitus (DM) is becoming a lifestyle-related pandemic disease. Diabetic patients frequently develop electrolyte disorders, especially 
diabetic ketoacidosis or nonketotic hyperglycemic hyperosmolar syndrome. Such patients show characteristic potassium, magnesium, 
phosphate, and calcium depletion. In this review, we discuss a homeostatic mechanism that links calcium and DM. We also provide a synthesis 
of the evidence in favor or against this linking mechanism by presenting recent clinical indications, mainly from veterinary research. There 
are consistent results supporting the use of calcium and vitamin D supplementation to reduce the risk of DM. Clinical trials support a marginal 
reduction in circulating lipids, and some meta-analyses support an increase in insulin sensitivity, following vitamin D supplementation. This 
review provides an overview of the calcium and vitamin D disturbances occurring in DM and describes the underlying mechanisms. Such 
elucidation will help indicate potential pathophysiology-based precautionary and therapeutic approaches and contribute to lowering the 
incidence of DM.
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Introduction

The vitamin D precursor 1,25-dihydroxyvitamin D3 
(1,25(OH)2D3) functions via genomic and nongenomic 
mechanisms in a numerous of cell types [9,34,53]. Moreover, 
the paracrine and autocrine modes of action of 1,25(OH)2D3 
appear to be important in several cell types, including 
adipocytes and secretory cells in the pancreas, duodenum and 
kidney [24,25,27,48]. Vitamin D, dietary precursor of 
1,25(OH)2D3, is often considered important nutrient for 
maintaining good health for preventing diseases [33]. In 
addition, 1,25(OH)2D3 has an important role in the regulation of 
cellular Ca2+ signaling, which is linked to cellular responses, 
signaling and secretion [46,47,50]. Sustained Ca2+ signals 
triggered by 1,25(OH)2D3 have been researched for the 
regulation of apoptosis, a process that can determine cell death 
in diseases such as obesity and type 2 diabetes (T2DM) 
[5,36,46,47]. Moreover, 1,25(OH)2D3-induced Ca2+ signals 
(Ca2+ oscillations) can regulate insulin secretion from pancreatic 
-cells [51]. Vitamin D status has been linked to insulin 
resistance and T2DM in observational studies [56,62]. Vitamin 
D deficiency and dysregulation of vitamin D metabolism have 
been associated with an increased risk of obesity and T2DM; 

however, the mechanism for an association between vitamin D 
and disease such as obesity and T2DM remains unclear 
[45,48,53]. In secretory cells, vitamin D has protective against 
apoptosis due to the transient and localized nature of the Ca2+ 
signals induced by 1,25(OH)2D3 [43]. Elucidation of the role of 
1,25(OH)2D3 in the regulation of cellular Ca2+ signaling in 
obesity and T2DM may lead to the development of novel 
therapeutic and preventive modalities for these diseases.

The purpose of this review is to discuss the roles of calcium in 
the regulation of insulin secretion and insulin resistance, with 
an emphasis on signaling pathways that involve vitamin 
D-dependent cellular Ca2+ signaling.

Calcium and vitamin D metabolism and 
biological function including insulin secretion

It has been reported that 1,25(OH)2D3 can regulate insulin 
secretion from pancreatic -cells [45,52]. The rapid increase in 
intracellular calcium ([Ca2+]i) triggers insulin release. The role 
of 1,25(OH)2D3 in insulin secretion derives from its effects on 
Ca2+ influx, mobilization, and buffering in pancreatic -cells 
[39]. 1,25(OH)2D3 induces rapid (within 5–10 sec), synchronous, 
sinusoidal [Ca2+]i, and oscillations in pancreatic -cells, effects 
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that are independent of glucose level [51]. In pancreatic -cells, 
it has been suggested that organelles contribute only marginally 
to the dissipation of large cytosolic calcium increases [8]. 
Calcium clearance is mainly achieved by storage in the 
endoplasmic reticulum (ER) via the sarcoplasmic ER calcium 
ATPase (SERCA) channel and by excreting to the extracellular 
space via the plasma membrane calcium ATPase and Na+/Ca2+ 
exchanger [8]. In addition, 1,25(OH)2D3 stimulates Ca2+ influx 
through voltage-dependent Ca2+ channels and voltage insensitive 
Ca2+ channels as well as via Ca2+ mobilization from the ER 
stores through ryanodine receptors but not through the 
activation of IP3Rs [49]. The effects of 1,25(OH)2D3 on 
intracellular Ca2+ in pancreatic -cells has been linked to 
plasma and ER membrane bound vitamin D receptors [17,35]. 
Pulsatile insulin release from pancreatic -cells is related with 
frequency of Ca2+ oscillations. In the same mechanism, insulin 
release oscillations are proportional to the 1,25(OH)2D3 
concentration [51,52]. The physiological significance of the 
1,25(OH)2D3 effects on Ca2+ in pancreatic -cells (Ca2+ 
oscillations) may be related to its regulatory roles of insulin 
secretion under steady-state glucose concentrations in blood, 
e.g., during fasting when 1,25(OH)2D3 regulate insulin secretion 
by independent with glucose concentration.

Calcium and vitamin D supplementation 
attenuates symptoms of diabetes mellitus

Prospective studies have reported varying results regarding 
the association between calcium intake and risk of T2DM 
[10,40,60]. A large, prospective cohort study of 41,186 subjects 
found that higher calcium intake was not associated with the 
risk of T2DM. In contrast, those who consumed calcium 
supplements had a decreased risk of T2DM compared to the risk 
among non-supplement users [60]. However, among supplement 
users, there was no association between the amount or duration 
of calcium supplementation and a lower risk of T2DM [60]. 
Another large prospective study reported contrasting results 
with total calcium intake being inversely associated with 
incident T2DM. Those who consumed more than 1,200 mg/d 
calcium via diet and supplements had a 21% reduced risk of 
development of incident T2DM than the risk among those who 
consumed less than 600 mg/d. However, among subjects with a 
calcium intake via supplements only, there was an 18% lower 
risk of T2DM in those who consumed more than 500 mg/d than 
in those who consumed less than 250 mg/d [40]. A meta-analysis 
of these two prospective studies reported an 18% decrease in the 
risk of incident T2DM in the highest calcium intake group (661–
1,200 mg/d) from the risk in the lowest calcium intake group 
(219–600 mg/d) [40,60]. Although some results from studies on 
calcium intake and risk of diabetes are conflicting, the results do 
indicate a potential link between the two. The optimal intake of 
calcium that can reduce the risk of T2DM has not yet been 

determined; however, a meta-analysis has indicated that a 
calcium intake of more than 600 mg/d is desirable, while an 
intake over 1,200 mg/d is preferred [40]. In addition, vitamin D 
may influence both insulin secretion and sensitivity. The 
relationship between T2DM and vitamin D has been based on 
cross-sectional and prospective studies, although a conclusive 
relationship has not yet been described. Previous studies differ 
in their designs and in the recommended daily doses for vitamin 
D in non-skeletal diseases and DM patients [2,39,57]. Thus, 
large, well designed, and controlled studies on the potential role 
of vitamin D and calcium in the prevention and management of 
T2DM are required to clarify the relationship among calcium, 
vitamin D, and glucose homeostasis in T2DM.

Calcium-associated proteins and diabetes mellitus

Cytosolic calcium is used for insulin secretion in pancreatic  
cells. Calcium channels in cytoplasm, ER, and mitochondria 
help to maintain intracellular calcium homeostasis. In an 
experimental type 1 DM (T1DM) model, there were changes 
observed in the expressions of calcium-associated proteins and 
the calcium channel. Several calcium transport-related factors 
(CALM, CaBP-9k, CALR, CANX, Cav1.2, and PMCA) have 
been evaluated [1]. The levels of CALM-2, CALM-3, and 
CaBP-9k become elevated after T1DM is induced in a mouse 
model [1]. With regard to cellular calcium-channel calcium, 
decreased expression of Cav1.2 and increased expression of 
PMCA indicate that the concentration of intracellular calcium 
is being gradually depleted. These results indicate that calcium 
metabolism of T1DM model is modulated by various calcium 
channels. In addition, the ER quality control genes CALR and 
CANX are downregulated by streptozotocin administration. 
Administration of streptozotocin can produce ER stress and 
apoptosis of pancreatic cells [1]. CALR and CANX are 
chaperone proteins that are involved in protein folding in the ER 
[13]. Dysregulation of ER calcium- transporters such as 
SERCA and IP3R could induce ER stress [13]. Disruption of 
calcium homeostasis by streptozotocin is associated with the 
ER. SERCA2a and 2b are both responsible for calcium influx 
from the cytosol to the ER. SERCA2b expression was 
significantly downregulated after streptozotocin treatment. In 
contrast, IP3R levels were upregulated by streptozotocin. The 
expression of these ER calcium-channel transporters implies 
depletion of the ER calcium pool, demonstrating that ER 
calcium concentrations are decreased by streptozotocin 
treatment, resulting in ER stress (Fig. 1).

Relationship between hypocalcemia and diabetes

Patients with DM have an increased risk of developing acute 
renal failure due to volume depletion [19]. Under conditions of 
renal failure, phosphorus cannot be excreted by the 
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Fig. 1. Schematic summary illustrating the relationship between calcium and diabetes. Hyperparathyroidism is related to long-term 
insulin resistance and relative insulin insufficiency and can lead to overt diabetes mellitus (DM) or deterioration of glycemic control
in established DM. Patients with DM have an increased risk for development of acute renal failure due to volume depletion. In 
particular, parathyroid hormone (PTH) secretion in DM patient tends to decrease. Disrupted calcium homeostasis facilitates renal 
failure. In DM patients, cellular calcium depletion occurs. In type 1 DM, not only is there diminishment of pancreatic  cells, but both
intracellular and intra-endoplasmic reticulum (ER) calcium are depleted. In type 2 DM intra-ER calcium is depleted, which induces ER
stress.

malfunctioning kidney, leading to hyperphosphatemia [28]. A 
hyperphosphatemic condition induces hypocalcemia by interfering 
in phosphorus excretion in the malfunctioning kidney [6]. In 
addition, phosphate binds ionized calcium and removes calcium 
from the bloodstream. Advanced chronic renal insufficiency 
may be associated with hypocalcemia due to hyperphosphatemia 
or low levels of blood vitamin D [28]. Like hyperphosphatemia, 
hypomagnesemia is another cause of hypocalcemia in diabetic 
patients [38]. Mg2+ depletion leads to hypocalcemia through 
impaired secretion of parathyroid hormone (PTH) or via bone 
and renal tubular resistance to the action of PTH [57]. Vitamin 
D deficiency and administration of diuretics such as furosemide 
administration may also induce hypocalcemia. DM patients 
have an increased prevalence of hypoparathyroidism [57]. 
Moreover, a small downward shift in PTH secretion in patients 
with T1DM, as well as decreased parathyroid gland responsiveness 
to hypocalcemia in DM patients, have been reported [22,44]. 
Ionized calcium binds to negatively charged sites on protein 
molecules. Therefore, hypoalbuminemia is associated with 
pseudohypocalcemia, which is a reduction in total serum 
calcium concentration even though there are normal ionized 
serum calcium levels [28].

Relationship between hypercalcemia and 
diabetes

The incidence of DM in primary hyperparathyroidism is 
approximately 8%, while that of primary hyperparathyroidism 
in DM is 1% [28]. Both values are about three-fold higher than 
the prevalence of each disease in the general population [58]. 
Hyperparathyroidism may be the result of long-term insulin 
resistance or insulin insufficiency, which leads to a DM condition 
or exacerbation of glycemic dysregulation in DM establishment 
[42,58]. An elevated intracellular free-calcium concentration 
via a decrease in normal insulin-stimulated glucose transport 
increases the requirement for insulin, makes over-produce and 
over-secrete of insulin, resulting in hyperparathyroidism-mediated 
insulin resistance [58]. Serum calcium level should be evaluated 
in diabetic patients because hyperparathyroidism has been 
linked to hypertension [21,58]. For T1DM patients, a high 
serum calcium level is a risk factor for autoimmune 
hyperparathyroidism associated with anti-calcium-sensing 
receptor autoantibodies [37]. Recently, a case of severe 
hypercalcemia [15 mg/dL (3.75 mmol/L)] with dehydration in 
diabetic ketoacidosis (DKA) was reported [29]. In DKA, which 
is a life-threatening complication of DM, a hypovolemic 
condition might be the most important causative factor for the 
occurrence of hypercalcemia [29]. Metabolic acidosis and bone 
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resorption decreases bone formation, and bone resorption is a 
process subsequent to severe insulin deficiency and metabolic 
acidosis [59]. As well as bone resorption, insulin growth 
factor-1 deficiency and hypophosphatemia are potential factors 
for hypercalcemia in DM [3,4,29,59]. In addition, medication 
such as thiazide diuretics for diabetic patients may result in 
hypercalcemia [18].

Classification of diabetes in dogs and cats

DM is a common disease in dogs and cats, although a full 
definition of DM in dogs has not been agreed upon. There are 
difficulties with developing such a definition due to the many 
different serum analyzers and glucometers used in veterinary 
medicine. In dogs, DM is commonly characterized by permanent 
hypoinsulinemia, and it resembles T1DM in humans [20,31] as 
there is no increase in c-peptide in response to insulin [20]. 
Moreover, DM In dogs requires exogenous insulin administration 
to avoid ketoacidosis [20,32]. Previous studies have reported 
that genetic and environmental factors are involved in the DM 
of dogs [12,15,16]. Dog leukocyte antigen haplotypes are 
involved in the increased risk of DM, and common 
alleles/haplotypes are observed in diabetes-prone breeds such 
as Samoyed and terriers [7]. Under hypoinsulinemic and 
diabetic conditions, dogs are sensitive to glucotoxicity [20]. In 
addition, as observed in humans, a variant of gestational 
diabetes is present in dogs [16]. In gestational diabetes in dogs, 
progesterone stimulates the production of growth hormone 
(GH) and increased GH leads to insulin resistance [16].

In contrast to dogs, the most common form of diabetes in cats 
is similar to T2DM in humans [26]. As in human T2DM, obesity 
in cats is major risk factors for DM [26,41,55]. Obesity in cats 
can alter the expression of several insulin-signaling genes, 
glucose transporters, and leptin resistant [30]. In healthy 
condition cats, islet amyloid polypeptide is a normal product of 
pancreatic -cells and is stored in secretory vesicles with 
insulin. When insulin is secreted into the circulation system, 
islet amyloid is co-secreted with the insulin. In diabetic cats, 
islet amyloid is deposited in islets of the pancreas and can 
develop into islet glucotoxicity when exposed to prolonged 
hyperglycemia [41].

Relationship between unbalanced serum calcium 
level and diabetes in dogs and cats

The importance of calcium and vitamin D in calcium 
homeostasis and in the maintenance of skeletal health was 
indicated nearly a century ago [61]. In comparison with human 
retrospective studies and experimental studies with laboratory 
animals, the relationship between serum calcium level and DM 
is less fully described in veterinary research and animal 
retrospective studies [11,54]. Based on the small numbers of 

available reports on dogs and cats, there is doubt about a 
connection between calcium and DM in dogs and cats as there 
are no reports connecting abnormal vitamin D metabolism with 
DM in dogs or cats. However, in dogs and cats with DM, there 
is an increased risk for the development of acute renal failure, 
which could develop into DKA. A severe form of DM is 
frequently accompanied by complications such as impaired 
renal function, malabsorption syndromes, acid-base disorders 
and cataract. Especially in renal failure with hypovolemic 
condition, there is an increased frequency of electrolyte 
abnormalities are lethal. Increased cell catabolism and severe 
hyperphosphatemia may occur in the presence of a malfunctioning 
kidney, resulting in hypocalcemia, which, in dogs, can result in 
an increased risk of cataract, a characteristic of the severe form 
of DM [14]. Hess et al. [23] demonstrated that serum total and 
serum ionized calcium levels were low in 221 diabetic dogs. 
Such results show that there is an apparent basis for a 
connection between an abnormal serum calcium level and DM 
in dogs. In dogs and cats, as in humans and laboratory animal 
models, the pancreatic islet insulin secretion mechanism is 
mediated by intracellular calcium ions. This suggests that 
administration of drugs to correct an abnormal blood calcium 
level could have a therapeutic effect in dogs and cats with DM 
and abnormal blood calcium levels.

Conclusion

Abnormalities related to homeostasis of calcium and vitamin 
D are common in diabetic patients and may be associated with 
increased morbidity and mortality. These abnormalities are 
particularly common in decompensated DM as well as in the 
presence of renal impairment or hypo- or hyperparathyroidism, 
which could result in impaired calcium homeostasis. Patients 
with DM often exhibit electrolyte disorders. The severe form of 
DM accompanies unbalanced electrolyte homeostasis in the 
body. Therefore, DM patients need strict control of blood 
glucose, which is of paramount importance in the prevention of 
blood calcium abnormalities. Successful management of DM 
and its associated disorders can best be accomplished by 
elucidating the underlying pathophysiologic mechanisms.
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