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a b s t r a c t 

Lysophosphatidylcholine (LPC) is one of the major lysophospholipids mainly generated by phospholi-

pase A 2 (PLA 2 )-mediated hydrolysis of phosphatidylcholine (PC). We previously found that LPC displays

neurotrophin-like activity in the rat pheochromocytoma PC12 cells and in cerebellar granule neurons,

but the molecular mechanism remains unclear. We report here that LPC specifically enhances nerve

growth factor (NGF)-induced signals in PC12 cells. When PC12 cells were treated with NGF, MAPK was

phosphorylated, but this phosphorylation was significantly elevated when LPC was added together. In

accordance, NGF-induced expression of immediate early genes, c- fos and NGF-IA , was upregulated by

LPC. Phosphorylation of the upstream components, MEK and NGF receptor TrkA, was also promoted

by LPC, which was in line with increased phosphorylation of Akt. In contrast, LPC did not enhance

epidermal growth factor (EGF)-, basic fibroblast growth factor-, or insulin-like growth factor-1-induced

signals. Studies using TrkA / EGF receptor chimeras demonstrated that the extracellular domain, but not

the transmembrane or intracellular domains, of TrkA is responsible for the effect of LPC. Exogenously-

added secretory PLA 2 (sPLA 2 ) enhanced NGF-induced MAPK phosphorylation at a comparable level to

LPC, suggesting that LPC generated in situ by sPLA 2 -mediated hydrolysis of membrane PC stimulated

NGF-TrkA signal. Taken together, these results indicate a specific role and function of LPC on NGF-TrkA

signaling pathway. 
C © 2013 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical

Societies. All rights reserved. 
 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Neurotrophins, including nerve growth factor (NGF) [ 1 ], brain-

derived neurotrophic factor (BDNF) [ 2 ], neurotrophin-3 (NT-3) [ 3 ],

and neurotrophin-4 [ 4 ], are a family of small secreted proteins. They

have similar structure and functions, and play essential roles in main-

taining the physiological activity of neurons through regulating their
� This is an open-access article distributed under the terms of the Creative Commons 

Attribution License, which permits unrestricted use, distribution, and reproduction in 

any medium, provided the original author and source are credited. 

Abbreviations: BDNF, brain-derived neurotrophic factor; bFGF, basic fibroblast 

growth factor; CGNs, cerebellar granule neurons; DMEM, Dulbecco ’ s modified Eagle ’ s 

medium; EGF, epidermal growth factor; EGFP, enhanced green fluorescent protein; 

EGFR, EGF receptor; GPCR, G protein-coupled receptors; IGF-1, insulin-like growth 

factor-1; LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; LPE, lysophos- 

phatidylethanolamine; LPS, lysophosphatidylserine; MAPK, mitogen-activated protein 

kinase; MEK, mitogen-activated protein kinase kinase; NGF, nerve growth factor; PC, 

phosphatidylcholine; PI3K, phosphatidylinositol 3-kinase; PLA 2 , phospholipase A 2 ; RT- 

PCR, reverse transcription-polymerase chain reaction; SDS, sodium dodecyl sulfate; 

sPLA 2 , secretory PLA 2 ; TTBS, Tris-buffered saline containing 0.01% Tween 20. 

* Corresponding author. Tel.: + 81 3 5841 8230; fax: + 81 3 5841 8033. 
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survival, growth, and differentiation, as well as the synaptic for-

mation, plasticity, and other associated actions of neurons through-

out the developmental processes [ 5 –10 ]. NGF, the most extensively-

characterized neurotrophin, is known to be generated from nonneu-

ronal cells of target tissues, such as skin, muscle, testis, and salivary

glands [ 5 , 6 ]. NGF acts through two classes of receptors: tropomyosin-

related kinase A (TrkA), carrying an intrinsic tyrosine kinase activity

in its intracellular domain, and the receptor p75 for neurotrophins

(p75 NTR ) that belongs to the death receptor family [ 6 , 7 ]. Binding of

NGF to TrkA induces the auto-phosphorylation of TrkA at tyrosine

residues and its kinase activity followed by the activation of Ras-

mitogen-activated protein kinase (MAPK) cascade [ 6 , 7 , 11 , 12 ]. Acti-

vated TrkA also transmits signals to the phosphatidylinositol 3-kinase

(PI3K)-Akt and phospholipase C- γ pathways [ 6 , 7 , 12 ]. These pathways

finally lead to the expression of immediate early genes, such as c -fos

and NGF-IA , which are involved in cell proliferation, differentiation,

and survival [ 13 ]. 

Previously, we found that treatment of PC12 cells with secre-

tory phospholipase A 2 (sPLA 2 ) induces phosphorylation / activation of

MAPK, neuritogenesis, and differentiation into a sympathetic neuron-

like phenotype, as observed in NGF-treated PC12 cells [ 14 , 15 ]. We

also found that sPLA protects cerebellar granule neurons (CGNs)
2 
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Fig. 1. LPC enhances NGF-induced MAPK phosphorylation in PC12 cells. PC12 cells 

were treated with vehicle control (DMEM plus methanol), LPC (0.1 and 1 μM) or NGF 

(10, 50, and 100 ng / ml) alone, or NGF and LPC together as indicated for 10 min. Cell 

lysis was collected and subjected to Western blotting as described in Section 4 . (A) 

Phosphorylated MAPK (p-MAPK) and total MAPK (MAPK) were analyzed by Western 

blotting using phospho-p44 / 42 (Thr202 / Tyr204) MAPK and p44 / 42 MAPK primary 

antibodies, respectively. (B) The amounts of p-MAPK and MAPK were quantified and 

the relative ratio of p-MAPK vs MAPK in each condition was calculated. Data are means 

± SD of three independent experiments. * p < 0.01 by one-way ANOVA. 
rom apoptosis, mimicking the action of BDNF [ 16 ]. Phospholipase 

 2 (PLA 2 ) is comprised of a diverse class of enzymes which catalyze 

he hydrolysis of the sn -2 ester bond of phospholipids to liberate 

ree fatty acids and lysophospholipids. They are mainly classified into 

our groups: sPLA 2 , cytosolic PLA 2 , calcium-independent PLA 2 , and 

latelet-activating factor acetylhydrolase family [ 17 ]. It is widely rec- 

gnized that through releasing lysophospholipids and fatty acids, es- 

ecially arachidonic acid, PLA 2 s play important roles in numerous 

ellular processes [ 18 , 19 ]. Interestingly, among the sPLA 2 isozymes 

ested, sPLA 2 -X, but not sPLA 2 -IB nor sPLA 2 -IIA, induced neurite out- 

rowth in PC12 cells [ 15 ] and protected CGNs from apoptosis [ 16 ]. 

ubsequent studies have shown that the neurotrophin-like activity 

f sPLA 2 is associated with the release of lysophosphatidylcholine 

LPC). Indeed, LPC added to PC12 and CGNs cultures recapitulated the 

eurotrophin-like activities of sPLA 2 [ 20 , 21 ]. 

LPC is known as a bioactive lipid mostly released from the plasma 

embrane and lipoprotein through the hydrolytic degradation of 

hosphatidylcholine (PC) by PLA 2 . LPC can also be generated by en- 

othelial lipase or by lecithin-cholesterol acyltransferase [ 22 , 23 ]. The 

evel of LPC is increased in oxidized low density lipoprotein (Ox- 

DL) and it is likely to play a critical role in the atherogenic effect 

f Ox-LDL [ 24 ]. LPC has been shown to be involved in various cellu- 

ar responses, such as increasing intracellular Ca 2 + , proinflammatory 

ytokines, and the expression of heparin-binding epidermal growth 

actor (EGF)-like growth factor gene. It was also reported that LPC in- 

uces the expression of vascular cell adhesion molecule-1 and inter- 

ellular adhesion molecule-1, attracts phagocytes to apoptotic cells, 

nd induces chemotaxis in other types of cells [ 24 –26 ]. However, the 

echanisms are still poorly understood. Our previous findings and 

hese open questions prompted us to further investigate the effect of 

PC on NGF signals in PC12 cells. 

In this study, we found that LPC specifically enhances NGF-TrkA 

ignals in PC12 cells. Signals from other growth factors such as EGF 

ere not affected by LPC. Using TrkA / EGF receptor chimeras, we iden- 

ified the extracellular domain of TrkA as the critical region for the 

ffect of LPC. In addition, exogenously-added sPLA 2 also caused a sim- 

lar enhancement of NGF-induced signal. These findings implicate a 

pecific and functional interaction between LPC and NGF-TrkA sys- 

em. 

. Results 

.1. LPC enhances NGF-induced MAPK phosphorylation in PC12 cells 

In our previous study, we found that the release of LPC is involved 

n sPLA 2 -induced neuronal differentiation of PC12 cells [ 20 ]. Since 

GF and LPC activate similar but distinct signaling pathways (i.e. NGF 

cts through its receptor TrkA, while sPLA 2 activates L-type Ca 2 + 

hannel), we asked whether signaling cross-talk between NGF and 

PC occurs in PC12 cells. To this end, cells were treated with NGF or 

PC alone, or NGF plus LPC at specified concentrations for 10 min; 

GF-induced MAPK phosphorylation in PC12 cells is commonly ob- 

erved at this time point. Then, phosphorylation of MAPK (Erk1 / 2) 

as analyzed by Western blotting. PC12 cells express two similar 

APKs called Erk1 (44 kDa) and Erk2 (42 kDa) which are phosphory- 

ated on specific threonine and tyrosine residues upon NGF treatment. 

s shown in Fig. 1 , treatment of cells with NGF (10 and 50 ng / ml) 

riggered MAPK phosphorylation, whereas treatment with LPC alone 

C16:0; 0.1 and 1 μM) failed to induce it. Interestingly, significant 

ncrease in MAPK phosphorylation was observed when cells were 

reated with NGF together with LPC; at the highest, LPC (1 μM) en- 

anced NGF (50 ng / ml)-induced phosphorylation of MAPK by three- 

o four-fold compared to the control (NGF alone, Fig. 1 A and B), and 

his increase was dose-dependent of LPC used. At lower NGF concen- 

ration (10 ng / ml), the effect of LPC was smaller, but LPC consistently 

ncreased NGF-induced MAPK phosphorylation as shown in Fig. 1 A. 
This result implicates that a cross-talk between NGF and LPC signaling 

pathways exists in PC12 cells. 

2.2 LPC containing fatty acyl chain longer than C14, but not other 

lysophospholipids tested, display significant enhancement of 

NGF-induced MAPK phosphorylation 

The result shown in Fig. 1 prompted us to examine whether other 

lysophospholipids bearing different headgroups, i.e. lysophospha- 

tidic acid (LPA), lysophosphatidylethanolamine (LPE), and lysophos- 

phatidylserine (LPS) display similar enhancement of NGF-induced 

MAPK phosphorylation. The result shows that these lysophospho- 

lipids also enhanced NGF-induced MAPK phosphorylation, but at sig- 

nificantly lower level than LPC ( Fig. 2 A and B), implying a special role 

of LPC on NGF-induced signaling in PC12 cells. 

It has been reported that LPC species carrying different length 

of acyl chain and the degree of unsaturation play different biologi- 

cal roles [ 27 –29 ]. Therefore, the effect of LPC species, C12:0, C14:0, 

C16:0, C18:0, and C18:1, on NGF-induced MAPK phosphorylation was 

examined. As shown in Fig. 2 C and D, LPC carrying fatty acyl chains 

C14:0, C16:0, C18:0 and C18:1 was effective in the promotion of 

NGF-induced MAPK phosphorylation to a similar extent, whereas LPC 

C12:0 was ineffective. LPC C16:0 was used in the following experi- 

ments, since C16:0 is the most abundant molecular species of LPC. 

2.3. LPC upregulates the expression of NGF-induced immediate early 

genes, c-fos and NGF-IA 

c- fos and NGF-IA are two major immediate early genes which are 

rapidly transcribed in response to many extracellular stimuli, includ- 

ing NGF, and are early components of a series of transcriptional events 

necessary for initiation and maintenance of differentiation. The maxi- 

mal increase in the expression of c- fos and NGF-1A by NGF is observed 
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Fig. 2. LPC containing fatty acyl chain longer than C14, but not other tested lysophos- 

pholipids, show significant enhancement of NGF-induced MAPK phosphorylation in 

PC12 cells. (A and B) PC12 cells were treated with vehicle control (DMEM plus 

methanol), LPs (LPC, LPA, LPE, or LPS at 1 μM) or NGF (50 and 100 ng / ml) alone, 

or NGF and LPs together for 10 min. (C and D) PC12 cells were treated with NGF (50 

and 100 ng / ml) alone or NGF (50 ng / ml) together with LPC (1 μM) containing fatty acyl 

chains of various length for 10 min. (A and C) show p-MAPK and total MAPK analysis by 

Western blotting. In (B and D), the amounts of p-MAPK and total MAPK were quantified 

and the relative ratio of p-MAPK vs MAPK in each condition was calculated. Data are 

means ± SD of four (B) or three (D) independent experiments. * p < 0.05 by one-way 

ANOVA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. LPC upregulates the expression of NGF-induced immediate early genes, c-fos 

and NGF-IA in PC12 cells. PC12 cells were treated with vehicle control (DMEM plus 

methanol), LPC (1 μM) or NGF (50 and 100 ng / ml) alone, or NGF (50 ng / ml) together 

with LPC (1 μM) for 30 min. Total RNA was isolated and reverse transcribed using 

the random primer. (A and C) The expression levels of c- fos , NGF-IA , and GAPDH were 

analyzed by RT-PCR. (B and D) The expression levels of c- fos , NGF-IA , and GAPDH were 

measured by quantitative real-time PCR. The amounts of transcripts for c- fos or NGF-IA 

relative to GAPDH were calculated by setting the value for NGF (100 ng / ml; not shown) 

at 1. Data are means ± SD of three independent experiments. * p < 0.05 by one-way 

ANOVA. 

 

 

 

 

 

at 30 min [ 13 ]. To examine whether LPC affects the expression of c-

fos and NGF-IA upon NGF treatment in PC12 cells, cells were stim-

ulated with NGF in the presence or absence of LPC for 30 min, and

the expression of both genes was measured by semi-quantitative and

quantitative real time PCR. Consistent with the result shown in Fig. 1 ,

NGF induced the expression of c -fos and NGF-IA , and the addition of

LPC significantly upregulated the expression of both genes, while LPC

alone failed to induce the expression of both genes ( Fig. 3 A–D). This

result shows that enhanced MAPK phosphorylation by LPC results in

the elevation of c- fos and NGF-IA expression at the transcriptional

level, suggesting again a functional role of LPC on NGF-induced sig-

naling pathway. 

2.4. LPC promotes NGF-induced MAPK phosphorylation through 

enhancing the phosphorylation of MEK and the receptor TrkA 

To pinpoint the cellular component at which the NGF signal is

augmented by LPC, we examined MEK phosphorylation, which is just

upstream of MAPK activation. We observed that phosphorylation of
MEK1 / 2 triggered by NGF was significantly enhanced by LPC ( Fig. 4 A

and B), indicating that LPC acts on MEK or at the upstream of MEK.

LPC alone did not induce MEK phosphorylation in PC12 cells ( Fig. S1 ).

We next tested whether the enhancement of NGF-induced MAPK

and MEK phosphorylation by LPC occurs via augmentation of the
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Fig. 4. LPC enhances NGF-induced MAPK phosphorylation through enhancing the 

phosphorylation of MEK and receptor TrkA. (A) PC12 cells were treated with vehicle 

control (DMEM plus methanol), or NGF (50 ng / ml) in the absence or presence of LPC 

(1 μM) for 5 min. Phosphorylated MEK (p-MEK) and total MEK (MEK) were analyzed 

using anti-phospho-MEK1 / 2 (Ser217 / 221) and anti-MEK1 / 2 antibodies, respectively. 

(B) The amounts of p-MEK and total MEK were quantified and the relative ratio of 

p-MEK vs total MEK was calculated. Data are means ± SD of three independent exper- 

iments. * p < 0.05 by one-way ANOVA. (C) PC12 cells were treated with vehicle control 

(DMEM plus methanol), NGF (50 and 100 ng / ml) or LPC (1, 10, and 100 μM) alone, 

or NGF (50 ng / ml) together with LPC (1 μM) as indicated, for 5 min. Phosphorylated 

TrkA (p-TrkA) and total TrkA (TrkA) were analyzed using anti-phospho-TrkA (Tyr490) 

and anti-TrkA primary antibodies, respectively. The images shown are representative 

of three independent experiments which essentially gave similar results. 
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Fig. 5. LPC also enhances NGF-induced, but not IGF-1-induced, Akt phosphorylation. 

(A and B) PC12 cells were treated with vehicle control (DMEM plus methanol), LPC (1 

μM) or NGF (50 and 100 ng / ml) alone, or NGF (50 ng / ml) together with LPC (1 μM) for 

10 min. (C and D), PC12 cells were treated with vehicle control (DMEM plus methanol), 

LPC (1 μM) or IGF-1 (10 and 50 ng / ml) alone, or IGF-1 (10 ng / ml) together with LPC (1 

μM) for 30 min. (A and C) Phosphorylated Akt (p-Akt) and total Akt (Akt) were analyzed 

by Western blotting using anti-phospho-Akt (Ser473) and anti-Akt primary antibodies, 

respectively. (B and D) The amounts of p-Akt and total Akt were quantified and the 

relative ratio of p-Akt vs total Akt was calculated. Data are means ± SD of at least three 

independent experiments. * p < 0.05 one-way ANOVA. 
ctivation of NGF receptor, TrkA. NGF (50 ng / ml)-induced phospho- 

ylation of TrkA at tyrosine 490, which is known to be the important 

ite for the induction of MAPK and Akt signaling cascades [ 7 ], was 

ignificantly enhanced by the addition of LPC (1 μM) ( Fig. 4 C). LPC 

lone (1, 10, or 100 μM) did not induce the phosphorylation of TrkA. 

aken together, results obtained in Figs. 1 –4 indicate that LPC upreg- 

lates NGF-induced signaling by enhancing NGF-induced activation 

f TrkA. 

.5. Akt phosphorylation induced by NGF, but not by IGF-1, was 

nhanced by LPC 

As mentioned above, NGF also induces the activation of PI3K-Akt 

ignaling cascade at the downstream of TrkA. We then asked that 

f LPC also affects NGF-induced Akt phosphorylation in PC12 cells. 

o test this, cells stimulated with NGF in the presence or absence 

f LPC were analyzed for Akt phosphorylation using the antibodies 

gainst phospho-Akt (Ser473) and Akt. As shown in Fig. 5 A and B, 

GF-induced Akt phosphorylation was significantly increased by LPC. 

o significant difference was detected in Akt protein levels. 
Insulin-like growth factor-1 (IGF-1) is a polypeptide trophic fac- 

tor playing important roles in the survival and differentiation of both 

neuronal and non-neuronal cells. It has been shown that IGF-1 in- 

duces Akt survival pathway in PC12 cells [ 30 ]. Since LPC enhanced 

NGF-induced Akt phosphorylation, we examined if LPC also aug- 

ments IGF-1-induced Akt phosphorylation. However, no significant 

enhancement of Akt phosphorylation was observed by LPC ( Fig. 5 C 

and D). Thus, LPC does not affect IGF-1-induced Akt signaling, imply- 

ing that the effect of LPC is specific to NGF-TrkA. 

2.6. LPC does not affect EGF- or FGF-induced MAPK phosphorylation and 

EGF-induced EGF receptor phosphorylation 

To test whether LPC also promotes MAPK phosphorylation trig- 

gered by other growth factors, the effect of LPC on the signals elicited 

by various growth factors, EGF and basic fibroblast growth factor 
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Fig. 6. LPC does not enhance EGF- or FGF-induced MAPK phosphorylation, and EGF- 

induced EGF receptor phosphorylation. (A–C) PC12 cells were stimulated with NGF (50 

ng / m) in (A), EGF (25 ng / ml) in (B), or FGF (50 ng / ml) in (C), alone or together with LPC 

(1 μM) in the time-course experiments as indicated. Then, p-MAPK and total MAPK 

were analyzed by Western blotting. The graphs shown are a representative of at least 

three independent experiments which essentially gave similar results. (D and E) PC12 

cells were treated with vehicle control (DMEM plus methanol), or EGF (25 ng / ml) in the 

absence or presence of LPC (1 μM) for 2 min. Phosphorylated EGF receptor (p-EGFR) and 

total EGFR (EGFR) were analyzed by Western blotting in (D) using anti-phospho-EGFR 

(Tyr1173) and anti-EGFR primary antibodies, respectively. The amounts of p-EGFR and 

total EGFR were quantified and the relative ratio of p-EGFR vs total EGFR was calculated 

in (E). Data are means ± SD of two independent experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(bFGF), as well as NGF, was analyzed in the time-course experiments.

As shown in Fig. 6 A, LPC significantly enhanced NGF-induced MAPK

phosphorylation, and the sustained effect was observed for as long

as 30 min. In addition, LPC accelerated the cellular response as the

peak of NGF-induced MAPK phosphorylation moved from 10 to 5 min

( Fig. 6 A). In contrast, no enhanced phosphorylation of MAPK by LPC

was detected when cells were treated with EGF ( Fig. 6 B) or bFGF ( Fig.

6 C). These data pose again an interesting possibility that LPC acts

specifically on NGF-TrkA signaling pathway. 

To understand why LPC failed to enhance EGF-induced MAPK

phosphorylation, the effect of LPC on EGF-induced EGF receptor

(EGFR) phosphorylation was tested. In line with the result show-

ing that EGF-elicited MAPK phosphorylation was not enhanced by

LPC, EGF-induced autophosphorylation of EGFR at Tyr1173, which is

involved in MAPK activation, was not affected by LPC ( Fig. 6 D and

E). Considering that EGF at 25 ng / ml might maximally induced EGFR

phosphorylation, so that no further increase occurred by LPC, the ef-

fect of LPC on EGFR phosphorylation induced by EGF at 5 and 10 ng /

ml was also examined; LPC did not affect EGF-induced EGFR phos-

phorylation (data not shown). Taken together, the results obtained
clearly show that LPC specifically promotes NGF-induced MAPK and

Akt phosphorylation through enhancing the activation of TrkA. 

2.7. Extracellular domain of TrkA is responsible for the effect of LPC on 

NGF-dependent MAPK phosphorylation 

Results in Figs. 4 C and 6 D showing that TrkA, but not EGFR, was

responsive to the effect of LPC suggest that LPC plays a specific role

on the activation of TrkA, rather than influencing the signals evoked

by growth factor-receptor tyrosine kinase in general. To further un-

derstand the mechanism underlying the action of LPC, we next aimed

to determine the domain(s) of TrkA involved in the effect of LPC on

NGF-induced MAPK phosphorylation. To this end, we constructed

TrkA / EGFR chimeras, C1, C2, C3, and C4, by swapping the extracel-

lular (EC), transmembrane (TM), and intracellular (IC) domains be-

tween TrkA and EGFR ( Fig. 7 A). We firstly confirmed that untrans-

fected and vector-transfected CHO-K1 cells do not respond to either

NGF or EGF (i.e. MAPK was not phosphorylated upon NGF or EGF

treatments; Fig. 7 B, upper). Next, we transfected TrkA, EGFR, and

TrkA / EGFR chimeras to CHO-K1 cells, respectively, and tested MAPK

phosphorylation upon various stimuli. Expression of these receptors

was confirmed by Western blotting using anti-GFP-antibody ( Fig. 7 B,

bottom). In TrkA-transfected cells, addition of NGF weakly induced

MAPK phosphorylation, and when LPC was added together, it was

significantly increased ( Fig. 7 C and D). In EGFR-transfected cells, EGF

induced MAPK phosphorylation, but this was not affected by LPC ( Fig.

7 E and F). These are consistent with the results we obtained in PC12

cells. In C1 (TrkA EC / EGFR TM + IC chimera)-transfected cells, NGF

induced MAPK phosphorylation, which was further enhanced by LPC,

as was seen in the TrkA-transfected cells ( Fig. 7 G and H). Similar result

was obtained in the C3 (TrkA EC + TM / EGFR IC chimera)-transfected

cells ( Fig. 7 K and L). These results show that the extracellular domain

of TrkA responds to LPC in enhancing NGF-induced MAPK phosphory-

lation. Conversely, C2 (EGFR EC / TrkA TM + IC chimera; Fig. 7 I and J)

or C4 (EGFR EC + TM / TrkA IC chimera)-transfected cells ( Fig. 7 M and

N) responded to EGF i.e. MAPK was strongly phosphorylated upon

EGF treatment, since these cells express the extracellular domain of

EGFR. However, no significant enhancement of MAPK phosphoryla-

tion was observed by LPC, although these cells express transmem-

brane or transmembrane plus intracellular domains of TrkA. Taken

together, these results indicate that the extracellular domain, but not

the transmembrane and intracellular domains, of TrkA is necessary

and sufficient for mediating the effect of LPC on NGF-induced MAPK

phosphorylation. 

2.8. sPLA 2 enhances NGF-induced MAPK phosphorylation at a 

comparable level to LPC 

We previously demonstrated that sPLA 2 displays neurotrophin-

like activities, such as neurite-induction in PC12 cells and rescue

of CGNs from apoptosis. These effects of sPLA 2 were essentially

attributable to the generation of LPC [ 20 , 21 ]. Here we tested if

exogenously-added sPLA 2 also enhances NGF-induced MAPK phos-

phorylation. As shown in Fig. 8 , NGF-induced MAPK phosphoryla-

tion was greatly elevated by sPLA 2 , and the degree of enhancement

was similar to that by LPC, implying that LPC generated locally by

sPLA 2 -mediated hydrolysis of PC in the plasma membrane activates

NGF-TrkA signaling pathway in situ . 

3. Discussion 

In this study, we have demonstrated that LPC specifically pro-

motes NGF-induced MAPK and Akt signaling pathways in PC12 cells.

Signals elicited by other growth factors, EGF, bFGF, and IGF-1, were

not elevated by LPC, indicating that the effect of LPC is specific to

NGF-TrkA system. To identify the cellular component(s) at which LPC
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Fig. 7. LPC enhances NGF-dependent MAPK and Akt signals through the extracellular domain of TrkA. (A) Schematic representation of TrkA, EGFR, and TrkA / EGFR chimeric receptors 

C1, C2, C3, and C4. (B) CHO-K1 cells were untransfected (WT), or transfected with pEGFP vector, C1-pEGFP (C1), C2-pEGFP (C2), C3-pEGFP (C3), C4-pEGFP (C4), TrkA-pEGFP (TrkA), 

or EGFR-pEGFP (EGFR) for 18–24 h. Then, p-MAPK and MAPK were analyzed by Western blotting after various treatments (upper). Expression of EGFP, C1, C2, C3, C4, TrkA, and 

EGFR was also detected using anti-GFP-antibody (bottom). (C–N) CHO-K1 cells were transiently transfected with TrkA (TrkA-pEGFP) in (C and D), EGFR (EGFR-pEGFP) in (E and F), 

C1 (C1-pEGFP) in (G and H), C2 (C2-pEGFP) in (I and J), C3 (C3-pEGFP) in (K and L), or C4 (C4-pEGFP) in (M and N), respectively. Cells were serum-starved for 1.5 h. (B–N) Cells were 

treated with vehicle control (DMEM plus methanol), LPC (L, 1 μM) or NGF (N, 50 ng / ml) alone, or NGF (50 ng / ml) together with LPC (1 μM, N + L), EGF (E, 25 ng / ml) or EGF (25 

ng / ml) together with LPC (1 μM, E + L) for 5 min. In the upper panels, p-MAPK and total MAPK were analyzed by Western blotting. In the bottom panels (graphs), the amounts of 

p-MAPK and total MAPK were quantified and the relative ratio of p-MAPK / total MAPK in each condition was calculated. Data are means ± SD of three independent experiments. 

* p < 0.05 by one-way ANOVA. 
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cts to potentiate NGF-TrkA signal, we examined the phosphorylation 

f MEK and TrkA, and found that LPC enhances TrkA phosphorylation 

nduced by NGF. Result from TrkA / EGFR chimera study showed that 

he extracellular domain, but not the transmembrane and intracel- 

ular domains, of TrkA is critical for the effect of LPC. Together, the 

esults presented in this study propose a unique role of LPC in NGF- 

rkA signaling pathway. 

Lysophospholipids with different headgroups, LPA, LPE, and LPS 

nhanced NGF-induced MAPK phosphorylation, but the level was 

ower than LPC ( Fig. 2 A and B). Interestingly, similar headgroup speci- 

city of these lysophospholipids was observed in our previous studies 

herein neurite outgrowth in PC12 cells and the cell survival of CGNs 

ere examined; only LPC, but not other lysophospholipids, induced 

eurites in PC12 and rescued CGNs from apoptosis [ 20 , 21 ]. Further- 

ore, LPC with fatty acyl chains of C14:0, C16:0, C18:0, and C18:1, 

ut not C12:0, enhanced NGF-induced MAPK phosphorylation in this 

tudy, and similar LPC species were effective on neurite outgrowth 

n PC12 cells and the cell survival of CGNs in our previous studies 

 20 , 21 ]. These results suggest the existence of specific and acyl chain- 

ependent role(s) of LPC in neuronal systems. 

We previously found that when PC12 cells were treated with 

PLA 2 , LPC was released into the culture medium due to its hydrolytic 

ctivity. Release of LPC was also detected in the medium of PC12 cells 

reated with the culture supernatant of COS1 cells expressing sPLA 2 - 

, but not sPLA 2 -IB and sPLA 2 -IIA [ 20 ]. Another study has shown that 

he amount of LPC in extracted phospholipids from PC12 cells that had 
been infected with the adenovirus containing sPLA 2 -X, but not sPLA 2 - 

IIA and V for 3 days, was greatly increased compared to that from the 

control cells; around 15–20% of total PC was found to be converted to 

LPC [ 34 ]. Furthermore, the expression of sPLA 2 s including sPLA 2 -X in 

the skin is known to be increased during inflammation caused by UV 

irradiation. Recombinant sPLA 2 -X promoted the tyrosinase activity 

and dendricity in human melanocytes that play important roles in 

the protection of skin from UV damage, which was mainly dependent 

on the release LPC [ 35 ]. Thus it is conceivable that LPC is locally gen- 

erated in vivo and associated with some of the biological actions of 

sPLA 2 . 

It remains an open question how LPC acts to potentiate NGF- 

Trk signals. Accumulating evidence suggests the involvement of G 

protein-coupled receptors (GPCRs) such as G2A and GPR4 in the bio- 

logical actions of LPC, such as the increase in transforming growth 

factor-b1 expression, and the barrier dysfunction induced by LPC 

[ 37 , 38 ]. Also, in our previous study, G2A mediates the neuritogenic 

action of LPC in PC12 cells [ 20 ]. Hence, we tested if G2A and GPR4 

modulate the effect of LPC on NGF-induced signals by overexpressing 

G2A (or GPR4) in PC12 cells, or by co-expressing G2A (or GPR4) with 

TrkA in CHO-K1 cells. In both cases, however, the ability of LPC to 

promote NGF-induced MAPK phosphorylation was not affected (data 

not shown). Nevertheless, possibilities that the effect of LPC was me- 

diated by different GPCR(s), like GPR11, another GPCR involved in the 

effect of LPC [ 39 ], as well as adenosine 2A receptor [ 40 ], PAC1 recep- 

tors [ 41 ], and endocannabinoid receptors [ 42 ] which were reported 
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Fig. 8. sPLA 2 enhances NGF-induced MAPK phosphorylation at similar level to LPC. 

PC12 cells were stimulated with vehicle control (DMEM plus methanol), LPC (1 μM), 

sPLA 2 (100 nM), NGF (50 ng / ml), or NGF (50 ng / ml) together with LPC (1 μM) or sPLA 2 
(100 nM) for 2 min. (A) p-MAPK and total MAPK were analyzed by Western blotting. 

(B) The amounts of p-MAPK and total MAPK were quantified and the relative ratio of p- 

MAPK vs total MAPK was calculated. One representative result from four independent 

experiments which gave similar results is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to induce the activation of Trk receptors, need to be addressed. 

Another possibility is that LPC might regulate the dimerization

state of TrkA, since it is well accepted that NGF induces dimerization

and autophosphorylation of TrkA, thereby activating the downstream

signaling events. Recent studies have shown, however, that the ma-

jority of TrkA preforms dimers in the endoplasmic reticulum before

reaching to the cell surface; NGF activates the preformed, yet inactive,

TrkA dimer on the cell surface [ 11 ]. We examined the dimerization

state of TrkA by performing a chemical cross-linking experiment, and

found that LPC did not affect the formation of TrkA dimer in TrkA-

transfected PC12 cells (data not shown). This result suggests that LPC

does not act through enhancing / stabilizing the formation of TrkA

dimers that occurs intracellularly, which is, in fact, compatible with

our finding that LPC acts on the extracellular domain of TrkA. 

The mechanism whereby LPC augments NGF-induced signals

could be more direct. Studies using TrkA / EGFR chimeric receptors ex-

pressed in CHO-K1 cells showed that the extracellular domain of TrkA

is responsible for the effect of LPC on NGF signals. The extracellular

immunoglobulin-like subdomains of TrkA, D4 and D5, were reported

to be important for NGF binding. When D4 and D5 were removed from

TrkA, NGF binding was inhibited [ 43 ]. Subsequent studies showed

that D5, located near the transmembrane region, is critical and suf-

ficient for NGF binding [ 44 , 45 ]. LPC is an amphiphlic molecule and

should distribute into both membrane and soluble compartments.

Our data showing that the effect of LPC on the phosphorylation of

TrkA was observed only in the presence of NGF, but not in its absence,

might suggest that LPC evokes allosteric changes in the membrane-

proximal D5 subdomain of TrkA, thereby modulating the affinity and /

or stability of TrkA-NGF complex. Alternatively, LPC might affect TrkA

activity by modulating the properties of lipid rafts where phosphory-

lated TrkA interact with the downstream effectors [ 46 ]. TrkA activity

is also known to be regulated by GM1 ganglioside [ 47 ]. However,

pretreatment of PC12 cells with methyl- β-cyclodextrin that disrupt
lipid rafts failed to abolish the effect of LPC on NGF-induced MAPK

phosphorylation (data not shown). 

In contrast to other lysophospholipids including LPA, LPE, and LPS,

the biological actions of which are mostly mediated by specific GPCRs

and are observed at submicromolar or micromolar concentrations,

most studies wherein the effects of LPC were examined used LPC

at concentrations higher than 10 μM [ 31 ]. The concentration of LPC

in the human plasma separated from fresh blood is around 190 μM,

and it can be up to 800 μM in the blood plasma of other mammalian

species. These facts have raised a critique on the existence of trans-

membrane signal transduction pathway(s) specific to LPC. However,

the level of LPC in the cerebrospinal fluid (CSF) is only around 5 μM,

since autotaxin abundantly expressed in the CSF converts LPC to LPA

[ 27 , 32 , 33 ]. Furthermore, intravenously injected LPC (200 nM / kg) was

found to protect neurons in the brain in an in vivo model of global is-

chemia in mice. In this model, 0.1% of intravenously injected LPC

passed through the blood–brain barrier and entered the brain, 55% of

which was in unmetabolized form. In addition, in an in vitro model

of high glutamate-induced excitotoxicity of primarily cultured CGNs,

LPC also significantly prevented the neuronal death [ 36 ]. These find-

ings indicate that LPC is neuroprotective in the physiological condi-

tions and might be a therapeutic candidate for preventing neuronal

death, although the exact working concentration of LPC is unclear at

present. Further studies are surely needed to elucidate the molec-

ular mechanism by which LPC regulates the activation of TrkA, and

whether or not the potentiation of NGF-TrkA signal is involved in the

neuroprotective effect of LPC. 

4. Experimental procedures 

4.1. Materials 

LPC used in this study is 1-palmitoyl- sn -glycero-3-

phosphocholine (C16:0; Cat. No. 855675P). Other lysophospho-

lipids used are: 1-lauroyl-2-hydroxy- sn- glycero-3-phosphocholine

(C12:0; 855475P), 1-myristoyl-2-hydroxy- sn -glycero-3-

phosphocholine (C14:0; 855575P), 1-stearoyl-2-hydroxy- sn -

glycero-3-phosphocholine (C18:0; 855775P), 1-oleoyl-2-hydroxy-

sn -glycero-3-phosphocholine (C:18:1; 845875P), lysophosphatidic

acid (LPA; C16:0; 857123P), lysophosphatidylethanolamine (LPE;

C16:0; 856705P), and lysophosphatidylserine (LPS; C18:1; 858143P).

All these lysophospholipids were purchased from Avanti Polar Lipids.

LPC, LPA, and LPS were dissolved in methanol. LPE was dissolved in

DMSO. Nerve growth factor (NGF; NGF-301) and epidermal growth

factor (EGF; EGF-201) were from Toyobo. Recombinant human

insulin-like growth factor-1 (IGF-1; GPT-10011L) was obtained from

Pepro Tech. Growth factors were dissolved in DMEM. sPLA 2 was

prepared as described [ 15 ]. Vehicle control for various stimuli was

prepared by mixing the same amount of DMEM and methanol. 

Primary antibodies used are: phospho-p44 / 42 (Thr202 / Tyr204)

MAP kinase, #9101; p44 / 42 MAP kinase, #9102; phospho-Akt

(Ser473), #9271; Akt, #9272; phospho-TrkA (Tyr490), #9141; TrkA

#2505; phospho-EGF receptor (Tyr1173), #4407; EGF receptor,

#2232; phospho-MEK1 / 2 (Ser217 / 221), #9121; and MEK1 / 2, #9122.

All these antibodies were purchased from Cell Signaling Technology

and used at 1:1000 dilution in Tris-buffered saline (TBS; 20 mM Tris–

HCl (pH 7.5), 150 mM NaCl). Living colors ® A.v. monoclonal antibody

(JL-8), #632380 (Clontech), was used at 1:5000 dilution in TBS to

detect EGFP fusion proteins. The secondary antibody, horseradish

peroxidase-linked anti-rabbit-IgG (#7074; Cell Signaling Technol-

ogy), was used at 1:2000 dilution in TBS containing 0.02% Tween 20

(TTBS). Peroxidase-labeled anti-mouse IgG (H + L), #PI-2000 (Vec-

tor), was used at 1:500 dilution in TBS. 
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.2. Cell culture 

Rat pheochromocytoma PC12 cells were maintained in Dulbecco’s 

odified Eagle’s medium (DMEM, Invitrogen) supplemented with 

% fetal calf serum and 5% horse serum (DMEM (5 / 5)) at 37 ◦C in 

 humidified and CO 2 -controlled (10%) incubator. Chinese hamster 

vary K1 (CHO-K1) cells were maintained in DMEM supplemented 

ith 10% fetal calf serum. Cells were kept with regular transfer of 

wice or more a week. PC12 cells were inoculated in collagen type 1 

rat tail)-coated 24-well culture plates at a density of 1 × 10 5 cells / 

ell in Figs. 1 , 2 , 5 , 6 A–C, and 8 , the same number of PC12 cells

n 6-well plates in Figs. 4 C, 6 D, and 6 E, or 60-mm dishes in Figs. 3 ,

 A and B, and allowed to grow until > 80% confluence. Before cells 

ere subjected to various treatments as specified in the text, cells 

ere serum-starved for 1.5 h in DMEM in all cases. In Fig. 7 , CHO- 

1 cells were seeded at a density of 1 × 10 5 cells / well in 24-well 

ulture plates, and allowed to grow until > 80% confluence. 18–24 h 

fter transfection, cells were serum-starved for 1.5 h in DMEM, and 

hen subjected to various treatments as specified in the text. 

.3. Immunoblotting analysis 

Cell lysis was collected in 1 × sodium dodecyl sulfate (SDS) sample 

uffer (50 mM Tris–HCl (pH 6.8), 10% glycerol, 6% mercaptoethanol, 

% SDS, 0.5% bromophenol blue), 50 μl / well for 24-well plate, 100 μl / 

ell for 6-well plate, and 300 μl / well for 60 mm dish, and boiled for 

 min. In each experiment, equal volume of cell lysate was subjected 

o electrophoresis on SDS gel containing 10% acrylamide. Proteins 

ere transferred onto polyvinylidene fluoride (PVDF) microporous 

embrane (Millipore) for 45 min at 125 mA using a semi-dry blotter. 

he membrane was blocked with 5% skim milk for 1 h. Then, the mem- 

rane was incubated overnight at 4 ◦C with the primary antibodies 

s described. The membrane was washed with TTBS and incubated 

ith the secondary antibody for 30 min or longer at room tempera- 

ure with gentle shaking. Immunoreactive bands were visualized us- 

ng the SuperSignal ®WestPico Lumino / Enhancer (Pierce #1856136) 

nd SuperSignal ®WestPico Stable Peroxide (#1856135) solution, or 

estern Lightning ® Ultra solutions from PerkinElmer, Inc. Imaging 

as then carried out using FUJI Image Reader. The amount of proteins 

as quantified by FUJI FILM Multi Gauge software. 

.4. Total RNA isolation and cDNA synthesis 

Total RNA (10 μg) was extracted from PC12 cells after the various 

reatments as specified in Fig. 3 , 5 μg of which was subjected to DNase 

reatment using RQ 

1 RNase-Free DNase (Promega). Then, 0.6 μg of 

NA was reverse transcribed to cDNA in a volume of 20 μl reaction 

sing random primer and PrimeScript reverse transcriptase. After the 

everse transcription reaction, 1 μl of cDNA from each case was pro- 

eeded to PCR reaction in a 25 μl of reaction mixture (95 ◦C for 5 min; 

5 cycles of 94 ◦C for 30 s, 52.5 ◦C for 30 s (for GAPDH ; 54.3 ◦C for 30 s

or c- fos ; 50 ◦C for 30 s for NGF-IA ), and 72 ◦C for 30 s (for GAPDH ; 72 ◦C

or 40 s for c- fos ; 72 ◦C for 1 min for NGF-1A ); 72 ◦C for 5 min) using

pecific primer pairs: GAPDH (5 ′ -GACCACAGTCCATGCCATCACT- 

 

′ and 5 ′ -TCCACCACCCTGTTGCTGTAG-3 ′ ), c- fos (5 ′ - 
GAATCCGAAGGGAAAGGAA-3 ′ and 5 ′ -ATGATGCCGGAAACAAGAAG- 

 

′ ), and NGF-IA (5 ′ -CCACAACAACAGGGAGACCT-3 ′ and 5 ′ -GGGATGGG 

AGGAAGAGAGG-3 ′ ). 

.5. Semi-quantitative and quantitative RT-PCR 

PCR products were subjected to electrophoresis on 2% agarose gel 

o confirm that each primer pair amplified a single product of pre- 

icted size, and to determine the relative expression level of c- fos , 

GF-IA , and GAPDH in response to different treatments as described 
above. Also, transcript levels of c- fos , NGF-IA , and GAPDH were mea- 

sured by quantitative real-time PCR using LightCycler ® FastStart DNA 

Master SYBR Green I kit (Roche). The reaction was performed in a vol- 

ume of 20 μl according to the manufacturer’s instructions. In each re- 

action, 2 μl of cDNA was used. For each primer pair, PCR efficiency was 

determined by standard curve and the transcript levels of c- fos and 

NGF-IA were normalized against GAPDH . Quantitative real-time PCR 

(RT-PCR) experiments were independently performed three times 

and each experiment was done in triplicate. 

4.6. Plasmids 

To construct the plasmid TrkA-pEGFP for expression of TrkA 

fused with EGFP, a cDNA fragment encoding the full-length 

mouse TrkA, 799 amino acid-long, was amplified by PCR using 

oligonucleotides 5 ′ -GGAATTCATGCTGCGAGGCCAGCGGCA-3 ′ and 5 ′ - 
GGAATTCTGCCCAGAACGTCCAGGTAAC-3 ′ . The resulting PCR product 

was digested with Eco R I, and was cloned into Eco R I site of pEGFP ex- 

pression vector. To construct the plasmid EGFR-pEGFP for expression 

of EGFR fused with EGFP, a cDNA fragment encoding the full-length 

rat EGFR, 1209 amino acid-long, was amplified by PCR using oligonu- 

cleotides 5 ′ -CTCGAGATGCGACCCTCAGGGACTGCGAGAACCAAGC-3 ′ 

and 5 ′ -CTCGAGTGCTCCACTAAACTCACTG CTTGGCGGTGCCA-3 ′ . This 

cDNA fragment was digested with Xho I, and subcloned into the 

expressing vector pEGFP at Xho I site (EGFR-pEGFP). TrkA / EGFR 

chimeric receptors were constructed by swapping each domain 

between TrkA and EGFR. cDNA fragments encoding the extracellular 

domain (EC), extracellular and transmembrane domains (EC-TM), 

transmembrane and intracellular domains (TM-IC), and intracellular 

domain (IC) of both TrkA and EGFR were amplified by PCR, using 

TrkA-pEGFP and EGFR-pEGFP as templates, respectively. Resultant 

fragments were fused by overlapping PCR strategy to create chimeric 

cDNAs. Chimeric receptor 1 (C1) is composed of EC of TrkA and TM-IC 

of EGFR. C2 contains EC of EGFR and TM-IC of TrkA. C3 contains 

EC-TM of TrkA and IC of EGFR. C4 contains EC-TM of EGFR and 

IC of TrkA. Chimeric cDNAs for C1, C2, C3, and C4 was digested 

with Xho I and introduced into pEGFP vector at Xho I site. Oligonu- 

cleotides used are: 5 ′ -CTCGAGATGCT GCGAGGCCAGCGGCTCGG- 

3 ′ , 5 ′ -CCCACAATCCCAGTGGCGATAGGGGTTTCATCTTTCTTCT-3 ′ , 
5 ′ -AGAAGAAAGATGAAACC CCTATCGCCACTGGGATTGTGGG- 

3 ′ , 5 ′ -CTCGAGTGCTCCACTAAACTCACTGCTTG GCGGTG CCA- 

3 ′ , 5 ′ -CTCGAGATGCGACCCTCAGGGACTGCGAGAACCAAGC-3 ′ , 
5 ′ -ACAGCCACAGAGA CCCCAAAGGATGGGATCTTTGGCCCT T- 

3 ′ , 5 ′ -AAGGGCCAAAGATCCCATCCTTTGGGGTC TCTGTGGCTGT- 

3 ′ , 5 ′ -CTCGAGGCCCAGAACGTCCAGGTAACTGGGTGGC-3 ′ , 
5 ′ -AAGCTGA CGTCGACGGAGCACAAGAAGGAGGG-3 ′ , 5 ′ - 
CCCTCCTTCTTGTGCTCCGAAGGCGTCACAT TGTCCG-3 ′ , 5 ′ - 
CTCCTCTGTCCACATTTGTTCATGAAGAGGCCGATCCCAA-3 ′ , 5 ′ - 
TTGGGAT CGGCCTCTTCATGAACAAATGTGGACAGAGGAG-3 ′ . 

4.7. DNA transfection 

CHO-K1 cells seeded in 24-well plate ( > 80% confluent) were tran- 

siently transfected with various plasmids (0.8 μg / well), for 18–24 h 

by Lipofectamine TM 2000 (1.5 μl / well, Invitrogen), according to man- 

ufacturer’s instruction. 

4.8. Statistical analysis 

The results shown are from at least three independent experi- 

ments. Data are expressed as the means ± standard deviations (SD). 

Data were analyzed for statistical significance using one-way ANOVA, 

and differences were considered significant at p < 0.05 as indicated. 
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