
Citation: Massafra, R.; Comes, M.C.;

Bove, S.; Didonna, V.; Gatta, G.;

Giotta, F.; Fanizzi, A.; La Forgia, D.;

Latorre, A.; Pastena, M.I.; et al.

Robustness Evaluation of a Deep

Learning Model on Sagittal and Axial

Breast DCE-MRIs to Predict

Pathological Complete Response to

Neoadjuvant Chemotherapy. J. Pers.

Med. 2022, 12, 953. https://doi.org/

10.3390/jpm12060953

Academic Editor: Pierluigi

Maria Rinaldi

Received: 25 March 2022

Accepted: 7 June 2022

Published: 10 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Personalized 

Medicine

Article

Robustness Evaluation of a Deep Learning Model on Sagittal
and Axial Breast DCE-MRIs to Predict Pathological Complete
Response to Neoadjuvant Chemotherapy
Raffaella Massafra 1,†, Maria Colomba Comes 1,†, Samantha Bove 1, Vittorio Didonna 1, Gianluca Gatta 2 ,
Francesco Giotta 3, Annarita Fanizzi 1,*, Daniele La Forgia 4,* , Agnese Latorre 2 , Maria Irene Pastena 5,
Domenico Pomarico 1 , Lucia Rinaldi 6, Pasquale Tamborra 1 , Alfredo Zito 5, Vito Lorusso 3,‡

and Angelo Virgilio Paradiso 7,‡

1 Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”,
Viale Orazio Flacco 65, 70124 Bari, Italy; r.massafra@oncologico.bari.it (R.M.);
m.c.comes@oncologico.bari.it (M.C.C.); s.bove@oncologico.bari.it (S.B.); v.didonna@oncologico.bari.it (V.D.);
d.pomarico@oncologico.bari.it (D.P.); p.tamborra@oncologico.bari.it (P.T.)

2 Dipartimento di Medicina di Precisione Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
gianluca.gatta@unicampania.it (G.G.); a.latorre@oncologico.bari.it (A.L.)

3 Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”,
Viale Orazio Flacco 65, 70124 Bari, Italy; f.giotta@oncologico.bari.it (F.G.); vitolorusso@me.com (V.L.)

4 Struttura Semplice Dipartimentale di Radiologia Senologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”,
Viale Orazio Flacco 65, 70124 Bari, Italy

5 Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”,
Viale Orazio Flacco 65, 70124 Bari, Italy; m.pastena@oncologico.bari.it (M.I.P.); a.zito@oncologico.bari.it (A.Z.)

6 Struttura Semplice Dipartimentale di Oncologia Per la Presa in Carico Globale del Paziente, I.R.C.C.S. Istituto
Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; l.rinaldi@oncologico.bari.it

7 Oncologia Sperimentale e Biobanca, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65,
70124 Bari, Italy; a.paradiso@oncologico.bari.it

* Correspondence: a.fanizzi@oncologico.bari.it (A.F.); d.laforgia@oncologico.bari.it (D.L.F.)
† These authors contributed equally to this work.
‡ These authors contributed equally to this work.

Abstract: To date, some artificial intelligence (AI) methods have exploited Dynamic Contrast-
Enhanced Magnetic Resonance Imaging (DCE-MRI) to identify finer tumor properties as potential
earlier indicators of pathological Complete Response (pCR) in breast cancer patients undergoing
neoadjuvant chemotherapy (NAC). However, they work either for sagittal or axial MRI protocols.
More flexible AI tools, to be used easily in clinical practice across various institutions in accordance
with its own imaging acquisition protocol, are required. Here, we addressed this topic by developing
an AI method based on deep learning in giving an early prediction of pCR at various DCE-MRI
protocols (axial and sagittal). Sagittal DCE-MRIs refer to 151 patients (42 pCR; 109 non-pCR) from the
public I-SPY1 TRIAL database (DB); axial DCE-MRIs are related to 74 patients (22 pCR; 52 non-pCR)
from a private DB provided by Istituto Tumori “Giovanni Paolo II” in Bari (Italy). By merging the
features extracted from baseline MRIs with some pre-treatment clinical variables, accuracies of 84.4%
and 77.3% and AUC values of 80.3% and 78.0% were achieved on the independent tests related to the
public DB and the private DB, respectively. Overall, the presented method has shown to be robust
regardless of the specific MRI protocol.

Keywords: pathological complete response; early prediction; magnetic resonance imaging; deep learning

1. Introduction

Neoadjuvant chemotherapy (NAC) is a form of oncological therapy that is used to
reduce the size of the tumor and the infiltration of extra-glandular structures, consequently
enabling a more conservative surgery [1,2]. Over the last few years, the adoption of NAC
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is growing, especially against some molecular subtypes, such as triple-negative tumors and
HER2+ tumors of any size, as there is concrete evidence of greater clinical efficacy [3–5]. The
achievement of the pathological Complete Response (pCR) at the end of NAC, namely,
the absence of residual invasive disease or metastatic lymph nodes at the end of the
entire course of the therapy, which is assessed by pathologists on the excised tissue after
surgery, leads to a more favorable prognosis than traditional treatments, with an increase
in disease-free survival and overall survival [3,6–8]. The prediction of NAC outcome
before the beginning of the therapy (early prediction) in terms of pCR is a hot topic in
the current clinical research since an earlier identification of patients who will effectively
respond to NAC is crucial to improve and change treatment planning during the course
of treatment, optimize costs and spare such patients from potentially ineffective or toxic
chemotherapy [9,10]. Not less relevant, patients who are identified as responders to NAC
since the beginning of the therapy, are more likely to take advantage from breast conserving
surgery, avoiding a full mastectomy [1]. Dynamic Contrast-Enhanced Magnetic Resonance
Imaging (DCE-MRI) is one of the medical imaging techniques that have come to play a
prominent role in the radiomic framework for breast cancer. The possibility of evaluating
the same findings with several sequences and in several planes (axial, sagittal, and coronal)
allows us to better identify the characteristics of the lesion and the relationships with the
contiguous structures [11,12]. Breast MRIs are mostly performed and interpreted in axial
and sagittal planes, since coronal projections require more slices and are affected by a greater
number of motion artifacts due to breathing [13]. Axial acquisition (a horizontal plane
with respect to the human body, dividing it into upper and lower parts) is usually faster
than sagittal acquisition (a longitudinal plane with respect to the human body, dividing it
into left and right parts). Axial acquisition also provides a better overview of both breasts
simultaneously [14]. However, there is no universal guideline for slice direction selection
in breast MRI scanning: MRI acquisition protocols can vary across cancer institutions
worldwide, with some institutions not conducting the acquisition of both axial and sagittal
projections, but instead only one of the two. To date, the evaluation of the NAC response
has been successfully investigated through the analysis of DCE-MR images [9,10] since the
application of computerized algorithms on MRIs has proven to be crucial in highlighting
morphological characteristics of the lesion, tumor size, and even residual tumor [15].
Thus, a higher accuracy in evaluating NAC response has emerged with respect to other
imaging techniques [16,17]. In the state-of-the-art, some studies focused on MRI-based
radiomics have exploited tissue, peritumoral, or intratumoral features in combination with
histopathological information to give an early prediction of pCR, i.e., prior to therapy or
during the earliest stages of the therapy [18–22], with the final goal of optimizing treatment
planning for each individual patient. However, these kinds of features, which are extracted
from raw images, are handcrafted by experts in the field and could be influenced by human
bias. More recently, methods based on deep learning, a branch of artificial intelligence
(AI), have been designed to automatically extract relevant features from images, including
MRIs, without human intervention. The task of “early” prediction of pCR to NAC has
been achieved through such deep learning techniques exploiting algorithms, known as
Convolutional Neural Networks (CNNs), which resemble the neuron functions of the
human brain. Compared to handcrafted features, the exploitation of CNNs to extract
features from images has proven to be more promising [23]. MRI examinations acquired
prior to treatment (baseline MRI) or at initial stages of NAC, e.g., after the initial cycles,
have been used as input data for CNNs [24–28]. As far as we know, the methods that have
already proposed to predict pCR to NAC in breast cancer patients have been developed
and tailored either for sagittal or axial MRI acquisition views. Hence, more generalizable
methods, rather than protocol-specific approaches, need to be developed with the aim of
being easily utilized in large multi-institutional studies where the acquisition protocols
may differ across diverse institutions. In this work, an AI approach based on deep learning
and specifically on a pre-trained CNN has been developed and separately applied on both
baseline axial and sagittal pre-treatment MRI examinations to give an early prediction of
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pCR in breast cancer patients undergoing NAC. More in detail, the developed model wants
to give a prediction of the outcome of NAC in terms of pCR before the beginning of the
therapy. The robustness of the approach at various MRI acquisition views, i.e., sagittal and
axial views, in reference to a public DB and a private DB has been evaluated. Finally, this
study is a first effort to pave the way to the design of an effective approach that could, on
the one hand, be able to predict pCR to NAC “early on” in breast cancer patients and, on
the other hand, represent a flexible predictive tool to be easily utilized in clinical practice
across diverse institutions in accordance with their own imaging acquisition protocols.

2. Materials and Methods
2.1. Data Collection

A binary classification task was developed for an early prediction of breast cancer
patients who have, or have not, achieved pCR to NAC and whose classifications were
indicated as pCR and non-pCR, respectively. The term pathological complete response
indicates the absence of residual invasive disease or metastatic lymph nodes at the com-
pletion of the entire course of treatment. It is evaluated at the end of chemotherapy and
after surgery. For the intended purpose, pre-treatment DCE-MRI examinations were an-
alyzed. Specifically, we defined an AI framework and evaluated its performance to give
an early prediction of pCR on two different case studies that dealt with DCE-MRI ex-
aminations of breast cancer patients undergoing NAC: a public DB containing sagittal
DCE-MRIs and a private DB consisting of axial DCE-MRIs. The public DB, entitled Investi-
gation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular
Analysis (I-SPY1 TRIAL) [6,29,30], is available online on The Cancer Imaging Archive
(https://wiki.cancerimagingarchive.net; accessed on 25 November 2021) [31] and includes
cases of 230 women with breast tumors of at least 3 cm in size. They were recruited between
2002 and 2006 and underwent NAC according to an anthracycline–cyclophosphamide (AC)
regimen either on its own or followed by taxane. Sagittal MRI examinations at different
timepoints were obtained. At each timepoint, three images were acquired using 1.5 T
field-strength MR imaging systems: a single pre-contrast image and two images taken
approximately 2 min and 7 min post contrast injection. Among all the subjects, a set of
151 patients (42 pCR; 109 non-pCR) was then considered, as they had undergone an MRI
scan prior to treatment. The private DB consists of a set of 74 patients who were registered
as having a first breast tumor diagnosis between 2018 and 2021 at Istituto Tumori “Giovanni
Paolo II” in Bari (Italy) and received NAC. Among them, 36 patients were treated with
AC followed by taxane; 7 patients underwent AC followed by taxane and trastuzumab;
2 patients received taxane and trastuzumab; 4 patients followed a regimen consisting
of AC, pertuzumab, trastuzumab and taxane; 15 patients were treated with pertuzumab,
trastuzumab and taxane; and 3 patients followed other treatment regimens. Axial MRI
examinations at different timepoints were performed. At each timepoint, six images were
acquired in the prone position with a dedicated seven-channel breast coil on a 1.5 Tesla
PHILIPS scanner (Achieva, Philips Medical Systems, Amsterdam, The Netherlands): a
single pre-contrast image and five images corresponding to approximately each minute
post contrast injection, respectively. An MRI examination prior to treatment was acquired
for all 74 patients (22 pCR; 52 non-pCR).

2.2. Data Pre-Processing

The baseline MRI examination at around the second minute post contrast injection was
processed for both datasets. Since previous studies have underlined that the peritumoral
region may benefit from a more accurate prediction of pCR in breast cancer patients
undergoing NAC [20,27], a semi-automatic algorithm to define a Region Of Interest (ROI)
also including the peritumoral zone was developed for all the images belonging to the two
case studies: for each patient, an ROI around the center of the tumor mass and containing
both intratumoral and peritumoral regions from the MRI scan with the largest tumor area
was identified. All the ROIs were reviewed by our expert breast imaging radiologist with
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over 20 years of experience. Examples of sagittal and axial acquisition from the public DB
and private DB with their corresponding ROIs are shown in Figure 1a,b, respectively.
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Figure 1. Examples of baseline MR image acquired according to (a) a sagittal view of a public DB
patient and (b) an axial view of a private DB patient.

2.3. Statistical Analysis

Some clinical variables were included in the information available online on the public
DB: age, ER, PgR, HER2 and tumor size (T), which is the largest diameter of the lesion
evaluated from the baseline MRI examination. We were provided with two other variables
by the authors of the public DB: Ki67 and grading. The same variables were considered
for the private DB. The relationship between each clinical feature and the pCR value (0 for
the patients belonging to the non-pCR classification and 1 for the patients belonging to
the pCR classification) was evaluated by means of an overall statistical test on the datasets
independently: the Wilcoxon–Mann–Whitney test [32] was used for continuous features,
and the Spearman rank test [33] was used for features measured on an ordinal scale.
A result was considered statistically significant when the p-value was less than 0.10.

2.4. An AI Framework to Predict pCR “Early On” from Baseline MRI Examinations

The main steps of the proposed method are briefly reported in the following and
represented in Figure 2. The method was trialed on a set of patients (training set) and then
validated on a set of patients (independent test set) identified on both the two databases
separately. Specifically, the two datasets were divided into training and test sets (70% and
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30% of patients, respectively) according to random stratified sampling. In this section,
the main details of the method have been reported. Please refer to Appendix A for a
more detailed description of the methods used. Features were automatically extracted
from three different layers (called pool1, pool2 and pool5) of a pre-trained Convolutional
Neural Network (CNN), named AlexNET and firstly introduced by A. Krizhevsky and
his collegues [34] (Figure 2a). A stratified feature selection process was then developed to
identify the most stable CNN features.
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Figure 2. Workflow of the proposed AI framework for early pCR prediction. The approach consists
of three main steps: (a) Automatic feature extraction through a pre-trained CNN; (b) Stratified feature
selection; (c) Classification on the independent test. The method has been applied on sagittal and
axial baseline MRIs separately.
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Such features were identified in 70% of the overall data for the two databases (training
sets), i.e., 106 patients (29 pCR; 77 non-pCR) from the public DB and 52 patients (15 pCR;
37 non-pCR) from the private DB. First, a set of optimal CNN-extracted features was
obtained in correspondence with each of the three layers (Figure 2b). Next, a feature
concatenation was conducted to merge the optimal features related to the three different
layers: an optimal set of features, named F-merged, was constructed. With the aim of
validating the proposed approach, the remaining 30% of patients on the two databases
was used to define two independent tests, one for each of the case studies (Figure 2c).
A total of 45 patients (13 pCR; 32 non-pCR) formed the independent test for the public
DB, whereas the test for the private DB was composed of 22 patients (7 pCR; 15 non-
pCR). An SVM classifier was built by exploiting the F-merged feature set alone or in
combination with some clinical variables. The performances of these classifiers were
compared with an SVM classifier using the clinical variables alone. The performance
achieved by the designed classifiers was measured in terms of the Area Under the Curve
(AUC), the Receiver Operating Characteristic (ROC) curve and other standard metrics, such
as accuracy, sensitivity and specificity. ‘Accuracy’ evaluates the rate of correct classification
between the groups of patients who have achieved pCR or not. ‘Sensitivity’ and ‘specificity’
measure the proportion of pCR and non-pCR subjects who were correctly identified. AUC,
instead, indicates the ability of the classifier to correctly assign patients to the two classes
(pCR and non-pCR) by assuming values ranging from 50% (meaning random guessing) to
100% (meaning perfect separability). Each patient with a classification score exceeding a
threshold determined by the ratio of the number of patients belonging to the pCR-class over
the overall number of patients comprising the dataset [35], i.e., 0.28 for the public DB and
0.30 for the private DB, was assigned to the pCR-class. All the steps of our analysis were
performed by using the MATLAB R2019a (MathWorks, Inc., Natick, MA, USA) software.

3. Results
3.1. Statistical Analysis Results

In Table 1, the clinical characteristics of patients belonging to the public DB and private
DB are split into patients who have achieved pCR (pCR, 42 and 22 for the public DB and
private DB, respectively) and patients who have not achieved pCR (non-pCR, 109 and 52
for the public DB and private DB, respectively). The rate of patients who achieved pCR
(pCR) was very similar between the two case studies, i.e., they corresponded to 28% and
30% of the public DB and the private DB, respectively. The public DB contains the ER and
PgR variables as categorical features. Specifically, they were binary features assuming a
negative value (0) or a positive value (1). They were determined by immunohistochemistry
(IHC) and were considered positive if the Allred score was ≥3 [36,37]. The grading variable
was evaluated according to the SBR/Elston Classification and the Ki67 IHC staining was
performed at the University of North Carolina by using the standard avidin–biotin complex
technique. Four classes representing four different levels of Ki67 were recognized [36]:
negative if Ki67 was equal to 0; low if Ki67 was less than 10%; intermediate if the variable
was between 10% and 25%; and high if Ki67 was greater than 25%. The HER2 variable was
evaluated according to IHC and/or fluorescent in situ hybridization assays. The T variable
expressing the largest diameter of the lesion within the sagittal MRI examination was part
of the clinical information available online [31].

In our DB, the variables ER (Clone EP1 DAKO), PgR (Clone PgR636) and Ki67 (Clone
MIB1 DAKO) were evaluated in percentage values; the grading values were assessed
according to Elston Classification, whereas the HER2 (polyclonal Rabbit Anti-Human c-erb
2 Oncoprotein) variable was measured according to the ASCO-CAP guidelines. For the
sake of a fair comparison between the two case studies, the percentage values of ER and
PgR being compared in our DB were converted into categorical binary variables (negative
if ER and PgR were equal to 0; positive if ER and PgR assumed values greater than or equal
to 1%). Similarly, the Ki67 value was converted in the same categories as the public DB. In
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this case, the T variable represented the maximum diameter of the lesion evaluated and
reported by our radiologist during the axial MRI scan acquisition.

Table 1. Patient characteristics.

Public DB Private DB

pCR Non-pCR pCR Non-pCR

Overall 42 (28%) 109 (72%) Overall 22 (30%) 52 (70%)
Age (years) Age (years)
Mean ± std 46.81 ± 8.59 49.06 ± 9.15 Mean ± std 51.55 ± 12.72 52.02 ± 12.39

T (mm) T (mm)
Mean ± std 75.86 ± 36.39 65.24 ± 27.66 Mean ± std 35.78 ± 20.95 36.05 ± 18.13

Grading Grading
G1 0 (0%) 8 (7.4%) G1 1 (4.5%) 1 (1.9%)
G2 12 (28.6%) 60 (55.0%) G2 1 (4.5%) 16 (30.8%)
G3 27 (64.3%) 41 (37.6%) G3 20 (91.0%) 30 (57.7%)
NA 3 (7.1%) 0 (0%) NA 0 (0%) 5 (9.6%)
ER ER

Negative 29 (69.0%) 38 (34.9%) Negative 12 (54.5%) 13 (25.0%)
Positive 13 (31.0%) 71 (65.1%) Positive 10 (45.5%) 38 (73.1%)

NA 0 (0%) 0 (0%) NA 0 (0%) 1 (1.9%)
PgR PgR

Negative 34 (81.0%) 49 (45.0%) Negative 17 (77.3%) 21 (40.4%)
Positive 8 (19.0%) 60 (55.0%) Positive 5 (22.7%) 30 (57.7%)

NA 0 (0%) 0 (0%) NA 0 (0%) 1 (1.9%)
Ki67 Ki67

Negative 2 (4.8%) 4 (3.7%) Negative 0 (0%) 0 (0%)
Low 2 (4.8%) 28 (25.7%) Low 0 (0%) 2 (3.8%)

Intermediate 7 (16.7%) 32 (29.4%) Intermediate 4 (18.2%) 15 (28.8%)
High 20 (47.6%) 34 (31.1%) High 18 (81.8%) 34 (65.5%)
NA 11 (26.1%) 11 (10.1%) NA 0 (0%) 1 (1.9%)

HER2 HER2
Negative 24 (57.1%) 86 (78.9%) Negative 10 (45.5%) 35 (67.3%)
Positive 17 (40.5%) 22 (20.1%) Positive 12 (54.5%) 16 (30.8%)

NA 1 (2.4%) 1 (1.0%) NA 0 (0%) 1 (1.9%)

In the brackets, percentage values are specified. The abbreviation NA indicates missing values.

Table 2 summarizes the p-values obtained by performing an association test between
pCR and therapy and each clinical factor. No significant association was observed between
the couples age–pCR and T–pCR for either of the two case studies (p-value > 0.10). Signifi-
cant associations (p < 0.05) emerged between pCR and the histological variables ER, PgR
and grading for both the case studies. Moreover, pCR and HER2 showed a significant asso-
ciation, although less significance was found in the private DB (p-value < 0.10). However,
this was acceptable given the reduced sample size. It is worth noting that the Ki67 was
closely associated with pCR only for the public DB (p-value < 0.05).

By considering all the patients from the private DB, who underwent different types of
therapy pathways, no significant association between Ki67 and pCR emerged (p-value > 0.10).
However, when the statistical test was performed only on patients of the private DB who
underwent the AC + taxane scheme, a statistically significant association between Ki67 and
pCR was identified (p-value < 0.05). Furthermore, since patients belonging to the private
DB underwent different therapy schemes, a variable outlining the performed therapy
(therapy type) was also considered, but it did not show a significant association with pCR
(p-value > 0.10). In our further analysis, when SVM classifiers exploiting clinical variables
were designed, the variables that resulted as significantly associated with pCR for at least
one of the two case studies were included. They were ER, PgR, HER2, grading and Ki67.



J. Pers. Med. 2022, 12, 953 8 of 15

Table 2. Statistical analysis on clinical features.

Variable Type DB p-Value

Age Continuous
public 0.1673
private 0.8805

T Continuous
public 0.2508
private 0.8097

ER Categorical (binary) public 1.2 × 10−4

private 0.0164

PgR Categorical (binary) public 4.9 × 10−5

private 0.0046

HER2 Categorical (binary) public 0.0087
private 0.0617

Grading Categorical public 1.4 × 10−4

private 0.0286

Ki67 Categorical
public 0.0116
private 0.3494
private

(over patients AC + tax) 0.0995

The Wilcoxon–Mann–Whitney test was performed for continuous features, whereas Spearman rank test was used
for categorical features. A result was considered statistically significant when the p-value was less than 0.10.

3.2. Evaluation Perfomance Achieved by the AI Model on Sagittal and Axial Baseline MRIs

The results achieved by the same AI approach on the training sets related to the
two case studies are reported in Appendix A and represented in Table S1. A total of 29 and
28 features were selected as optimal features by applying all the steps of the AI method for
both the public DB and the private DB. The proposed AI framework was then validated on
two independent tests, one for each of the two case studies. Table 3 summarizes the results
obtained from the independent tests by the models exploiting only clinical features, only
F-merged features and clinical features in combination with the F-merged feature set.

Table 3. Summary of the performances achieved by the pCR prediction models in terms of AUC.

Set Model N. Features AUC Acc. Sens. Spec.

Public DB
Independent test:

45 patients (13 pCR)

Clinical 5 58.2% 64.4% 53.6% 68.8%

F-merged 29 75.0% 73.3% 69.2% 75.0%

F-merged + clinical 34 80.3% 84.4% 69.2% 90.6%

Private DB
Independent test:

22 patients (7 pCR)

Clinical 5 56.0% 59.1% 42.9% 66.7%

F-merged 28 72.4% 77.3% 57.1% 86.7%

F-merged + clinical 33 78.0% 77.3% 71.4% 80.0%

Accuracy (Acc.), Sensitivity (Sens.), and Specificity (Spec.) on the independent tests of the public DB and private
DB. The number of features comprising each model is also reported. The best results achieved for each of the
evaluation metrics are indicated in bold.

The model, with input of the clinical variables alone, reached an AUC value of 58.2%
and 56.0% and an accuracy of 64.4% and 59.1% for the public DB and the private DB,
respectively. In this case, the specificity values were greater than the sensitivity values,
similar to the results on the training sets (see Appendix A and Table S1). The usage of the
F-merged feature set allowed us to improve the accuracy of the results. Overall, the best
results were obtained when the clinical features were added to the F-merged features: an
AUC value of 80.3% and 78.0%, an accuracy of 84.4% and 77.3%, a sensitivity of 69.2% and
71.4% and a specificity of 90.6% and 80.0% were achieved on the public DB and private DB,
respectively. Slightly higher figures for the public DB might be related to the larger values
of tumor size (see Table 1). Moreover, the public DB is composed of a greater number
of patients with more homogenous characteristics, such as the NAC scheme undergone.
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However, more balanced results in terms of all the evaluation metrics were achieved on
the private DB. As a final result, the AI method proved itself to be robust at interpreting
various MRI acquisition views.

4. Discussion

With the increased use of deep learning techniques in all areas of the biomedical
field [38,39], several attempts to solve the early prediction of pCR to NAC in breast cancer
patients have been proposed. Liu et al. [40] used the first post-contrast pre-treatment MRI
examinations from 131 patients (40 pCR; 91 non-pCR) of the I-SPY1 TRIAL public database
to design a CNN-based method to predict pCR. As a result, a mean AUC value of 72%
was returned. Ravichandran et al. [26] trained a CNN that made use of pre-contrast and
post-contrast pre-treatment MRI scans referred to 133 patients of the I-SPY1 TRIAL public
database. The method was validated on 33 patients, reaching an AUC value of 70% and
77% when the post-contrast MRI examinations were considered alone or in conjunction
with the pre-contrast MR images, respectively. In this study, we developed and applied an
AI framework to two different case studies based on MRI examinations acquired according
to varying orientations (sagittal and axial). To the best of our knowledge, all previously
developed models have been tailored for a specific protocol (axial or sagittal acquisition
view). No investigation into the robustness of AI methods in various case studies with
reference to different MRI acquisition views has previously been carried out for the early
prediction of pCR to NAC in breast cancer patients. This aspect can be crucial to prove
the generalizability of the method on data provided by multiple cancer institutions. As
demonstrated elsewhere [26,41], the addition of clinical variables could contribute to
improving the performances achieved by using an AI approach. By combining the CNN-
features with the clinical variables, the overall performances were stable at varying MRI
acquisition views: an AUC value of 80.3% and 78.0% was achieved on the independent
tests conducted for the public DB and the private DB, respectively. Among the clinical
variables, ER, PgR and HER2 had a significant association with pCR for both case studies.
The variable Ki67 was significantly associated with pCR only for patients undergoing the
AC + taxane therapeutic scheme. We can observe how the mean T appears differently
between the two datasets and across the two classes (pCR and non-pCR, see Table 1).
This is because of the timelines of the two case studies: while several years ago NAC
was only used for patients with specific requirements in terms of tumor diameter (e.g.,
greater than 3 cm), nowadays, NAC has become a standard therapy in clinical practice
and is received by the majority of patients regardless of their tumor size, and especially
if the tumor is categorized as Triple-Negative or HER2+ [42–44]. Despite the promising
results, our study has some limitations. The cohort of patients used for our analysis
was relatively small, especially in reference to the patients on the private DB that were
referred to our Institute. Moreover, an expected drop of performances in passing from the
training sets to the independent tests was observed: since there was a limited number of
patients belonging to the training sets, a feature selection was more prone to overfitting. To
overcome this limitation in a future extension of the study, the robustness and flexibility
of our findings will be proven on a larger cohort of patients across multiple institutions
and protocols. Manifold are the possible extensions of this work. Future works will be
focused on a volumetric analysis by jointly involving all slices of the MRI examinations [45].
An improvement in the prediction performances could be obtained by developing an AI
model which could integrate multimodal data, including pre-treatment clinical information
joined with features extracted from several kinds of images, such as pre-treatment MRI
examinations before and after injection, as well as diffusion weighted images. The fusion
of the information from different sources, and especially from different kinds of images,
through AI models has already been proven as promising [46]. Each datum of a different
nature contains part of the description of the same objects of interest. By combining
together all these data, hidden complex relationships between the different modalities can
be recognized by AI models [47,48].
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5. Conclusions

In conclusion, we proposed an AI framework based on deep learning that has revealed
itself to be able to give an early prediction of NAC outcome in terms of pCR in breast
cancer patients undergoing NAC. In clinical practice, this aspect is essential for medical
figures to promote personalized tools with the aim of contributing to the optimal selection
of treatment and therapeutic options. Despite several efforts having been made in the
state-of-the-art to give an early prediction of pCR to NAC, there is a lack of generalizable
methods, rather than approaches applied only on sagittal or axial MRI examinations. Hence,
more generalizable methods need to be developed with the aim of being easily utilized in
large multi-institutional studies where the acquisition protocols may differ across diverse
institutions. In this work, we wanted to fill this gap. The proposed approach appeared
robust at various acquisition views of the MRI examinations performed prior to treatment:
both axial and sagittal. This work represents a first effort towards the implementation of a
more generalizable approach that can overcome protocol-specific methods, so that it can be
utilized in multi-center studies exploiting diverse imaging acquisition protocols.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jpm12060953/s1, Table S1: Summary of the performances achieved
by the pCR prediction models in terms of AUC, Accuracy (Acc.), Sensitivity (Sens.), and Specificity
(Spec.) on the training sets of the public DB and private DB. The number of features comprising each
model is also reported. The best results achieved for each of the evaluation metrics are indicated
in bold.
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Appendix A

Appendix A.1. Technical Details about the Proposed AI Framework

The main steps of the proposed AI framework are summarized in the following.
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Appendix A.1.1. Feature Extraction

Artificial intelligence and in particular deep learning models based on Convolutional
Neural Networks (CNNs) have been successfully adopted as classifiers to solve several
tasks in medicine [41,47,48] which involve image analysis. However, they are also used
to extract features from the raw images. Here, we exploited a pre-trained CNN, called
AlexNET [34], to automatically extract features from ROIs related to baseline MRIs. ROIs
were input directly to the CNN architecture, which was pre-trained on ImageNet, a dataset
of over one million of natural images designed for general object recognition. In this study,
the knowledge learned by the network during such a training phase was transferred on
the MRI exams. These features were then utilized to discriminate “early on” if a patients
achieved pCR or not (pCR vs. non-pCR). The usage of a pre-trained network was preferred
here since both the public and private DBs were composed by a number of images that was
not sufficient to train a customized network [28,47]. The used network consists of 25 layers
in total, including 5 convolutional layers, 3 pooling layers and 3 fully connected layers [34],
where convolutional layers represent features at different level of input representation
and abstraction, whereas pooling layers make features invariant to truncation, occlusion
and translation [11]. Starting layers capture low-level features, which are features related
to the local structure of the image such as lines, edges and blobs. Deeper layers return
more complex and abstract features related to global characteristics of the image. They are
obtained by combining low-level features. In this work, features from the three pooling
layers of the network (called pool1, pool2 and pool5) were automatically extracted to utilize
the information within the feature maps at different resolutions and abstractions (see
Figure 2 in the main text). Each input image that was the ROI extracted from the pre-
processing phase was then resized to 227 × 227 pixels, since the pre-trained network
required input data of this size. In details, the output of pool1 layer had dimensions of
27 × 27 × 96. A single 69,984-length vector was finally obtained by flattening the output.
The pool2 layer had an output with dimensions of 13 × 13 × 256 that was flattening to a
single 43,264-length vector, whereas the pool5 layer returned an output of 6 × 6 × 256 that
was transformed in a 9216-length vector.

Appendix A.1.2. Stratified Feature Selection

A Stratified Feature Selection (SFS) was performed to finally choose a set of most stable
features in correspondence of each of the three pooling layers used for feature extraction.
Such a process was conducted on 70% of the overall data for the two databases separately
(training sets). The remaining 30% of data for both datasets were employed as independent
tests to validate the proposed model. The SFS consists of two main stages. As the first
stage, a feature selection procedure was implemented according to a Leave-One-Out (LOO)
cross-validation scheme to obtain a feature vector for each left-out patient of the training
set (see the 2b in the main text). When a patient was left out, an iterative procedure based
on stacking 10 subsets composed by the remaining 90% of the data, which were randomly
selected, was performed. For each stacked subset of each iteration, important features
were selected by applying two feature selection techniques via a cascade mechanism. A
first well-known feature selection method, such as the non-parametric statistical Wilcoxon–
Mann–Whitney test [32], evaluated the discrimination power with respect to the class (pCR
or non-pCR) of each feature separately. The features that were resulted as statistically
significant (with p < 0.001 for the pool1 and pool2 layers and with p < 0.05 for the pool5 layer)
became the input of a second feature selection algorithm, namely, Random Forest (RF), that
chose a feature as important by comparing its importance with respect to all the features
at disposal. In our simulations, the configuration of RF counted 100 trees. The features
selected for each of the stacked subsets were unified in a single set. As shown in Figure 2
in the main text, at one iteration, one subset of features was associated. For each patient
left out, the subsets of features obtained from the following iterations were intersected
among each other thus finally obtaining a single feature set for that patient. The number
of iterations (n) was experimentally estimated as n = 20. As the second stage of the SFS
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procedure, a single feature vector that was meaningful for all the patients of the training
set was determined for each of the three pooling layers of the network, separately. Given a
layer, such a feature vector was computed by intersecting all the subsets of features (one
for each patient) that were outcome of the previous stage of the SFS procedure. These last
feature sets were called as F-pool1, F-pool2 and F-pool5 in correspondence of pool1, pool2
and pool5 layers. Finally, the three feature sets contained the optimal features, i.e., the
most stable features, that were less susceptible to variations in training samples. Several
Support Vector Machine (SVM) classifiers were designed on these set of patients and a
leave-one-out cross validation procedure on the training sets was implemented. A first
classifier took in input the features belonging to F-pool1; a second classifier used the features
of the F-pool2 set; a third classifier employed the F-pool5 as set of features. Another SVM
classifier exploiting the F-merged set was designed. Finally, some clinical variables were
added to the F-merged and exploited to build one further SVM classifier. The performances
of these classifiers were compared with an SVM classifier using the clinical variables alone.

Appendix A.1.3. Classification

The power of the optimal selected features in discriminating “early on” patients who
achieved pCR or not was assessed by separately training SVM classifiers on the sets of
patients from the private DB and the public DB, which were used to identify the optimal
subset of CNN features extracted for each layer. The classifiers were then validated on
independent tests from the public and the private DB, respectively. A feature concatenation
was conducted to merge the optimal features related to the three different layers: an optimal
set of features, named F-merged, was constructed and then used to train another SVM
classifier. Moreover, some clinical variables were evaluated alone or in addition to the
F-merged. In correspondence, two diverse SVM classifiers were designed. Finally, clinical
variables contain a few missing data. Such missing data were estimated by means of a
proximity technique. For the training and test sets separately, the proximity technique
allows us to replace the missing data of a patient with the respective data values referred to
the patient without missing features with the closest HR and HER2 values: the Euclidean
distance among the HR and HER2 values of the patients with missing data and completed
data was computed.

Appendix A.2. Results on Training Sets

Here, we present the results achieved by the same AI approach on the training sets
related to the public DB and the private DB, respectively. They are reported in Table
S1. The model exploiting clinical variables achieved comparable results on the two case
studies (see the rows with clinical model in Table S1). An AUC value of 51.0% and 59.8%
and an accuracy of 58.5% and 55.8% were achieved on the public DB and the private DB,
respectively. Overall, the specificity assumed a higher value than sensitivity in both cases.
The models built by using the optimal CNN-features extracted by the sagittal and axial
MRIs, referred to the public and private DBs, respectively, were evaluated. The number
of features contained in the feature sets in correspondence of the three layers is reported
in Table S1. Features from the three pooling layers (pool1, pool2 and pool5) of the network
were automatically extracted to utilize the information within the feature maps at different
resolutions and abstractions. Starting layers capture low-level features, which are features
related to the local structure of the image such as lines, edges and blobs. Deeper layers
return more complex and abstract features related to global characteristics of the image that
are obtained by combining low-level features. The highest number of features was obtained
for the pool2 layer (13 features) and the pool1 layer (12 features) in the case of the public
DB and private DB, respectively. The lower number of features was returned for the pool5
layer with respect to both DBs (6 features for the public DB and 5 features for the private
DB, respectively). On the sagittal MRIs of the public DB, the models exploiting the CNN-
extracted features belonging to the sets F-pool1 and F-pool5 reached almost comparable
performances in terms of AUC values (i.e., AUC values of 82.6% and 81.7% respectively).
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Among the models employing the CNN-features extracted from the three layers separately,
the highest specificity value (96.1%) was achieved by the model using the F-pool2. On the
axial MRIs of the private DB, while the highest AUC value was achieved by using F-pool1
(82.7%), the best accuracy was referred to the model exploiting F-pool2 (84.6%). Merging the
features belonging to F-pool1, F-pool2 and F-pool3 in a single set, i.e., F-merged, allowed it to
globally outperform the previous models, especially in terms of AUC values: an AUC value
of 86.7% and 86.1% was obtained on the public DB and private DB, respectively. Apart
from the specificity value, the best performances were reached by combining the features
belonging to the F-merged with the clinical features above mentioned in the previous
subparagraph: an AUC value of 92.9% and 88.4%, an accuracy of 82.1% and 88.5% were
achieved on the public DB and private DB, respectively.

References
1. Mieog, J.S.D.; Van Der Hage, J.A.; Van De Velde, C.J.H. Neoadjuvant chemotherapy for operable breast cancer. Br. J. Surg. 2007,

94, 1189–1200. [CrossRef] [PubMed]
2. Cain, H.; Macpherson, I.R.; Beresford, M.; Pinder, S.E.; Pong, J.; Dixon, J.M. Neoadjuvant Therapy in Early Breast Cancer:

Treatment Considerations and Common Debates in Practice. Clin. Oncol. 2017, 29, 642–652. [CrossRef] [PubMed]
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