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Summary

Biofloc technology (BFT) application offers benefits
in improving aquaculture production that could con-
tribute to the achievement of sustainable develop-
ment goals. This technology could result in higher
productivity with less impact to the environment.
Furthermore, biofloc systems may be developed and
performed in integration with other food production,
thus promoting productive integrated systems, aim-
ing at producing more food and feed from the same
area of land with fewer input. The biofloc technology
is still in its infant stage. A lot more research is
needed to optimise the system (in relation to opera-
tional parameters) e.g. in relation to nutrient recy-
cling, MAMP production, immunological effects. In
addition research findings will need to be communi-
cated to farmers as the implementation of biofloc
technology will require upgrading their skills.

Aquaculture as a food-producing sector offers ample
opportunities to alleviate poverty, hunger and malnutri-
tion, generates economic growth and ensures better use
of natural resources (Food and Agriculture Organization,
2017). Aquaculture production is projected to rise from
40 million tonnes by 2008 to 82 million tonnes in 2050
(FAO, 2010). The necessity to increase aquaculture pro-
duction has been triggered by the increasing demand
per capita in parallel to the increase of global population.
However, the development of a sustainable aquaculture
industry is particularly challenged by the limited availabil-
ity of natural resources as well as the impact of the

industry on the environment (Costa-Pierce et al., 2012;
Verdegem, 2013). With these limitations in mind, the
development of sustainable aquaculture industry should
focus on the conceptualization of systems that despite
their high productivity and profitability, utilize fewer
resources including water, space, energy and eventually
capital, and at the same time has lower impact on the
environment (Asche et al., 2008; FAO, 2017). Along with
SDG 14 targets, sustainable aquaculture development
could contribute to multiple objectives including ending
poverty (SDG 1), ending hunger, achieving food security
and improved nutrition (SDG 2) and promoting sus-
tained, inclusive and sustainable economic growth (SDG
8) (Food and Agriculture Organization, 2017).
One of the strategies to improve aquaculture produc-

tion and sustainability should focus on enhancing feed
nutrient utilization. This can be developed by two differ-
ent approaches, i.e. (i) by increasing the feed quality
and feeding strategy in a way that the nutrients can be
efficiently delivered and finally utilized and (ii) by re-utiliz-
ing the nutrient waste through modifications in the cul-
ture system. In an aquatic system, nutrients can be
removed by various natural biogeochemical processes
involving mostly microorganisms with various functions
in nutrient cycles. The nutrient waste in an aquaculture
system is mostly generated from unconsumed feed and
the digestion and metabolic processes of feed. Nutrient
waste in an aquaculture system may be re-utilized
directly by other organisms at lower trophic levels, which
utilize feed particles as their food source, or indirectly by
the conversion of the nutrients into microbial biomass
that may eventually be consumed by the cultured animal
itself or other animal as their food source.
Biofloc technology is mainly based on the principle of

waste nutrients recycling, in particular nitrogen, into
microbial biomass that can be used in situ by the cul-
tured animals or be harvested and processed into feed
ingredients (Avnimelech, 2009; Kuhn et al., 2010). Het-
erotrophic microbiota is stimulated to grow by steering
the C/N ratio in the water through the modification of the
carbohydrate content in the feed or by the addition of an
external carbon source in the water (Avnimelech, 1999),
so that the bacteria can assimilate the waste ammonium
for new biomass production. Hence, ammonium/ammo-
nia can be maintained at a low and non-toxic concentra-
tion so that water replacement is no longer required.
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Biofloc technology enhances the production and pro-
ductivity by its contribution to the supply of good quality
fish juveniles, the latter being one of the most important
inputs in the production. In addition, it contributes to the
improvement of the fish production. In relation to the for-
mer, biofloc technology could support the supply of good
quality seeds by improving the reproductive performance
of aquaculture animals and by enhancing the larvae
immunity and robustness (Ekasari et al., 2015; Ekasari
et al., 2016; Emerenciano et al., 2013). In relation to the
latter, the application of biofloc technology in grow out
systems of some aquaculture species could improve net
productivity by 8–43%, relative to the non-biofloc control
(traditional with water exchange, clear water system or
recirculating aquaculture system) (Ekasari, 2014).

Biofloc systems provide a nutritious food source
and can improve feed utilization efficiency

In situ utilization of microbial flocs generated in biofloc
systems by some aquaculture organisms as well as the
utilization of processed bioflocs as a feed ingredient has
been well documented (Kuhn et al., 2009, 2010; Anand
et al., 2014). Ju et al. (2008) demonstrated that the con-
centrations of free amino acids such as alanine, gluta-
mate, arginine and glycine, which are known attractants
in shrimp diet (Nunes et al., 2006), are present in bio-
flocs. Levels in bioflocs were found to be comparable to
that of the shrimp commercial diet suggesting that bio-
flocs are likely to be recognized as food particles by
some aquaculture organisms. Furthermore, biofloc tech-
nology application in larviculture (at least to some spe-
cies which can handle particles in suspension) may
provide easily accessible food source for the larvae out-
side the regular feeding moments, thus minimizing possi-
ble negative social interaction during feeding (Ekasari
et al., 2015).
Studies have demonstrated a more efficient dietary

nutrient assimilation in this system. Da Silva et al. (2013)
reported that the application of biofloc technology on
Pacific white shrimp super intensive culture considerably
enhanced N and P utilization efficiency up to 70% and
66%, respectively, relative to conventional intensive cul-
ture systems with regular water exchange. Another
report by Avnimelech (2007) noted that applying biofloc
technology in tilapia intensive cultures increased nitrogen
recovery from 23% to 43%. Essentially, biofloc studies
with Pacific white shrimp (Xu and Pan, 2012), tilapia
(Azim and Little, 2008) and green tiger shrimp (Mega-
hed, 2010) clearly showed the possibility to reduce pro-
tein content in the feed. Moreover, Ray et al. (2010a)
pointed out that the use of plant-based diet (96% protein
obtained from plant-based ingredients) is favourable in a
biofloc system. The reduction of protein content of the

feed and the use of plant-based protein sources in the
feed are considered to be more sustainable and
eco-friendly because of the reduced production of
nitrogenous and phosphorous waste. It also reduces the
dependency on overexploited marine resources.
Bioflocs may contribute to the supply of essential nutri-

ents and digestive enzymes either through the stimula-
tion of endogenous production or microbial secretion (Xu
and Pan, 2012; Anand et al., 2014), and the enhance-
ment of nutrient bioavailability that facilitates higher nutri-
ent assimilation. As a protein source, bioflocs could be
considered as a good protein source for shrimp and a
useful protein source for tilapia and mussel (Ekasari
et al., 2014a,b). Bioflocs also contain various bioactive
compounds including essential fatty acids, carotenoids,
free amino acids and chlorophylls (Ju et al., 2008), trace
minerals (Tacon et al., 2002) and vitamin C (Crab et al.,
2012) which are known to have positive effects on aqua-
culture animals including the enhancement of antioxidant
status, growth, reproduction and immune response.
Bioflocs also offers a lot of MAMPs (microbial associ-

ated molecular patterns), which may be recognized as
immunostimulants, resulting in higher resistance to dis-
eases (Ekasari et al., 2014a,b). Interestingly, when bio-
floc technology was applied in tilapia broodstock culture
system, it enhanced the immunological status contribut-
ing to the improvement of the larvae robustness against
diseases and environmental stress test (Ekasari et al.,
2015; Ekasari et al., 2016). In biofloc systems, aquacul-
ture animals may also benefit from reduced pathogen
pressure. Some studies demonstrated that the presence
of potentially pathogenic bacteria might be reduced in
biofloc systems (Crab et al., 2010b; Zhao et al., 2012). It
has been suggested that the reduction of V. harveyi
population in biofloc environment might be related to the
disruption of V. harveyi cell-to-cell communication also
known as an important factor in determining the
pathogenicity of this particular bacterium (Crab et al.,
2010b).

Biofloc systems reduce water utilization and waste
generation

Equally important as target species production enhance-
ment, the application of biofloc technology may signifi-
cantly reduce the quantity of water used, a main
resource in aquaculture. To illustrate, an intensive zero
exchange lined shrimp pond only required 1–
2.26 m3 kg�1 shrimp, whereas a conventional system
with regular water exchange may require water up to
80 m3 kg�1 (Hargreaves, 2006). In addition, Luo et al.
(2014) noted that water consumption of biofloc-based
tilapia culture system was 40% lower than that of recir-
culating aquaculture system (RAS).
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Most of the studies applying biofloc technology con-
firmed that the N and P waste in this system could be
reduced, corroborating the role of this system on the
improvement of aquaculture productivity and the reduction
of environmental impact from aquaculture unit (among
others, P�erez-Fuentes et al., 2013; Luo et al., 2014).
Although heterotrophic bacteria are the main nitrogen con-
version agent, biofloc system also facilitate other nitrogen
conversion mechanisms including nitrification (Ekasari,
2014), phototrophic N uptake (Emerenciano et al., 2013c)
and denitrification (Hu et al., 2014) (all dependent on the
prevailing environmental conditions). The nutrient recy-
cling by the microbial loop involves the uptake of inorganic
phosphorus by heterotrophic bacteria (Kirchman, 1994),
which is not only reducing the discharged P, but also
enhancing the bioavailability of this nutrient for the culti-
vated animals. The level of P assimilation efficiency of
fishmeal and plant-based ingredients by fish has been
perceived to be limited by the high level of indigestible
bone-P and phytate-P; therefore, it is likely that this nutri-
ent will be egested in the faeces rather than utilized by the
cultivated animals. The consumption of the microbial bio-
mass in the biofloc might therefore facilitate P assimila-
tion, in particular the indigestible one, from the feed to the
cultivated organisms thus reducing the nutrient waste
(Luo et al., 2014, Da Silva et al., 2013).

Biofloc-based integrated aquaculture system for
higher productivity, higher nutrient utilization and
lower aquaculture pollution

A possible modification in biofloc-based aquaculture to
maximize nutrient utilization efficiency is by the applying
nutrient recycle principle in an integrated aquaculture sys-
tem. The faster conversion of nutrient by the microbes
associated in bioflocs or periphyton may provide more
digestible and nutritious additional food source for both
main cultured organism and other species added into the
system. In this way, utilization of the wasted nutrients is
expected to be more efficient and less pollution is gener-
ated. The recent study by Liu et al. (2014) showed that
the addition of maize to stimulate bioflocs grown in an inte-
grated culture of shrimp, spotted scat and water spinach
significantly increased shrimp total yield, reduced total
food conversion ratio (FCR) and lowered total P and total
N in the cultured water. Interestingly, combining biofloc
system with integrated multi trophic culture system may
also enhance nutrient utilization efficiency. Ekasari (2014)
demonstrated that combining biofloc-based shrimp culture
system with tilapia, mussel and seaweed resulted in
higher production, higher feed N and P recovery by the
shrimp and the entire culture system, and simultaneously
resulted in reduced waste nutrient and microbial biomass.
Furthermore, the addition of seaweed or macrophytes

(Brito et al., 2014; Liu et al., 2014; Pinho et al., 2017) in a
biofloc-based integrated aquaculture system may also
bring about the possibility to capture the excess CO2,
which may result in an increase in C utilization efficiency
and a reduction in the emission of GHG. This additional
benefit in nutrient utilization efficiency should stimulate fur-
ther research on the possibility of incorporating biofloc
system into an integrated multitrophic culture system to
mitigate negative environmental impact of aquaculture
nutrient wastes.

Conclusion

Biofloc technology application offers benefits in improv-
ing aquaculture production that could contribute to the
achievement of sustainable development goals. This
technology could result in higher productivity with less
impact to the environment. Furthermore, biofloc systems
may be developed and performed in integration with
other food production, thus promoting productive inte-
grated systems, aiming at producing more food and feed
from the same area of land with fewer input. The biofloc
technology is still in its infant stage. A lot more research
is needed to optimize the system (in relation to opera-
tional parameters) e.g. in relation to nutrient recycling,
MAMP production and immunological effects. In addition,
research findings will need to be communicated to farm-
ers as the implementation of biofloc technology will
require upgrading their skills.
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