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Abstract: Brown or chocolate coat color in many mammalian species is frequently due to variants at
the B locus or TYRP1 gene. In dogs, five different TYRP1 loss-of-function alleles have been described,
which explain the vast majority of dogs with brown coat color. Recently, breeders and genetic testing
laboratories identified brown French Bulldogs that did not carry any of the known mutant TYRP1
alleles. We sequenced the genome of a TYRP1+/+ brown French Bulldog and compared the data
to 655 other canine genomes. A search for private variants revealed a nonsense variant in HPS3,
c.2420G>A or p.(Trp807*). The brown dog was homozygous for the mutant allele at this variant.
The HPS3 gene encodes a protein required for the correct biogenesis of lysosome-related organelles,
including melanosomes. Variants in the human HPS3 gene cause Hermansky–Pudlak syndrome 3,
which involves a mild form of oculocutaneous albinism and prolonged bleeding time. A variant in
the murine Hps3 gene causes brown coat color in the cocoa mouse mutant. We genotyped a cohort of
373 French Bulldogs and found a strong association of the homozygous mutant HPS3 genotype with
the brown coat color. The genotype–phenotype association and the comprehensive knowledge on
HPS3 function from other species strongly suggests that HPS3:c.2420G>A is the causative variant
for the observed brown coat color in French Bulldogs. In order to clearly distinguish HPS3-related
from the TYRP1-related brown coat color, and in line with the murine nomenclature, we propose to
designate this dog phenotype as “cocoa”, and the mutant allele as HPS3co.

Keywords: dog; Canis lupus familiaris; whole genome sequence; wgs; heterogeneity; melanosome;
pigmentation

1. Introduction

Melanins are synthesized by melanocytes, and represent pigments in the hair and skin of
mammals. Normal pigment formation requires correct melanocyte migration during embryogenesis,
correct interaction between melanocytes and other cells, acquisition of the correct cellular and subcellular
morphology and the correct activation and function of enzymes [1].

Three important enzymes that take part in the melanin biogenesis are tyrosinase (TYR), and the
tyrosinase-related proteins 1 and 2 (TYRP1 and TYRP2), which all catalyze redox reactions of pigment
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precursor molecules. Mammals can produce two different kinds of melanins, the yellow-reddish
pheomelanin and the black eumelanin. TYRP1 and TYRP2 are required for normal eumelanin synthesis.
A loss of TYRP1 activity leads to the accumulation of brown immature precursors of eumelanin [2,3].
The TYRP1 gene represents the B locus from classical genetics, and TYRP1 variants have been described
in humans with oculocutaneous albinism type III [4], as well as many animal species with brown coat
or feather color, including cats, cattle, chicken, goats, mice, minks, pigs, quail, rabbits and sheep [5–14].

In dogs, three different variants in TYRP1 are known to cause brown or chocolate coat color
in many breeds [15]. In addition, two younger breed-specific TYRP1 variants were described in
Australian Shepherds [16] and Lancashire Heelers [17]. The corresponding alleles are abbreviated as
bc (p.Cys41Ser), bs (p.Gln331*), bd (p.Pro345del), p.Tyr185* and be (p.Phe342Cys) [15–18]. In dogs,
the wildtype allele B leading to black coat color is dominant, whereas the recessive brown phenotype
is the result of any combination of two mutant b alleles [15]. A splice site variant in the OCA2 gene was
reported in three German Spitz siblings with a light brown coat color in combination with blue eyes
and mild photophobia [19].

Dog breeders and diagnostic testing laboratories recently recognized brown French Bulldogs that
did not carry any of the known mutant TYRP1 alleles. We therefore initiated this study with the aim to
identify the genetic variant causing this new brown coat color in French Bulldogs.

2. Materials and Methods

2.1. Ethics Statement

All dogs in this study were privately owned, and samples were collected with the consent of
their owners. The collection of blood samples was approved by the “Cantonal Committee For Animal
Experiments” (Canton of Bern; permit 75/16).

2.2. Animal Selection

This study included 373 French Bulldogs (Table S1). They included 130 cases with brown or lilac
(=dilute brown) base color, 111 controls with black or blue (= dilute black) base color and 132 dogs
whose coat color phenotype with respect to brown eumelanin could not reliably be determined.
These included fawn, cream and white dogs, as well as dogs for which we could not obtain reliable
coat color information from the owners. In most of the fawn, cream and white dogs, it would have
been possible to discriminate between black and brown eumelanin, based on the pigmentation of
the nose. However, as this requires high quality photographs, which were not available for all dogs,
we chose to exclude such dogs from the genotype–phenotype association. Genomic DNA was isolated
with standard protocols from EDTA (ethylenediaminetetraacetic acid) blood samples, cheek swabs or
hair roots.

2.3. Whole Genome Sequencing

An Illumina TruSeq PCR-free DNA library with ~450 bp insert size of a brown French Bulldog
was prepared. We collected 149 million 2 × 125 bp paired-end reads or 14× coverage on a HiSeq2500
instrument (Illumina, San Diego, CA, USA). The reads were mapped to the dog reference genome
assembly CanFam3.1 and aligned as described [20]. Briefly, after trimming adaptor sequences and
low-quality bases at the ends of reads with FASTP [21], BWA version 0.7.13 [22] was used for the
alignment to the canine reference genome. Samtools version 0.1.18 [23] was used to sort the aligned
reads by coordinates, and to produce bam-files. Duplicates were marked with Picard tools [24].
The sequence data were submitted to the European Nucleotide Archive with the study accession
PRJEB16012 and sample accession SAMEA4504835.
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2.4. Variant Calling

Variant calling was performed using GATK version 3.8 software [25], as described [20]. The main
steps of variant calling included base quality recalibration with BaseRecalibrator (within GATK),
followed by the actual variant calling with the HaplotypeCaller algorithm of GATK. To predict the
functional effects of the called variants, SnpEff [26] software together with NCBI annotation release 105
for the CanFam 3.1 genome reference assembly was used. For variant filtering we used 655 control
genomes (Table S2).

2.5. Gene Analysis

We used the dog reference genome assembly CanFam3.1 and NCBI annotation release 105.
Numbering within the canine HPS3 gene corresponds to the NCBI RefSeq accession numbers
XM_542830.6 (mRNA) and XP_542830.3 (protein).

2.6. Sanger Sequencing

To confirm the candidate variant HPS3:c.2420G>A, and to genotype all of the dogs in this
study, Sanger Sequencing was used. A 354 bp PCR product was amplified from genomic
DNA using AmpliTaqGold360Mastermix (Thermo Fisher Scientific, Waltham, MA, USA) and the
primers 5‘-TCTGGGATATGGGGGCTTGA-3′ (Primer F) and 5′-TGCAAGGAATTTACTCATGGACG-3′

(Primer R). After treatment with shrimp alkaline phosphatase and exonuclease I, PCR amplicons
were sequenced on an ABI 3730 DNA Analyzer (Thermo Fisher Scientific, Waltham, MA, USA).
Sanger sequences were analyzed using the Sequencher 5.1 software (GeneCodes, Ann Arbor, MI, USA).

3. Results

3.1. Phenotype Characterization

Several brown French Bulldogs were genotyped as homozygous for the wild type allele at all
three common TYRP1 variants (bc, bs, bd). We therefore hypothesized that their coat color was due to
a new allele that has not yet been reported in the literature. This new coat color appeared to be slightly
darker than the TYRP1-related chocolate coat color in adult dogs. From now on, we will refer to this
dark brown phenotype as cocoa (Figure 1).

Figure 1. Coat color phenotype of cocoa and chocolate French Bulldogs. Genotypes at the underlying
loci are indicated (see Section 3.2) (A) Cocoa puppy with brown coat and blue eyes. (B) Same dog as
shown in (A) as an adult. Note that the coat and eye color has markedly darkened over time. (C) Cocoa
brindled dog. (D) TYRPb/b (chocolate) and HPS3co/co (cocoa) mutant dogs in comparison. In adult dogs,
cocoa is slightly darker than TYRP1-related brown. Photo credits: Heike Ulrich, Joyce Wild.

3.2. Genetic Analysis

In order to characterize the hypothetical new allele and the underlying causative genetic variant,
we sequenced the genome of one cocoa French Bulldog at 14× coverage and searched for homozygous
and heterozygous variants that were not present in the genomes of 647 other dogs and 8 wolves
(Table 1, Table S2).
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Table 1. Results of variant filtering in a brown (cocoa) French Bulldog and 655 control genomes.

Filtering Step Homozygous Variants Heterozygous Variants

all variants 2,571,692 3,132,757
private variants 694 5483

protein-changing private variants 2 48

This analysis identified 2 homozygous and 48 heterozygous protein-changing, private variants
(Table S3). The variants were prioritized based on their potential functional impact and the known
functions of the respective genes from the literature. We considered a single nucleotide variant in
HPS3 as the most likely candidate causative variant, as variants in HPS3 lead to brown pigmentation
phenotypes in humans with Hermansky–Pudlak syndrome 3 and the cocoa mouse mutant [22,23].

The identified canine variant can be designated as Chr23:43,969,695G>A (CanFam3.1) or
XM_542830.6:c.2420G>A (Figure 2). This is a nonsense variant predicted to truncate the last 196
amino acids of the wild type HPS3 protein, XP_542830.3:p.(Trp807*). We did not investigate whether
any mutant protein is expressed, or whether the premature stop codon leads to nonsense-mediated
mRNA decay.

Figure 2. Details of the HPS3:c.2420G>A variant. Representative electropherograms of three dogs with
different genotypes are shown. The variable position is indicated by an arrow, and the amino acid
translations are shown.

We confirmed the presence of the HPS3 variant by Sanger sequencing and genotyped a cohort
of 372 additional French Bulldogs. The index case and 46 additional dogs of the 130 dogs with an
owner-declared brown or lilac (= dilute brown) coat color were homozygous for the mutant allele in
HPS3. Eighty-two of the remaining 83 cases had two mutant TYRP1 alleles, which explained their
brown coat color. One dog with a dark brown and tan coat color did not carry any of the known
mutant alleles at HPS3 or TYRP1.

The HPS3 mutant allele was not detected in the homozygous state in any of the 111 black or blue
French Bulldogs. However, 42 of these dogs carried the mutant HPS3 allele in a heterozygous state
(Table 2, Table S1). In French Bulldogs with cream, fawn or white coat color, homozygous mutant
HPS3 genotypes occurred in 11 dogs. Since these dogs produce eumelanin only on the nasal planum,
the effect of the homozygous mutant HPS3 genotype is not easily visible.
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Table 2. Genotype–phenotype association of the HPS3:c.2420G>A variant in dogs with at least one
wildtype TYRP1 allele (TYRP1B/-). Detailed information on all phenotypes and genotypes of all 373
studied dogs are listed in Table S1.

Dogs G/G G/A A/A

Cases (brown or lilac French Bulldogs; n = 48) 1 1 0 47
Controls (black or blue French Bulldogs; n = 111) 2 69 42 0
French Bulldogs with other or unknown coat colors (n = 96) 3 61 24 11

1 Cases include uniformly pigmented dogs and brindled dogs with brown or lilac eumelanistic stripes. A total of 85
brown or lilac dogs with TYRP1b/b genotypes were excluded from this group. 2 Black or blue in our study includes
dogs with uniform coat colors as well as brindled dogs, where the color of the eumelanistic stripes is black or blue.
3 A total of 36 dogs with TYRP1b/b genotypes were excluded from this group.

4. Discussion

In this study, we identified a homozygous nonsense variant, HPS3:c.2420G>A, as a plausible
candidate causative variant for a new brown coat color phenotype in French Bulldogs. Genetic variants
in HPS3 are known to cause Hermansky–Pudlak syndrome type 3 (HPS3) in humans, which is a rare
autosomal recessive disorder characterized by oculocutaneous albinism and a bleeding disorder with
storage pool deficiency due to the absence of platelet-dense bodies [27,28]. HPS3 patients additionally
have mild nystagmus and mildly reduced visual acuity [27]. The phenotype of the homologous cocoa
mouse mutant, characterized by a brown coat and prolonged bleeding time, is caused by a genetic
variant in the murine Hps3 gene [29,30].

HPS3 encodes a subunit of a protein complex named Biogenesis of Lysosome-related Organelles
Complex-2 (BLOC-2) [31,32]. This protein complex controls the sorting and transport of newly
synthesized integral membrane proteins from early endosomes to both lysosomes and lysosome-related
organelles (LROs), such as melanosomes and platelet-dense granules. In the case of melanosomes,
BLOC-2 interacts with two proteins from the RAB family (RAB32, RAB38), and they likely
identify specialized early endosomal domains for the budding of transport intermediates destined
for maturing melanosomes [33]. The melanosomes undergo four distinct steps of maturation:
Stage I pre-melanosomes are non-pigmented vacuoles that are derived from the endosomal system.
These then acquire characteristic internal striations (stage II). Melanin pigment is deposited onto the
striations (stage III), eventually giving rise to mature, fully melanized stage IV melanosomes [34].
A malfunctioning BLOC-2 manifests itself in an increase in the percentage of both multivesicular and
type II/III forms, and a relative lack of elliptical type IV forms; most fully pigmented melanosomes
in mouse strains lacking a component of BLOC-2 are spherical, and most likely represent immature
melanosomal forms [35]. It was shown that endosomal trafficking of TYRP1 from endosomes to
melanosomes is abnormal in melanocytes deficient in BLOC-2. TYRP1 is then mislocalized and
accumulated in early endosomes, instead of being delivered to the melanosomes where melanin
synthesis could begin [36,37].

The available knowledge on HPS3 provides a mechanistic hypothesis for the pigmentation
phenotype in cocoa dogs: We speculate that due to the lack of HPS3, melanosome biogenesis is
impaired, resulting in melanocytes that have a smaller than normal proportion of fully pigmented
mature melanosomes, which might result in a lighter coat color. At the same time, as TYRP1 is
not efficiently incorporated into melanosomes, eumelanin synthesis in cocoa dogs may result in the
formation of brown eumelanin precursors instead of the mature black eumelanin and also contribute
to the phenotype. In contrast to completely TYRP1-deficient (chocolate) dogs, the darker shade of
brown in adult cocoa dogs suggests that the synthesis of mature eumelanin is only partially and not
completely blocked in cocoa dogs.

Based on the comprehensive knowledge on HPS3 function in humans and mice, together with
the observed genotype–phenotype association in a large cohort of French Bulldogs, we think that
HPS3:c.2420G>A is very likely the causative genetic variant for the brown coat color in the investigated
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French Bulldogs. Consequently, we propose to designate the coat color phenotype in these dogs as
cocoa to emphasize the locus heterogeneity and to clearly distinguish it from TYRP1-related forms of
brown coat color. Cocoa in adult dogs appears slightly darker as TYRP1-related brown. However,
coat colors are also influenced by the genetic background, and it is probably not possible to reliably
distinguish these two coat colors without genetic testing. The finding of one brown dog that was a
homozygous wildtype at all four tested variants for brown coat color suggests an even more complex
heterogeneity and the existence of further, yet uncharacterized causal variants.

Hematological or ophthalmologic examinations were not performed to investigate whether HPS3
mutant cocoa French Bulldogs have any pathological phenotypes, such as prolonged bleeding time or
visual impairment. Additional studies clarifying these open questions are urgently required. Due to
the potential animal welfare concern, further breeding of cocoa-colored dogs should only be considered
if these dogs do not have any clinically relevant impairments.

5. Conclusions

We identified the HPS3:c.2420G>A nonsense variant as likely causative for the cocoa coat color in
French Bulldogs. The phenotype is inherited as an autosomal recessive trait. Our data enable genetic
testing for the cocoa allele in French Bulldogs. Additional studies are warranted to clarify whether
cocoa dogs have any bleeding disorders or visual impairment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/6/636/s1,
Table S1: Coat color phenotypes and genotypes for all dogs in the study, Table S2: Accession numbers of 648 dog
and 8 wolf genome sequences, Table S3: Private variants in two affected French Bulldogs.
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