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Neurodegenerative processes in Huntington’s disease

D Bano*,1, F Zanetti1, Y Mende1 and P Nicotera1

Huntington’s disease (HD) is a complex and severe disorder characterized by the gradual and the progressive loss of neurons,
predominantly in the striatum, which leads to the typical motor and cognitive impairments associated with this pathology.
HD is caused by a highly polymorphic CAG trinucleotide repeat expansion in the exon-1 of the gene encoding for huntingtin
protein. Since the first discovery of the huntingtin gene, investigations with a consistent number of in-vitro and in-vivo models
have provided insights into the toxic events related to the expression of the mutant protein. In this review, we will summarize the
progress made in characterizing the signaling pathways that contribute to neuronal degeneration in HD. We will highlight
the age-dependent loss of proteostasis that is primarily responsible for the formation of aggregates observed in HD patients.
The most promising molecular targets for the development of pharmacological interventions will also be discussed.
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Huntington’s disease (HD) is an inherited autosomal dominant
neurodegenerative disorder characterized by adult-onset of
motor dysfunctions, psychiatric disturbances and intellectual
decline.1 As revealed by postmortem analysis of tissues
from HD patients, the neuropathological changes are
predominantly detected in the striatum, although marked
alterations have also been observed in other areas of the
brain, including the cerebellar cortex, thalamus and cere-
bellum.2,3 HD is associated with an unstable CAG expansion
in the huntingtin gene (HTT) on chromosome 4. In humans,
the exon-1 of HTT gene normally contains between 6 and
35 CAG repeats, whereas in patients affected by HD more
than 40 trinucleotides have been described.4 In most cases,
an intermediate number (36–40) of CAG repeats leads to
a slower progression of the pathology as a result of the
incomplete penetrance of the mutant allele. Importantly, the
onset and severity of the pathology is directly correlated with
the number of CAG repeats, although the actual function of
the trinucleotide stretch remains unknown.5,6 As reported
by recent findings, the length of the CAG repeats might be
relevant in the translation of the HTT mRNA transcript, as a
result of binding with a ribosome-containing complex7 (Krauss
S., unpublished data). The HTT gene encodes for an
approximately 350 kDa protein composed of several sub-
domains. At the N-terminus, the polyglutamine (polyQ) stretch
encoded by the CAG repeats functions as potential mem-
brane association signal.8 In mammals, the polyQ-containing
domain is followed by a polyproline sequence that stabilizes
protein conformation. The N-terminal portion of HTT is
followed by three main clusters of HEAT repeats, which are
essential for the binding with interacting proteins. In addition

to these motifs, HTT contains a range of consensus sites for
posttranslational modifications, including proteolytic clea-
vage, phosphorylation and sumoylation. Within cells, HTT
has been detected in the nucleus, mitochondria, Golgi and
endoplasmic reticulum and can be found in the neuronal
body, dendrites and synapses.9,10 At the molecular level,
there is evidence that HTT can interact with a variety of
proteins, including some transcriptional factors, synaptic
complexes, plasma membrane and cytoskeleton proteins.11

HTT is ubiquitously expressed during embryonic development
and at high levels in testis and in mature postmitotic neurons
in adult human brain.12

Although the physiological role of HTT has not been fully
defined, analysis of transgenic mice with a targeted deletion of
the Htt gene has demonstrated its role in mammalian
development. Complete suppression of Htt expression in
mice leads to embryonic lethality as a result of increased
apoptosis,13,14 while heterozygous knockout animals exhibit
severe cognitive deficits as a consequence of increased
neuronal loss in the subthalamic nucleus of the basal
ganglia.13 Similarly, postnatal neuronal-specific inactivation
of Htt is accompanied by progressive apoptotic neuronal
degeneration,15 which suggests an essential function of the
protein in the neuronal maintenance and activity. The
antiapoptotic effect is likely due to the both inhibition of
caspase-3 activity by its direct binding16 as well as to the
activation of prosurvival pathways controlled by the serine/
threonine kinase Akt.17 This pattern strongly supports
the idea that HD pathogenesis results from a combination of
increased gain-of-function of the mutant HTT together
with the decreased wild-type HTT physiological function.
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This physiological function may be related to the N-terminal
polyglutamine region, as it can form polar zipper structure able
to bind transcription factors.18 Importantly, the physiological
role of the polyQ-repeated expansion in higher organisms has
been recently explored in mice carrying only seven CAG
repeats within the murine Htt gene. These animals revealed
subtle memory and learning deficits, with an altered energy
status caused by changes in mitochondrial function.19 In a
knock-in mouse model for HD, overexpression of the full-
length Htt lacking the polyQ specifically stimulates the
catabolic process of autophagy, significantly reduces mutant
Htt-containing aggregates and, as a result, extends the
lifespan in comparison with HD mice.20 Taken together, this
evidence suggests the presence of an evolutionary positive
selection favouring the expansion of the repetitive element as
modulator of the protein activity itself.

HD is characterized by protein aggregates that accumulate
within cells in a manner similar to that seen in various forms of
spinocerebellar ataxia, as well as in other neurodegenerative
disorders such as Alzheimer’s disease (AD) and Parkinson’s
disease (PD). In human patients affected by HD, immuno-
histochemical analyses of postmortem brain tissue has
demonstrated the presence of intracellular inclusions,21 which
are mainly associated with the selective loss of medium spiny
neurons in the striatum.22 These aggregates are enriched in
truncated polyglutamine containing-fragments generated by
several proteases, however the precise mechanisms respon-
sible for the toxicity of these proteolytic products remain
elusive.20,23–25 Even though some mouse models expressing
N-terminal truncated mutant HTT exhibit abnormal behavioral
and neurological phenotypes,26 other transgenic lines present
widespread intracellular inclusion formation without any
functional neuronal deficits. For example, the ‘shortstop’ is
a mouse line expressing the first two exons of HTT with
an expanded CAG repeat. In these transgenic mice, there
is no evident neurodegenerative phenotype, and neurons
are less susceptible to excitotoxic cell death compared with
other HD mouse models.27 Thus, as the full-length HTT is
indispensable for manifestation of neuropathology clearly
analogous to human HD,28,29 the deposition of proteolytic
products is not sufficient to initiate a toxic cycle leading to
extensive neuronal damage in the striatum. In AD30–32 and in
PD,33 (reviewed in refs Douglas and Dillin34; McCormack and
DiMonte35) inclusions do trigger neurotoxicity. In HD, in a
limited number of conditions, intracellular aggregates can also
sequester toxic soluble fragment and therefore have bene-
ficial effect.36 Nevertheless, the majority of evidences
indicates that any mechanism promoting maintenance of the
correct protein folding conformation or that enhances the
clearance of huntingtin-containing aggregates represents a
powerful therapeutic approach in HD.37,38 In the next section,
some of the key molecular mechanisms that influence
proteostasis will be outlined and their relevance in the
progression of HD will be discussed.

Proteolytic Cleavage of HTT

HTT is susceptible to proteolysis by a number of proteases
(Figure 1). Historically, HTT was initially identified as a
caspase substrate and it was the first example of a protein

associated with a neurodegenerative disorder cleaved during
apoptosis.39 Caspases are highly conserved cysteine-aspar-
tic proteases associated primarily with apoptotic cell death
and essential for the processing of a large number of
substrates.40 Proteolytic fragments processed by caspases
are detectable in brains of HD patients and HD mice before the
loss of neurons in the striatum,41 with the cleavage efficiency
dependent on the polyQ tract length.39 Blocking HTT
cleavage by site-directed mutagenesis or by pharma-
cological approaches reduces cytotoxicity in cultured cells.42

In line with these findings, mice overexpressing a caspase-6
non-cleavable mutant HTT have milder neuropathological
defects and are protected against excitotoxic stimulation
compared with mice carrying the cleavable mutant HTT.43

This strongly suggests that caspase-dependent proteolytic
cleavage of the aberrant protein might be a key step in the
toxic events during HD, and that HTT functions as prosurvival
factor.

HTT is also a substrate of calcium-activated proteases,
that is, calpains. Calpains belong to the family of cysteine
proteases typically activated by the elevation of intracellular
Ca2þ levels, either in response to plasma membrane depo-
larization or in response to Ca2þ release from the intracellular
stores.44 In mice overexpressing mutant HTT, increased
glutamate release from afferent neurons enhances NMDA-R
activity. This leads to an intracellular Ca2þ increase and
therefore activation of calpains, which in turn cleave the HTT
protein into a series of proteolytic products45 that promote
NMDA-R-mediated excitotoxicity.46 Moreover, calpains can
modulate HTT homeostasis via the catabolic process of
autophagy. As shown by recent RNAi and chemical com-
pound screenings in cultured cells, inhibition of calpains
likely stimulates the lysosome-mediated degradation of
intracellular aggregates.47,48 Another RNAi screening study
has also shown that small HTT fragments can be generated
by the proteolytic activity of some matrix metalloproteinases
(MMPs).48 The activation of the MMPs and the resulting
cleavage of HTT were confirmed in samples from HD mouse
models. Reduced MMP activity, especially MMP-10 and
MMP-14, correlates with lower amount of proteolytic frag-
ments and, as a result, suppression of neuronal degeneration
induced by mutant HTT in cellular model systems as well as in
Drosophila.48 Collectively, these findings suggest that pro-
tease inhibition might be a beneficial therapeutic approach for
HD as it delays the formation of HTT-containing intracellular
aggregates.

Autophagy

Autophagy is a cellular catabolic process that seems to have
an important role in the pathogenesis of cancer as well as in
neurodegenerative disorders.49–57 The process of autophagy
involves the formation of a double-membrane structure
(autophagosome) that then encloses a portion of cytosol
and delivers its cargo content to the lysosomes for diges-
tion.58–60 This nonspecific bulk degradation pathway is highly
conserved from yeast to mammals. Autophagy occurs at
constant low levels in all cells as part of ongoing cellular
protein quality control and organelle turnover. However, it also
has a primary role in the response to nutrient deprivation as it
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sustains metabolic functions by providing energy and
metabolites to the cells. In different experimental settings,
autophagy activation blocks detrimental processes and there-
fore facilitates cell stress resilience and survival.61–65

Furthermore, autophagy is one of the primary degradation
pathways for various aggregate-prone proteins associated
with neurodegenerative diseases.66,67 As the tight regulation
of autophagy is essential for cellular homeostasis, it is not
surprising that autophagic dysfunction can cause metabolic
stress and cell death68–70 mainly through apoptosis
resulting from mitochondrial deficiency or via cleavage of
Atg proteins.71

Among several key regulators of autophagy, the ‘target of
rapamycin’ (TOR) senses energy status and the availability of
the nutrients within the cell through the upstream class I phos-
phoinositol 3-kinase (PI3K), the serine/threonine kinase Akt
and the 50-AMP-activated protein kinase (AMPK).72 Inhibition
of the TOR complex promotes the recruitment of Beclin-1
and Atg proteins involved in the formation of the mature
autophagosome. The modulation of autophagy is therapeu-
tically promising in HD: the inhibition of TOR by rapamycin
enhances the clearance of mutant HTT-containing aggre-
gates via the autophagy-lysosome pathway (Figure 1).64,66

Similarly, drugs that block a rise in intracellular Ca2þ , such as

L-type Ca2þ channel antagonists, decrease the activity of
calpains and result in the indirect activation of autophagy,
likely by preventing the degradation of Beclin-1- and
Atg-related proteins.73,74 Although calpain inhibition promotes
autophagy in-vitro75 and in zebrafish,76 it still remains to be
determined whether it can be effective against HD in in-vivo
mammalian models or in clinical settings.

Autophagy induction clearly represents an appealing
approach for HD treatment; however, the therapeutic window
remains to be determined as mutant HTT has a negative
effect on the sequestration of the autophagic cargo. Although
the autophagosomes seem to form and fuse to the lysosomes
efficiently, there is a failure in the recognition of targeting
signals, such as p62 or polyubiquitin, that results in delayed
engulfment of cytosolic macromolecules and damaged
organelles.77 Several strategies have been suggested
to improve the clearance of HTT-containing aggregates by
autophagy. One of them is based on the observation that
histone deacetylase inhibitors block the polyQ protein-
dependent neuronal degeneration in Drosophila.78 In this
case, the acetylation of mutant HTT facilitates the recruitment
of the protein to the autophagosome and therefore increases
the removal of toxic species within the cells.79 More recent
evidence demonstrates that HTT-mediated neuronal loss in

MITOCHONDRIA

Mitochondrial
pro-death factors

ENDOPLASMIC
RETICULUM 

Caspases 
Calpains 

MMPs

NMDA-R

Other
channels

Figure 1 Representative intracellular events in neurons expressing mutant HTT. In HD, processing of mutant HTT by caspases, calpains and MMPs facilitates the
formation of intracellular aggregates, which are mainly degraded by autophagy. Failure in the clearance of HTT proteolytic fragments eventually results in excessive cytosolic
Ca2þ concentration and organelle dysfunctions
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Drosophila can be suppressed by genetic or pharmaco-
logical inhibition of NADþ -dependent class III deacetylases
sirtuins.80 As pharmacological manipulation of sirtuins by
resveratrol81 has been proposed to activate several path-
ways, including autophagy, these studies are of particular
interest from a potential therapeutic standpoint.82,83

Ageing Modifiers as Regulators of Proteostasis

Loss of proteostasis is a hallmark of several neurodegenera-
tive disorders such as PD, AD and HD. In all of these
disorders, aggregate-prone proteins trigger the formation of
insoluble intracellular or extracellular aggregates as a result of
environmental stress or metabolic changes. Whether the
fibrillar protein aggregates are pathogenic or have protective
roles, remains controversial.84–86 In nematodes and in mice,
loss-of-function or decreased insulin/insulin-like growth
factor 1 (IGF-1) signaling prevent the proteotoxicity caused
by aggregate-prone peptides.87,88 The insulin/IGF-1 signaling
pathway is an evolutionarily conserved process that stimu-
lates cellular growth according to nutrient availability.89,90 The
activation of the receptor leads to the potent activation of the
downstream target PI3K and Akt, which coordinates multiple
cellular processes such as proliferation, energy metabolism
and survival. Together with TOR, Akt integrates the extra-
cellular inputs with the intracellular status and tunes the
cellular responses accordingly.

In Caenorhabditis elegans, loss-of-function mutations of the
sole insulin/IGF-1 receptor daf-2 extend the lifespan to more
than twofold.91 Genetic studies in C. elegans have revealed
that the shift of polyQ-containing proteins from the soluble to
the aggregate form is time-dependent. Loss-of-function of the
PI3K age-1 not only extends the lifespan of nematodes but
also significantly delays polyQ aggregation and toxicity.92

These protective effects are determined by increased
expression of stress-response genes, such as heat shock
proteins under the control of the transcription factors DAF-16
and HSF-1.93 Interestingly, overexpression of full-length,
but not of truncated, HTT lowers the expression of plasma
IGF-1 levels and, as result, affects body weight in mice.94

A decrease in IGF-1 expression has also been observed in
different tissues of HD patients, which indicates that HTT loss-
of-function can modulate IGF-1 signaling over time. In primary
dissociated neurons expressing mutant HTT, treatment
with IGF-1 induces specific activation of Akt and the direct
phosphorylation of HTT, which results in a reduced number of
HTT-containing intracellular inclusions and therefore neuro-
protection.17 Thus, these findings suggest that IGF-1 signal-
ing and HTT can apparently influence each other, although it
still remains elusive whether this cross-talk potentiates or
prevents detrimental cascades, including apoptosis.95 Mod-
ification of proteostasis by the Insulin/IGF-1 signaling pathway
is not the only process, which affects HTT homeostasis.
Recent screenings in C. elegans identified the evolutionarily
conserved protein MOAG-4/SERF1-2 as a modifier of protein
aggregation during ageing. Loss-of-function or silencing of
MOAG-4 suppress the formation of aggregates in animals
carrying mutant huntingtin, a-synuclein or b-amyloid.96

Whether MOAG-4/SERF1-2 and the interplay with other
prosurvival pathways are relevant in HD remains to be

explored, nevertheless the modulation of proteostasis
remains a promising approach for the treatment of neuro-
degenerative disorders.

Mitochondrial Deficiency, Excitotoxicity and
Inflammation

Energetic disturbances in HD is well described by post
mortem, in-vitro and in-vivo evidences.11 The high metabolic
rate of excitable cells such as neurons makes them strongly
reliant upon mitochondrial functions. Mitochondria are highly
motile organelles that control dendritic spine formation and
synaptic activity by buffering intracellular Ca2þ rise under-
neath the plasma membrane.97–99 Mutant HTT has been
shown to affect mitochondrial morphology and the bioener-
getic status by altering the balance between mitochondrial
fusion and fission under the control of the dynamin-related
protein 1100,101 or the interaction with other mitochondria-
associated proteins.102 Alterations in mitochondria dynamics
are reflected in deficits of the electron transport chain and of
cellular respiration. The use of energy-related supplements,
such as creatine, has been attempted in some clinical trials in
order to correct mitochondrial defects in HD patients.38 As a
result of extensive mitochondrial depolarization, neurons
exposed to prolonged Ca2þ rise become vulnerable to
excitotoxic insults (Figure 1).40,103,104 In HD, mutant HTT
affects glutamatergic signals as a result of altered neuro-
transmitter release and activity of the glutamate-ionotropic
receptors at the plasma membrane (Figure 1). In addition,
aberrant HTT with the expanded polyQ tract inhibits
the expression of the transcriptional co-activator PGC-1a,
therefore compromising mitochondrial biogenesis and
respiration.105 Thus, the combination of the two effects –
alteration of Ca2þ influx and diminished capability of Ca2þ

clearance by mitochondria – seriously increases the suscept-
ibility of striatal cells expressing mutant HTT to excitotoxic
insults. For this reason, agents that can affect glutamatergic
signaling (i.e. NMDA receptor antagonists-like memantine)
have been undergoing clinical trials.38 Similarly, other down-
stream targets that affect NMDA signaling and the excitotoxic
neuronal demise might have some potential applications
for the treatment of HD.106

Mitochondrial dysfunction resulting from Ca2þ overload,
prolonged membrane depolarization or impairment of the
electron transfer chain is the main source of intracellular
reactive oxidative species.107,108 Under certain circum-
stances, enhanced production of oxidative stress triggers
neuroinflammatory responses by activation of the inflamma-
some in a cell-autonomous or non-autonomous manner.107

Neuroinflammatory processes are key determinants of
neurodegenerative disorders characterized by aggregate-
prone proteins, as in the case of PD and AD.109 Although the
activation of inflammatory responses can be triggered by a
variety of toxic species, the evidence indicates that most of
the common neurodegenerative disorders have converging
mechanisms that amplify the detrimental cascades.
Remarkably, in the majority of the brain pathologies, neuroin-
flammation is a presymptomatic event and similar patterns
have been shown in unrelated pathologies.110,111 In case of
HD, the expression of mutant HTT in glial cells affects the
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buffering capacity by altering the expression of the glutamate
transporters, thus precluding the uptake of glutamate and
enhancing neuronal excitotoxicity.112 Inflammation is a critical
process that affects neuronal survival during pathological
conditions.111 It has been shown that mutant HTT can lower
the expression and release of glial chemokine,113 which can
be neuroprotective under different circumstances.114 These
data add additional complexity to the interaction between
neurons and other brain cells. Whether targeting excessive
activation of immune responses can be beneficial to HD
remains to be determined, although it is tempting to consider it
as a feasible possibility.115

Concluding Remarks

The identification of the HTT gene has contributed enor-
mously to our understanding of the multiple pathogenic
mechanisms involved in the onset of HD and in the selectively
enhanced vulnerability of a subset of neurons to the mutant
HTT. As discussed in this review, HD is a monogenic disease
that results in a gain-of-function of the mutant form and in the
loss-of-functions of the wild-type protein, which together
severely compromise cellular homeostasis in a complex
manner. To date, there is no cure for HD and most of
the treatments available only help to alleviate some of
the movement and psychiatric symptoms associated with
the pathology. As mutant HTT is not considered to be an ideal
pharmacological target due to its myriad biological functions,
other biochemical pathways, such as those that prevent the
abnormal accumulation of unfolded proteins, represent an
encouraging alternative for the treatment of this neurode-
generative disorder. The identification and characterization of
additional detrimental processes underlying cellular deficits in
HD patients might provide new efficient and beneficial targets
for neuroprotective intervention.
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