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Abstract. Posttranscriptional steps in the production of 
m R N A  include well characterized polyadenylation and 
splicing reactions, but it is also necessary to understand 
how R NA is transported within the nucleus from the 
site of its transcription to the nuclear pore, where it is 
translocated to the cytoplasmic compartment.  Deter-  
mining the localization of RNA within the nucleus is an 
important  aspect of understanding RNA production 
and may provide clues for investigating the trafficking 
of R NA within the nucleus and the mechanism for its 
export  to the cytoplasm. We have previously shown 
that late phase adenovirus-infected cells contain large 
clusters of snRNP and non-snRNP splicing factors; the 
presence of these structures is correlated with high lev- 
els of viral late gene transcription. The snRNP clusters 

correspond to enlarged interchromatin granules 
present in late phase infected cells. Here  we show that 
polyadenylated RN A  and spliced tripartite leader ex- 
ons from the viral major late transcription unit are 
present in these same late phase snRNP-containing 
structures. We find that the majority of the steady state 
viral RN A  present in the nucleus is spliced at the tripar- 
tite leader exons. Tripartite leader exons are efficiently 
exported from the nucleus at a time when we detect 
their accumulation in interchromatin granule clusters. 
Since the enlarged interchromatin granules contain 
spliced and polyadenylated RNA, we suggest that viral 
R N A  may accumulate in this late phase structure dur- 
ing an intranuclear step in RN A  transport. 

T 
HE production of eukaryotic mRNAs can be consid- 
ered in several steps; these include transcription, 
polyadenylation, splicing, and export of mRNA 

from the nucleus to the cytoplasm. Export involves move- 
ment of the RNA within the nucleus from the site of tran- 
scription to the nuclear pore, followed by transport of the 
message through the nuclear pore and into the cytoplasm. 
Although it is convenient to think of these posttranscrip- 
tional processes as separate steps, they are likely to be in- 
ter-related during the production of RNA in vivo. All of 
these reactions occur within the structural framework of 
the nucleus; thus the nuclear organization of gene expres- 
sion activities has recently received considerable attention 
(for reviews see Carter, 1994; Wansink et al., 1994; Bridge 
et al., 1995). 

The nucleus has a high degree of organization with the 
nucleolus as the most obvious and well characterized nu- 
clear compartment (Scheer et al., 1993). Chromatin in var- 
ious degrees of condensation occupies much of the nuclear 
interior. Interchromatin regions contain several character- 
istic structures which have been visualized by electron mi- 
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croscopy (for review see Fakan, 1994). These include peri- 
chromatin fibrils, interchromatin granules, and coiled 
bodies. Perichromatin fibrils are strongly labeled after 
short pulses of [3H]uridine indicating that transcription oc- 
curs at these structures. Perichromatin fibrils are thought 
to be the in situ forms of newly synthesized hnRNA. Inter- 
chromatin granules are not strongly labeled by a pulse of 
[3H]uridine and are therefore not likely to be locations of 
transcription, but several studies have shown that polyade- 
nylated RNA is present in these structures (Carter et al., 
1991, 1993; Visa et al., 1993). SnRNP and several non- 
snRNP splicing factors accumulate at both perichromatin 
fibrils and interchromatin granules, raising the possibility 
that splicing of precursor RNA may occur at these loca- 
tions. Previous work suggests that some splicing of tran- 
scripts occurs at the site of transcription (Beyer and 
Osheim, 1988; Zhang et al., 1994; Baur6n and Wies- 
lander, 1994; Baur6n et al., 1996; Huang and Spector, 
1996); but splicing has also been observed to occur post- 
transcriptionally (Baur6n and Wieslander, 1994). Although 
splicing factors are present in the coiled body, this struc- 
ture is not thought to be directly involved in the splicing of 
RNA, but may rather be involved in some aspect of the 
trafficking of splicing factors (Lamond and Carmo-Fon- 
seca, 1993). 

We are studying the organization of gene expression ac- 
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tivities in the nucleus using adenovirus (ad)i-infected cells 
as a model system. We have focused our initial studies on 
the distribution of splicing factors during ad infection. The 
infectious program of human ads types 2 and 5 consists of 
an early program of gene expression which is followed by 
DNA replication. DNA replication is required for the sub- 
sequent expression of the viral late genes. During the viral 
late phase splicing factors accumulate in large centers 
which we have referred to as "late phase snRNP clusters" 
(Bridge et al., 1993, 1995). We and others have provided 
evidence that these centers correspond to enlarged inter- 
chromatin granules present during the late phase of infec- 
tion (Bridge et al., 1993; Puvion-Dutilleul et al., 1994). 
Both snRNP and SR splicing factors are present in these 
late phase clusters. The presence of splicing factors in sn- 
RNP clusters is well correlated with the production of viral 
late mRNA and proteins (Bridge et al., 1993, 1995). We 
have found that maximum transcription from the viral ma- 
jor late transcription unit (MLTU) occurs at a time when 
splicing factors are present in snRNP clusters in >90% of 
the cells in the culture (Bridge et al., 1995). Viral RNA 
and polyadenylated RNA have been detected in the late 
phase interchromatin granules that correspond to the sn- 
RNP clusters (Puvion-Dutilleul et al., 1994). These data 
suggest a role for the enlarged interchromatin granules in 
the production of viral RNA. 

The identity and the significance of the RNA species 
present in the interchromatin granule structure is the sub- 
ject of current investigation and debate. Huang et al. 
(1994) find that polyadenylated RNA remains associated 
with the interchromatin granule after inhibition of tran- 
scription, and have suggested that this may be a stable 
population of polyadenylated RNA that is not mRNA. Re- 
cently Xing et al. (1995) have reported that specific cellu- 
lar RNAs are spatially associated with the interchromatin 
granule compartment; the collagen I~1 RNA is observed 
to extend into this compartment from the transcribing 
gene which is located at its periphery. Ad-infected cells 
can provide a useful model for studying the significance of 
the interchromatin granule in RNA production since these 
structures are enlarged during the late phase when the in- 
fected cell produces large quantities of RNA from the viral 
MLTU (Bridge et al., 1993, 1995; Puvion-Dutilleul et al., 
1994). 

Here we study the identity and structure of the viral 
RNA present in the late phase snRNP-containing inter- 
chromatin granule clusters using in situ hybridization tech- 
niques. Most ad late messages are produced from the viral 
MLTU (for review see Sharp, 1984). The primary tran- 
script is differentially polyadenylated and spliced to a vari- 
ety of different mRNAs that encode most of the viral late 
protein products. The mRNAs produced from the MLTU 
have three exons of the tripartite leader sequence spliced 
to the 5' end of each message body. We find that late phase 
snRNP clusters contain RNA from the MLTU. Oligonu- 
cleotide probes complementary to spliced RNA sequences 
from the tripartite leader show that spliced forms of viral 
late transcripts are present in the snRNP clusters. Oligo 

1. Abbreviat ions used in this paper, ad, adenovirus; FFU, focus forming 
unit; h p.i, hour postinfection; MLTU, major late transcription unit; n, nu- 
cleotide. 

dT probes demonstrate that polyadenylated RNA is local- 
ized in the clusters. These data show that detectable levels 
of the RNA in the interchromatin granule clusters have 
undergone mRNA processing modifications at either or 
both the 5' and 3' ends of the message. Since these pro- 
cessing modifications are observed in cytoplasmic viral 
mRNAs, we suggest that the viral RNA detected in the 
late phase interchromatin granules may be nuclear RNA 
sequences that are in transit to the cytoplasmic compart- 
ment. 

Materials and Methods 

Cell Culture and Viral Infections 
HeLa cell monolayer cultures were maintained in Dulbecco's modified 
medium containing 10% FCS. Cells were infected with ad2 at a multiplic- 
ity of infection (MOI) of 20 focus forming units (FFU)/cell. Virus titers, 
expressed as FFU/ml, were determined as described (Philipson, 1961). 

Fixation, In Situ Hybridization, and 
Immunofluorescence Staining of Cells 
Ad2- and mock-infected cells grown on glass coverslips were fixed at 18 h 
postinfection (h p.i.). Coverslips with attached cells were washed twice in 
PBS, extracted for 2-3 min on ice with 0.5% Triton X-100 in 100 mM 
NaCl, 10 mM Pipes, pH 6.8, 3 mM MgCl2, 1 mM EGTA, 0.3 M sucrose 
(CSK buffer), and then fixed in 3.7% paraformaldehyde in CSK buffer for 
10 min at room temperature. In the experiment shown in Fig. 2 A, the cells 
were washed twice in PBS and then fixed in 3.7% paraformaldehyde in 
CSK buffer for 10 rain at room temperature. After fixation the cells were 
extracted with 0.1% sodium dodecyl sulfate (SDS), 100 mM Tris-HCl, pH 
7.5, 150 mM NaCl, 12.5 mM EDTA for 5 min at room temperature. This 
protocol was used to preserve the cytoplasmic RNA signal which was lost 
following pre-extraction in 0.5% Triton X-100 in CSK buffer. 

In situ hybridizations and detection of biotin-labeled probes were done 
essentially as described (Pombo et al., 1994). However, it was necessary to 
adjust the hybridization and washing conditions for each probe to obtain 
the least background staining in uninfected cells. Our standard protocol 
was as follows. Fixed cells on coverslips were washed twice with 2× SSC. 
25-100 ng of biotin- or digoxigenin-labeled probes were dissolved in 8 Ixl 
of hybridization buffer consisting of 50% formamide, 2x SSC, 1 p,g/Ixl 
E.coli tRNA, and 5% Dextran sulfate. The probes were denatured for 5 
min at 65°C and chilled on ice. Coverslips containing fixed cells were incu- 
bated with 8 ~1 of hybridization solution at 37°C for 1-4 h. The fixed cells 
were not denatured before hybridization. After the hybridization, cells 
were washed in 2x SSC for 3 times 15 rain at 37°C, followed by a wash in 
1x SSC for 15 min at room temperature. Probe SJ3 was processed as de- 
scribed above except that the final wash was done at 45°C. With probe 
S J2, the hybridization was at room temperature and the final wash follow- 
ing hybridization was at 45°C. With oligo dT, hybridization was done at 
42°C. Probes IN1, USJ5, and USJ6 were hybridized in buffer containing 
25% formamide and 10% dextran sulfate, and the hybridization was done 
at 42°C. 

For detection of biotin-labeled probes cells were washed with 20 mM 
Hepes, pH 7.5, 150 mM KCI, 0.05% Tween-20 (avidin wash buffer) and 
incubated for 30 min with 7 txl of 12.5 p~g/ml extravidin (Sigma) in 20 mM 
Hepes, 150 mM KC1, 0.5 mM DTF, 1% BSA. Ceils were then washed for 
10 min in avidin wash buffer, and then for two times five min in 4x SSC. 
Cells were mounted in Vectashield (Vector Labs, Inc., Burlingame, CA) 
or immunolabeled to detect snRNP. 

Immunostaining of digoxigenin-labeled probes or snRNP was done fol- 
lowing the in situ hybridization washes, or the biotin detection procedure, 
respectively. Antibodies were incubated with the cells for 30 rain in a solu- 
tion of 100 mM Tris-HC1, pH7.5, 150 mM NaCI, 0.5% Blocking Reagent 
(Boehringer Mannheim, Indianapolis, IN). Washes were done in 4x SSC 
instead of PBS. Monoclonal antibody Y12 (Lerner et al., 1981) was used 
to detect snRNP. Digoxigenin was detected with commercial antibodies 
from Boehringer Mannheim. Secondary antibodies were from Southern 
Biochemicals (Birmingham, AL). 

In some experiments cells on coverslips were incubated with 8 pd of 100 
~g/ml RNAse A in 2x SSC, or 8 ixl of 100 U/ml RNase free DNase I 
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(Promega) in 40 mM Tris-HCl, pH 7.9, 6 mM MgCI 2 for 45 min in a moist 
chamber at 37°C following fixation. Cells were washed for three times 10 
min in 2× SSC and then hybridized as described above. After the in situ 
hybridization washes cells from some experiments were incubated with 8 i~1 
of 75 U/ml RNAse H (Amersham) in 40 mM Tris-HC17.5, 4 mM MgCI2, 
1 mM DTT, 4% glycerol, 30 Ixg/ml BSA, 100 mM KC1, for 45 min in a 
moist chamber at 37°C. Cells were washed for three times 10 min in 4× 
SSC and biotin-labeled probes were detected as described above. 

Conventional fluorescence microscopy (Figs. 2, 3, and 4) was per- 
formed with a Nikon Optiphot-2 microscope using a 100x objective. Cells 
were photographed with Kodak Tmax 400 film using the Nikon UFX-DX 
camera system (Figs. 2 and 3). Alternatively, cells were visualized with a 
Meridian cooled CCD camera system from Colorado Video Inc. (Boul- 
der, CO) (Fig. 4). Confocal microscopy (Fig. 5) was performed with a mul- 
tiprobe 2000 instrument (Molecular Dynamics, Sunnyvale, CA) equipped 
with an argon/krypton laser scanner using wavelengths of 488 and 568 to 
detect fluorescence from FITC and Texas red, respectively. 

All oligonucleotides used in this work were purchased commercially 
from Operon or from Pharmacia. The sequence of the oligonucleotide 
probes used for the in situ hybridizations were as follows. SJI: 
5 'XCAACCGCGAGCCCAACAGCTG3' ,  SJ1 (1 lb) :5 'XCCCAACAGC- 
TG3', SJ2:5 'XGGCGGAGTACCGTFCGGAGG3' ,  SJ3:5'XCAGCAG- 
CTCCTCTFGCGACTG3' ,  o l i g o ( d T ) ; 5 ' X I T I T I T I T I T I T I T I I I I -  
T 'FF3 ' ,USJ55 'YGCTCAGCCTACCTFGCGACTG3' ,  USJ6:5'YCAG- 
CAGCTCCTCTGGCGGCGAC3 ' ,  IN I :5 'YGTCTITFCTGACCAGA-  
TGGACG3' .  X corresponds to biotin and Y to digoxigenin. PCR primers 
used to generate PCRex were 5 'CTCTCTFCCGCATCGCTGTC3'  and 
5 'CTTGCGACTGTGACTGGq'TAG3' .  PCR primers used to generate 
PCRin were 5 'GAGT ACT CCCT CT CAAAAGCG3 '  and 5 'CGCGGC- 
CAAGGAGCGCGCC G3 ' .  PCR reactions were performed with biotin- 
16-dUTP (Boehringer Mannheim) present in the nucleotide mixture to label 
the PCR product. The PCR reactions contained 134 I~M dTTP, 66 I~M Bi- 
otin-16-dUTP, and 200 IxM dATP, dGTP, and dCTP. Probes generated by 
PCR were purified by G-50 Sephadex spin column chromatography be- 
fore their use for in situ hybridizations and the concentrations estimated 
by gel electrophoresis. 

Preparation of Nuclear and Cytoplasmic RNA 
Total RNA was prepared from the cytoplasms and nuclei of infected cells 
as described (Sambrook et al., 1989; Smiley et al., 1995). Except where in- 
dicated, all procedures were carried out on ice. 4--6 × 106 infected or unin- 
fected cells were washed twice with ice cold PBS, scraped into 1 ml of PBS 
and transferred to a microcentrifuge tube. Cells were pelleted by centrifu- 
gation and resuspended in 0.4 ml 10 mM Tris-HC1, pH 7.5, 140 mM NaCl, 
1.5 mM MgC12, 0.5% NP-40. Cells were incubated for 5 min, and the nu- 
clei were then pelleted by centrifugation in a microcentrifuge. The super- 
natant was removed for the cytoplasmic fraction. This fraction was centri- 
fuged at top speed for greater than 1 rain to remove any residual nuclei 
and the cytoplasm was transferred to a new tube. Nuclei were washed by 
resuspending in 0.4 ml 10 mM Tris-HCt, pH7.5, 140 mM NaCl, 1.5 mM 
MgClz, 1.0% NP-40, pelleted by centrifugation and resuspended in 0.4 ml 
of the same buffer. 5 U of RNAse free DNAse I (Promega, Madison, WI) 
was added to the nuclei and they were incubated for 5 min at 37°C. SDS 
and proteinase K were then added to both the nuclear and cytoplasmic frac- 
tions to a final concentration of 1.0%, and 1 mg/ml, respectively, and incu- 
bated at 37°C for 30 min. Nucleic acids were precipitated in ethanol fol- 
lowing organic extraction. Nucleic acids were dissolved in 200 ixl of 40 mM 
Tris-HCl, pH 7.5, 6 mM MgCl2, containing 75 U/ml RNAse free DNase I 
(nuclear fraction) and 25 U/ml (cytoplasmic fraction) and incubated for 45 
min at 37°C. After organic extraction RNA was precipitated and stored in 
ethanol. 

S1 Nuclease Quantitation of viral RNA 
Cytoplasmic and nuclear RNA was prepared as described above. The 
level of spliced and unspliced RNA from the tripartite leader was deter- 
mined by $1 nuclease protection as described (Sambrook et al., 1989; 
Bridge et al., 1991), using 2-10 Ixg of nuclear or cytoplasmic RNA pre- 
pared at various times after infection. Equal amounts of RNA from unin- 
fected cells were included as controls. We used 5' end labeled synthetic 
oligonucleotide probes to detect RNA from the tripartite leader. These 
probes overlapped the 5' end of exon 2 and the 5' end of exon 3 of the tri- 
partite leader. The sequences of these probes were 5 'GACCGCGA-  
AGAGTTrGTCCTCA ACCGCGAGCFGTGGAAAAAAAAGGGA C A- 

GACCCAGGGATTGGC3' ,  and 5 'GCGGACTCGCTCAGGTCCCFCG- 
GTGGCGGAGTACCTACACAACAATFGTFGAGATGCCCCAGGG- 
ATTGGC3' ,  respectively. The 3' end of each probe contained extra 
bases from the bacterial chloramphenicol gene so that full-length probes 
could be distinguished from the portion of the probe protected by un- 
spliced tripartite leader RNA. After digestion with Sl nuclease, samples 
were fractionated on 10% acrylamide 7 M urea gels. The gels were then 
analyzed by phosphorimaging using a 400S instrument (Molecular Dy- 
namics). 

[3H]Uridine Incorporation into Nuclear and 
Cytoplasmic RNA 
Infected ceils at 18 h p.i. or uninfected cells were incubated with media 
containing 0.2 mCi/ml [3H]uridine and cold uridine to a final concentra- 
tion of 14 IxM for 15, 30, 60, 90, and 120 min. Nuclear and cytoplasmic 
RNA was prepared as described above except that following digestion 
with RNase free DNase, the samples were subjected to G-50 Sephadex 
spin column chromatography to remove the unincorporated [3H]uridine 
label. Hybridization of labeled RNA to immobilized DNAs on filters and 
subsequent  washing and RNAse treatment  was as described (Ausubel  
et al., 1989) for hybridization of labeled RNA to DNA containing filters 
following nuclear run on analysis. However, the labeled RNA was not de- 
graded by base treatment in our experiments. The spliced tripartite leader 
sequence from a cDNA clone (ptripCat, Nordqvist and Akusj~irvi, 1990) 
was subcloned into pGem T vector following PCR amplification to create 
plasmid p31, containing the 201n spliced ad tripartite leader. Plasmid 
pDX589 containing sequences corresponding to ad late region 3 has been 
previously described (Bridge et al., 1995). Labeled RNA prepared from 
approximately 6 × 106 cells was hybridized to 20 p~g of p31 DNA and 10 
~g of pDX589 immobilized on filters. An equal amount of pGem 11 DNA 
without any insert was used as a control to determine background hybrid- 
ization. RNA hybridizing to the filters was detected by scintillation spec- 
trometry. 

Results 

Ad RNA from the MLTU Is Present in Discrete 
Nuclear Centers 

We have determined the location of ad R N A  in late 

Figure 1. T h e  locat ion o f  p robes  u sed  for in si tu hybr id iza t ions  
relat ive to thei r  ta rget  s e q u e n c e s  in spl iced and  unspl iced  fo rm s  
of  viral late R N A .  Synthe t ic  o l igonucleo t ide  p robes  were  20-22  n 
in l eng th  and  were  labe led  with e i ther  b iot in  or  d igoxigenin  for 
de tec t ion  af ter  in s i tu  hybr id iza t ion .  P C R e x  and  P C R i n  p ro b es  
were  ob t a ined  by P C R  ampl i f ica t ion  of  a c loned  spl iced ad  t r ipar-  
t i te l eader  s e q u e n c e  der ived  f r o m  c D N A ,  or  f r om p lasmid  con-  
ta in ing  s e q u e n c e s  c o r r e s p o n d i n g  to the  first in t ron  o f  t h e  M L T U ,  
respect ively.  T h e  s e q u e n c e s  o f  the  p r ime r s  u sed  for ampl i f ica t ion  
and  t he  o l igonuc leo t ides  u sed  as p robes  are  g iven  in Mate r i a l s  
and  M e t h o d s .  P roces sed  and  u n p r o c e s s e d  fo rms  of  a viral late 
R N A  are  r e p r e s e n t e d  by  black lines. H e x o n  refers  to the  m e s s a g e  
b o d y  coding for the  viral late capsid  p ro te in  hexon .  1, 2, and  3 
show the  loca t ion  of  the  t r ipar t i te  l eade r  exons .  G r a y  boxes  sh o w 
the  par t s  of  the  m e s s a g e  c o m p l e m e n t a r y  to the  probes .  T h e  f igure 
is no t  d r a w n  to scale. 
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Figure 2. (A) In situ hybrid- 
ization to viral nucleic acids. 
Infected cells at 18 h p.i. (a) 
and uninfected cells (b) 
grown on coverslips were 
fixed in paraformaldehyde 
and extracted in SDS buffer 
as described in Materials and 
Methods. In situ hybridiza- 
tions were performed with 
the biotinylated oligonucle- 
otide probe S J1. The probe 
was detected with FITC- 
extravidin. In infected cells 
labeling is observed in the cy- 
toplasm and in the nucleus. 
In the nucleus the staining is 
concentrated in several dis- 
crete spots. (B) S J1 detects 
spliced viral RNA. Infected 
(a through e, and g) and un- 
infected (U/) (f and h) cells 

grown on coverslips were extracted with 0.5% Triton X-100 buffer and then fixed in paraformaldehyde as described in Materials and 
Methods. a-f  show cells that were hybridized to S J1. g and h were hybridized to SJl(llb), which contains only the last l ln  of S J1 com- 
plementary to the 3' end of exon 1. UT, untreated cells, e shows cells that were treated with 75 U/ml RNAse H after hybridization, b 
and c show cells treated with 100 U/ml DNase I and 100 i~g/ml RNAse A, respectively, before hybridization. Bars: (A and B) 10 ixm. 

phase-infected HeLa cells using in situ hybridization. Oli- 
gonucleotide probes labeled with digoxigenin or biotin 
were hybridized to fixed cells that had been grown and in- 
fected on coverslips. The location of the probes used in 
this study relative to their target RNA sequences is shown 
in Fig. 1. S J1 is an oligo of 21 nucleotides (n) complemen- 
tary to sequences spanning the first splice junction in the 
tripartite leader. The entire target sequence of 21n is only 
colinear in RNAs that have spliced these two exons to- 
gether. Fig. 2 A shows that S J1 hybridizes extensively to 
RNA present in the cytoplasm of infected cells (a) as 
would be expected since its target sequence is present in 
all spliced late RNAs derived from the MLTU. However, 
there is also considerable hybridization of S J1 to se- 
quences in the nucleus, where the probe is concentrated in 
a number of discrete centers. No signal was observed with 
the probe in uninfected cells (b). 

We next investigated the nature of the target sequences 
detected by probe S J1 in these nuclear centers by treating 
fixed cells with various nucleases either before or after 
performing the in situ hybridization. Fig. 2 B shows strong 
hybridization of S J1 to nuclear centers in untreated in- 
fected cells. In cells treated with RNase A before hybrid- 
ization or RNase H after hybridization, no staining was 
observed with this probe. In contrast, infected ceils treated 
with DNase I before hybridization showed strong labeling 
of the nuclear centers. In these experiments cells were pre- 
extracted with buffer containing Triton X-100 as described 
in Materials and Methods to remove the cytoplasmic RNA 
and increase the visibility of the nuclear signal. We also 
tested a probe that contained the last l l n  of SJ1 comple- 
mentary to the 3' end of exon 1 (Fig. 1, SJ l ( l lb) ) .  This 
probe did not hybridize to infected cells under identical 
conditions to those used for hybridization with S J1 sug- 
gesting that S J1 cannot efficiently hybridize to unspliced 
RNA which has a target sequence of only l l n  complemen- 

tary to S J1. Other investigators have also found that splice 
junction oligonucleotide probes 24n in length hybridize 
specifically to spliced RNA (Zhang et al., 1994). Taken to- 
gether these results show that S J1 is hybridizing to spliced 
RNA present in discrete nuclear centers. 

Spliced Viral RNAs  and Polyadenylated RNAs  Are 
Present in Late Phase snRNP Clusters 

We have previously described the accumulation of splicing 
factors in discrete nuclear clusters during the late phase of 
viral infection (Bridge et al., 1993, 1995). In situ hybridiza- 
tions were followed by immunostainings with monoclonal 
antibody (mAb) Y12 to determine the relationship be- 
tween the nuclear centers containing RNA and late phase 
clusters containing snRNP. The results are shown in Fig. 3. 
S J1 was present in nuclear centers that are identical to the 
late phase snRNP clusters detected by Y12 (compare a 
and b). Two other probes complementary to the second 
and third splice junctions of the viral mRNA encoding the 
hexon protein were also detected in the same late phase 
clusters that contain snRNP (c-f). Thus, late viral RNAs 
which are at least partially spliced accumulate in this struc- 
ture during the late phase. The location of polyadenylated 
RNA in infected cells was determined with an oligo dT 
probe of 21n. This probe also labeled the same late phase 
clusters that contain snRNP (compare g and h). Oligo dT 
probes have been previously shown to label the splicing 
factor rich interchromatin granule network in uninfected 
cells (Carter et al., 1991, 1993; Visa et al., 1993, see also 
Fig. 4 h). Unspliced RNA and intron sequences were de- 
tected with probes US J5, US J6, and IN1. These probes la- 
beled small punctate spots throughout the nucleoplasm 
(Fig. 4); they did not label large centers such as those de- 
tected by oligo dT (Fig. 4 g) that correspond to late phase 
snRNP clusters (Fig. 3). 
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Figure 3. Spliced viral R N A  
and polyadenylated RNA are 
present in the same late 
phase clusters that contain 
snRNP. Cells were infected 
and fixed as described in the 
legend for Fig. 2 B. In situ 
hybridizations were per- 
formed as described in Mate- 
dais and Methods with probes 
S J1, S J2, S J3, and oligo dT 
(a, c, e, and g, respectively). 
The probes were detected 
with FITC-extravidin. After 
the hybridization protocol 
the localization of snRNP 
was determined by immu- 
nostaining with mAb Y12 
(b, d,f, and h). Bar, 10 Ixm. 
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Figure 4. Localization of probes complementary to introns and 
unspliced junctions. Infected and uninfected cells were fixed and 
hybridized as described in the legend for Fig. 2 B. Probes IN1 (a 
and b), US J5 (c and d), and US J6 (e and .f) were used for in situ 
hybridization and detected with anti-digoxigenin. The results are 
compared with the oligo dT probe (g and h) which labels snRNP 
clusters in infected cells (Fig. 3) and the snRNP containing inter- 
chromatin granule network in uninfected cells (h, Carter et al., 
1991, 1993). Oligo dT was detected with FITC-extravidin. The 
large clusters detected with oligo dT are not observed in cells hy- 
bridized to intron or unspliced junction probes. Bar, 10 txm. 

In situ hybridizations were also performed with DNA 
probes generated by PCR amplification of ad D N A  clones 
in the presence of biotinylated dUTP (see Fig. 1). Probe 
PCRex corresponds to the 201n spliced tripartite leader 
exons and was amplified from a cDNA clone containing 
the spliced tripartite leader. Probe PCRin corresponds to 
250n within the first intron of the MLTU. Late phase- 
infected cells were processed for in situ hybridization with 
these probes, and then immunostained with mAb Y12 to 
determine the location of the snRNP clusters. Confocal 
micrographs of the staining patterns are shown in Fig. 5. 

PCRex labels the same late phase clusters that contain 
snRNP; the confocal overlay of these two staining patterns 
shows that the clusters are yellow (Fig. 5 c). PCRex shows 
a hybridization pattern that is similar to that obtained with 
the splice junction oligos (Figs. 2 and 3). Thus, all of the 
probes we have tested that hybridize to ad tripartite leader 
exons label the late phase snRNP dusters. In contrast, 
PCRin shows staining in the nucleus that is not concen- 
trated in snRNP clusters; the confocal overlay shows that 
the red snRNP clusters are separate from the green stain- 
ing obtained with PCRin (Fig. 5 Jr'). We have no evidence 
that introns or unspliced RNA accumulate in the snRNP 
clusters, although it should be noted that we cannot ex- 
clude the presence of unprocessed RNA in the clusters 
since it is always possible that the target sequences are not 
accessible to the probes there. Taken together, the data 
show that the RNA present in the late phase snRNP clus- 
ters consists of species that are at least partially spliced 
and polyadenylated. 

Nuclear Accumulation of Spliced Viral Late RNA 

The results described above indicate that there is a signifi- 
cant accumulation of spliced RNA within the nucleus of 
late phase-infected cells. We have measured the levels of 
spliced and unspliced leader sequences at 18-20 h p.i. us- 
ing $1 nuelease analysis, and find that 85-90% of nuclear 
tripartite leader sequences are spliced (Fig. 6 A). Spliced 
tripartite leader sequences in the nucleus represent ~ 2 5 -  
40% of the total spliced tripartite leader present in the cell 
at 18 h p.i. (data not shown) and are therefore a significant 
population of spliced viral late RNA. In contrast, cellular 
and viral early mRNAs are strongly biased towards the cy- 
toplasmic compartment (Leppard and Shenk, 1989). To 
determine whether nuclear accumulation of spliced tripar- 
tite leader containing RNAs is characteristic for the bio- 
genesis of MLTU derived transcripts or whether it results 
from overloading the machinery for the production of 
these RNAs, we performed time course experiments in 
which we compared the nuclear and cytoplasmic levels of 
spliced tripartite leader sequences. The results of this time 
course are shown in Fig. 6 B. From 11-18 h p.i., the per- 
cent of spliced leader RNA in the nucleus was ~25-35% 
of total spliced sequences detected in the culture. Thus, 
the proportion of spliced nuclear RNA to spliced cytoplas- 
mic RNA at 11 h p.i. was not markedly different from that 
at 18 h p.i. At 8 h p.i., the earliest time at which we could 
detect spliced tripartite leader sequences, the amount of 
nuclear spliced RNA was actually greater than the corre- 
sponding cytoplasmic levels. These results suggest that nu- 
clear accumulation of spliced tripartite leader RNA does 
not occur simply as a result of overloading the system with 
MLTU derived transcripts. 

Tripartite Leader Sequences Are Efficiently Exported 
from the Nucleus 

The presence of a large fraction of spliced viral tripartite 
leader containing RNA in the nucleus, and detection of at 
least a portion of these RNAs in late phase snRNP clusters, 
raises the possibility that the RNA present in the clusters 
is targeted for export to the cytoplasm. We have exam- 
ined export of sequences present in viral RNAs in kinetic 
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Figure 5. Confocal micrographs showing 
the localization of viral RNA relative to 
late phase snRNP dusters. Cells were in- 
fected and fixed as described in the leg- 
end for Fig. 2 B. Immunostaining with 
mAb Y12 is shown in red in a and d. Y12 
was detected with a Texas red coupled 
secondary antibody. In situ hybridiza- 
tions with probes PCRex and PCRin are 
shown in green in panels b and e, respec- 
tively, and were detected with FITC- 
extravidin. Confocal overlays of the 
staining patterns are shown in c and f. 
SnRNP dusters (a) and the centers la- 
beled by PCRex (b) eolocalize in the 
overlay of these two staining patterns in 
which the clusters are yellow (c). The sn- 
RNP clusters (d) are separate from the 
in situ hybridization staining pattern ob- 
served with PCRin (e); the overlay 
shows separate red and green staining (f). 
Bar, 10 ~m. 

labeling exper iments  of cells incubated with [3H]uridine 
from 18 h p.i. Af t e r  a 2-h continuous label  with [3H]uri- 
dine, uninfected cells and cells from 20 h p,i. show no dif- 
ference in the total  amount  of  labeled po lyadenyla ted  
R N A  that  has been  expor ted  to the cytoplasm during the 
labeling per iod  (data  not  shown, see also Flint,  1986). 
Thus, there  is no defect  in the t ranspor t  of  m R N A  from 
the nucleus to the cytoplasm during this phase of  the infec- 
t ion even though significant levels of spliced R N A s  have 
accumulated in the nucleus. 

We have looked  at the conservat ion of newly synthe- 
sized R N A  between the nucleus and the cytoplasm by fol- 
lowing the rate  of [3H]uridine incorporat ion into a target  
sequence in both the nucleus and the cytoplasm during 
continuous labeling (Nevins and Darnel l ,  1978). If newly 
synthesized sequences are conserved between the nucleus 
and the cytoplasm then the rate of incorpora t ion  of  label  
into the nuclear  target  sequence during the initial l inear 
phase of  the labeling period,  will be the same as the rate of 

Figure 6. (A) $1 nuclease analysis of nuclear tripartite leader ac- 
cumulation. 32p-labeled oligonucleotide probes corresponding to 
the region overlapping the 5' end of exon 2 and the 5' end of exon 3 
were protected by nuclear RNA prepared at 18 h p.i. as described 
in Materials and Methods. 1, 2, and 3 refer to the ad tripartite 
leader exons. The location of the probes used for S1 analysis is 
shown below exons 2 and 3. Probes were labeled at the 5' end as 
indicated by a star (*). The 3' end of each probe contained addi- 
tional sequences from the bacterial chloramphenicol gene so that 
the fragment protected by unspliced RNA could be differentiated 
from the full-length probe. The protected bands from spliced and 
unspliced nuclear infected cell RNA were quantitated by phos- 

phorimaging. The numbers below each probe indicate the % of 
the radioactivity in the fragment protected by spliced RNA rela- 
tive to the total radioactivity protected by both spliced and un- 
spliced forms of nuclear RNA. The results indicated that most of 
the steady state RNA in the nucleus is spliced at the tripartite 
leader exons. (B) Time course analysis of nuclear and cytoplas- 
mic tripartite leader accumulation. Cells were infected with ad, 
and nuclear and cytoplasmic RNA was prepared as described in 
Materials and Methods at the indicated times. An oligonucle- 
otide probe overlapping the 5' end of the third exon of the tripar- 
tite leader (Fig. 6 A) was used to measure accumulation of this 
RNA by S1 analysis. The amount of labeled probe protected by 
spliced nuclear and spliced cytoplasmic RNA at different times 
after infection was quantitated by phosphorimaging. Numbers 
above the columns give the percentage of spliced RNA in nuclear 
and cytoplasmic compartments for each time point. 
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accumulation of label into the cytoplasmic target se- A 
quence. Thus, the slope of the curves showing the amount 
of radioactivity incorporated into the target sequence will 
be similar in both the nucleus and the cytoplasm, but the 

600"  
curve showing the incorporation into cytoplasmic RNA 
will be delayed relative to the nuclear curve due to the 
time it takes for the target RNA to be exported to the cy- 
toplasm. Previous studies using these techniques were con- 
sistent with the view that every transcript produced from ,00- 
the MLTU is processed to one mRNA which is exported 
to the cytoplasm (Nevins and Darnell, 1978). We com- 
pared the conservation between the nucleus and the cyto- 
plasm of spliced tripartite leader sequences and sequences 200- 
corresponding to late region 3 (L3) in the experiments 
shown in Fig. 7. We find that the slope of the curves show- 
ing incorporation of label into tripartite leader containing 
nuclear and cytoplasmic RNA differed by less than two- 0 
fold suggesting that the newly synthesized tripartite leader 
is efficiently exported to the cytoplasm (Fig. 7 A). In con- 
trast the slope of the nuclear accumulation curve of newly 
synthesized L3 sequences was about six times greater than B 
the corresponding slope of the accumulation curve in the 
cytoplasm. This shows that only ~15% of newly synthe- 
sized L3 is exported to the cytoplasm as would be ex- 

2 0 0 0 0 -  
pected since this region is processed away from mRNAs 
produced from each of the other four late regions (Nevins 
and Darnell, 1978; Sharp, 1984). The results obtained with 
the tripartite leader sequences are in good agreement with 
the results showing 70-100% conservation of sequences 
at the 3' end of poly(A) selected viral RNA between the ~0000. 
nucleus and the cytoplasm (Nevins and Darnell, 1978); the 
rate of tripartite leader containing RNA accumulation in 
the cytoplasm was within twofold of the nuclear value. 
These results indicate that viral spliced tripartite leader se- 
quences are being transported between the nucleus and 
the cytoplasm about as efficiently as viral polyadenylated 0 
RNA during the late phase of infection. 0 

Discussion 

The biochemical events in eukaryotic RNA production 
have been extensively investigated; less is known about 
the nuclear organization of gene expression. Eukaryotic 
gene expression is characterized by separate cellular com- 
partments for the synthesis of RNA and the translation of 
proteins from that RNA. Thus, RNAs that encode for pro- 
teins must move from the site of their transcription within 
the nucleus to the nuclear pore where they are transferred 
to the cytoplasm; this process has been described as RNA 
export (for reviews see Izaurralde and Mattaj, 1995; Ger- 
ace, 1995). The mechanisms and the factors involved in 
regulating RNA export are only beginning to be defined, 
and the manner in which the export of RNA is coordi- 
nated with posttranscriptional processing events such as 
polyadenylation and splicing is not well understood. De- 
termining the nuclear localization of RNA will be an im- 
portant aspect of understanding how RNA production is 
organized within the nuclear compartment. We have used 
in situ hybridization techniques to localize ad RNA in late 
phase-infected cells. 

An oligonucleotide probe complementary to the first 

Hybr id iza t ion  to immobi l ized  DNA 
co r r e spond ing  to the t r ipar t i te  leader  

CPM Nuc 
CPM Cyt 

i / 

20 40 60 80 100 120 140 160 

time after the addition of 3H-uridine (min) 

Hybr id iza t ion  to immobi l ized  DNA 
cor respond ing  to late region 3 

----D--- CPM Nuc 
CPM Cyt 

i - i - i - i , i 

2 0  4 0  6 0  8 0  1 0 0  1 2 0  1 4 0  160 

time after the addition of 3H-uridine (rain) 

Figure 7. [3H]Uridine incorporation into nuclear and cytoplasmic 
viral RNA. Cells at 18 h p.i. were incubated with media contain- 
ing 0.2mCi/ml [3H]uridine and cold uridine to a final concentra- 
tion 14 IxM uridine. At the times indicated the labeled media was 
removed and RNA was prepared from the cytoplasmic and nu- 
clear fractions as described in Materials and Methods. Cytoplas- 
mic or nuclear RNA from approximately 6 × 10  6 cells was hybrid- 
ized to filters of immobilized plasmid DNA containing the 201n 
spliced tripartite leader sequence derived from a cDNA clone 
(A) or to immobilized plasmid DNA containing sequences from 
late region 3 (B). pGemll vector DNA without any viral insert 
was used as a control to determine the nonspecific binding. The 
amount of radioactivity hybridizing to these filters was deter- 
mined by scintillation counting. The values are given in counts 
per minute (cpm) and have been corrected for the background 
hybridization to pGem 11 DNA. 

splice junction of the ad tripartite leader (Fig. 1), hybrid- 
ized to sequences present in the cytoplasm of infected cells 
as would be expected, but in addition, we found that this 
probe hybridized to RNA present in discrete centers in the 
nucleus (Fig. 2). Double-labeling experiments in which the 
in situ hybridization was followed by immunostaining, 
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showed that the nuclear centers that are labeled by the 
splice junction and exon probes are identical to the snRNP 
clusters which we have previously described in ad-infected 
cells (Bridge et al., 1993, 1995; Fig. 3 and Fig. 5, a-c). We 
have provided evidence that snRNP clusters are likely to 
correspond to enlarged interchromatin granules present in 
late phase-infected cells (Bridge et al., 1993). This is con- 
firmed by electron microscopy studies showing that late 
during infection enlarged interchromatin granules contain 
high concentrations of snRNP in addition to viral RNA 
and polyadenylated RNA (Puvion-Dutilleul et al., 1994). 
Polyadenylated RNA is also present in the interchromatin 
granule network in uninfected HeLa cells (Carter et al., 
1991, 1993; Visa et al., 1993; see also Fig. 4 h). We and oth- 
ers have previously detected ad RNA at the site of tran- 
scription in intermediate phase cells (Pombo et al., 1994) 
and in cells limited to the early phase of gene expression 
(Zhang et al., 1994). Here we show that in late phase ad- 
infected ceils, the interchromatin granule clusters that con- 
tain splicing factors also accumulate spliced RNA from the 
MLTU. Thus, RNA that has undergone posttranscrip- 
tional processing events of polyadenylation and/or splicing 
accumulates in a specific nuclear structure during the late 
phase of viral gene expression. 

Although interchromatin granules are known to contain 
RNA in both infected and uninfected cells, the available 
data suggests that this structure is not a location for viral 
or cellular transcription (Pombo et al., 1994; Puvion-Dutil- 
leul and Puvion, 1991; Fakan, 1994). Rather, RNA accu- 
mulates in the interchromatin granules posttranscription- 
ally. During infection by ad, considerable levels of both 
processed and unprocessed forms of viral RNAs accumu- 
late in the nucleus during the late phase (Berget and 
Sharp, 1979; Manley et al., 1979). We show here that 
,~85% of the tripartite leader RNA present in the nucleus 
is spliced, and this represents about one third of the total 
spliced tripartite leader present in the cell (Fig. 6 A and 
data not shown). This accumulation of spliced RNA in the 
nucleus is observed even at the onset of the late phase 
(Fig. 6 B). Thus, the nuclear accumulation of spliced RNA 
appears to be a characteristic of viral late RNA biogenesis. 
Leppard and Shenk (1989) examined ad RNA metabolism 
using a nuclear fractionation scheme to operationally de- 
fine several nuclear compartments. Viral early RNA and 
cellular RNAs were strongly biased towards the cytoplas- 
mic compartment; very little RNA corresponding to the 
viral early E la  transcript or the cellular 13-actin gene was 
found in any nuclear subfraction although the levels of 
these RNAs in the cytoplasm were substantial. In contrast, 
MLTU derived RNAs showed significant accumulation in 
several nuclear subfractions. Pulse-chase analyses also 
showed that late RNAs accumulate in specific nuclear sub- 
fractions before their export to the cytoplasm. In particular, 
pulse-labeled late RNAs accumulated most extensively in 
a nuclear compartment designated F3; this compartment 
was not transcriptionally active. Movement through the F3 
compartment was suggested as a possible rate-limiting 
step in the production of viral RNA (Leppard and Shenk, 
1989). Thus, our demonstration that processed MLTU de- 
rived RNA accumulates in the interchromatin granule 
structure is consistent with previous biochemical investiga- 
tions showing that viral late RNA proceeds through par- 

ticular nuclear subfractions before its export to the cyto- 
plasm. The relationship between the late RNA present in 
the biochemically defined F3 nuclear subfraction and the 
late RNA present in the interchromatin granule clusters 
remains to be investigated, but the possibility that they 
represent the same RNA subpopulation is intriguing. 

It is well established that only a fraction of the MLTU 
derived sequences synthesized in the nucleus are trans- 
ported to the cytoplasm (Nevins and Darnell, 1978; see 
also Fig. 7 B). In contrast, the sequences close to the viral 
poly(A) sites in newly synthesized polyadenylated RNA 
from the MLTU were conserved between the nucleus and 
cytoplasm (Nevins and DarneU, 1978). These experiments 
suggested that each primary transcript from the MLTU 
was polyadenylated and spliced to give rise to one mRNA 
that was subsequently exported to the cytoplasm. The 
RNA processed away from this transcript would be de- 
graded in the nucleus and never appear in the cytoplasm. 
This model accounts for the observation that only ~14% 
of the newly synthesized MLTU RNA is exported to the 
cytoplasmic compartment (Nevins and Darnell, 1978). 
Furthermore, the model predicts that the tripartite leader 
exons should be efficiently exported since they are present 
on the 5' ends of each MLTU derived mRNA. We ob- 
served that spliced tripartite leader sequences were present 
in the nuclear interchromatin granule structures (snRNP 
clusters) (Fig. 3 and Fig. 5, a-c). To confirm that the tripar- 
tite leader is efficiently transported from the nucleus to 
the cytoplasm at a time when we see significant accumula- 
tion of tripartite leader RNA in the snRNP clusters, we 
have performed kinetic labeling experiments similar to 
those described by Nevins and Darnell (1978) at 18 h p.i. 
Our data (Fig. 7) suggest that RNA sequences hybridizing 
to spliced tripartite leader containing DNA are about as 
well conserved as sequences at the 3' end of poly(A) se- 
lected viral RNAs (Nevins and Darnell, 1978), and con- 
firm the prediction that newly synthesized tripartite leader 
RNA is efficiently transported from the nucleus to the cy- 
toplasmic compartment during the viral late phase. 

What is the significance of the interchromatin granule 
compartment in the production of viral RNA? Since 
mRNAs that are targeted to the cytoplasm are spliced and 
polyadenylated, the presence of spliced RNA from the ad 
tripartite leader as well as polyadenylated RNA raises the 
possibility that viral MLTU RNAs accumulate in the in- 
terchromatin granule structure during the process of RNA 
transport. It is difficult to rule out the alternative possibil- 
ity that the tripartite leader RNA present in the interchro- 
matin granule represents RNAs that are targeted for nu- 
clear degradation rather than export to the cytoplasm. 
However, the relative conservation of the tripartite leader 
exons between the nucleus and the cytoplasm argues 
against this interpretation. Huang et al. (1994) find that 
polyadenylated R N A  remains stably associated with the 
interchromatin granule following treatment with tran- 
scription inhibitors; they suggest that this is not mRNA 
but rather represents a population of stable RNA involved 
in other nuclear functions. In contrast, Visa et al. (1993) 
find that levels of polyadenylated RNA in interchromatin 
granules are significantly decreased after treatment with 
actinomycin D. Thus, it is not yet clear if the RNA in the 
interchromatin granule is stable or if there is continual flux 
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of RNA into and out of this compartment. Our data does 
not exclude the possibility that some of the polyadeny- 
lated RNA detected by in situ hybridization is stably asso- 
ciated with the interchromatin granule, perhaps serving a 
structural function. However, the nuclear localization of 
tripartite leader splice junctions and exons in the same late 
phase clusters that contain snRNP (Fig. 3 and Fig. 5, a-c) 
shows that sequences present in the 5' end of spliced ade- 
novirus mRNAs are also located in the interchromatin 
granule. Several other cellular and viral RNAs have been 
detected in the interchromatin granule; all of these RNA 
sequences are also detected in the cytoplasmic compart- 
ment (Besse et al., 1995, 1996; Besse and Puvion-Dutilleul, 
1996; Xing et al., 1995). Xing et al. (1995) have found a 
close association between several transcribing cellular 
RNAs and the interchromatin granule. In particular, 
tracks of collagen Ied RNA were found to extend into the 
interchromatin granule from the transcribing gene located 
at the periphery. The majority of the collagen Icd RNA 
detected in this structure appeared to have spliced out at 
least one intron. Further evidence for the role of the inter- 
chromatin granule in the accumulation of spliced RNA 
comes from the characterization of three antibodies di- 
rected against nuclear matrix antigens (Blencowe et al., 
1994). These antibodies were found to label the splicing 
factor containing interchromatin granules in situ. Interest- 
ingly, all three of the nuclear matrix antibodies preferen- 
tially immunoprecipitated splicing complexes that con- 
tained exon sequences. These data are all consistent with a 
model in which the interchromatin granule accumulates 
processed RNA posttranscriptionally; we suggest that this 
RNA may be in transit from the site of transcription to the 
cytoplasmic compartment. 

Ad infection prevents newly synthesized cellular RNA 
from appearing in the cytoplasm during the late stages of 
infection (Flint, 1986; Sarnow et al., 1984; Pilder et al., 
1986; Cutt et al., 1987). Thus, the late phase provides a 
mechanism for the selective export of viral RNAs. It is 
possible that the high concentration of viral RNA in the 
interchromatin granule is an important feature of this pro- 
cess. Herpes virus RNAs also accumulate in enlarged in- 
terchromatin granule structures (Besse et al., 1995, 1996), 
and the late phase of herpes virus infections is associated 
with defective expression of cellular mRNAs (Smiley et al., 
1991). The selective export of viral RNAs during the late 
phase of ad infection is thought to be mediated by a com- 
plex of the Elb  55K and E4 ORF 6 34K proteins (Flint, 
1986; Pilder et al., 1986; Sarnow et al., 1984; Cutt et al., 
1987). Further studies addressing the role of these proteins 
in the nuclear trafficking of viral RNA may begin to ad- 
dress the mechanisms through which viral RNAs are selec- 
tively exported during the late phase of infection. 
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