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Abstract
Consumer attention to food safety has increased rapidly due to animal-related diseases;

therefore, it is important to identify their places of origin (POO) for safety purposes. How-

ever, only a few studies have addressed this issue and focused on machine learning-based

approaches. In the present study, classification analyses were performed using a custom-

ized SNP chip for POO prediction. To accomplish this, 4,122 pigs originating from 104

farms were genotyped using the SNP chip. Several factors were considered to establish the

best prediction model based on these data. We also assessed the applicability of the sug-

gested model using a kinship coefficient-filtering approach. Our results showed that the

LogitBoost-based prediction model outperformed other classifiers in terms of classification

performance under most conditions. Specifically, a greater level of accuracy was observed

when a higher kinship-based cutoff was employed. These results demonstrated the applica-

bility of a machine learning-based approach using SNP chip data for practical traceability.

Introduction
Due to the occurrence of animal-related diseases such as bovine spongiform encephalopathy
(BSE) and avian influenza (AI), consumer attention to food quality has increased greatly.
Accordingly, place of origin (POO) tracing systems have become important to increasing con-
sumer confidence regarding food safety. In the food industry, these are referred to as traceabil-
ity systems. Traceability is defined as a method that can guarantee the identification of animals
or animal products within the food industry [1]. This system is already mandatory for most
animal products in a large number of countries. Product tracking has conventionally been con-
ducted by labeling with ear tags and tattoos [1, 2]. Although this technique presents several
advantages, including easy application, low cost, and fast data processing, it is vulnerable to
fraud or loss [1]. Thus, genetic traceability has been proposed as an alternative to conventional
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traceability systems. Genetic traceability is the same as labeling systems in principle, except
that DNA is used to identify animals or their products. It is possible to distinguish individual
animals from one another based on DNA [3]. Moreover, DNA molecules are difficult to falsify,
can withstand various processes within the food distribution system, and can be extracted from
different types of tissues [1, 4]. These advantages have led to increased application and research
into use of DNA markers for traceability. One typical marker, the single nucleotide polymor-
phism (SNP), has been widely applied [5–7]. There are several methods for obtaining SNP
information regarding a sample, including next generation sequencing (NGS), microarrays,
and SNP chips. Among these, genotyping using a SNP chip is less expensive and produces SNP
data for a relatively large number of samples by customizing chip design.

Numerous studies have been conducted to develop prediction models for classification using
diverse biomarkers [8–10]; however, few of these have focused on traceability. One reason for
this is that traceability involves multiclass classification. Multiclass classification is generally asso-
ciated with several difficulties [11]. The main problem associated with this type of classification is
optimization. For example, when training sets are given, minimization of the loss function should
be performed to build an accurate classifier. Loss function is affected by the number of classes,
and minimization of this obstacle could be attained by reducing the number of classes. Several
classifiers such as the K-nearest neighbor (KNN) and support vector machine (SVM) have fre-
quently been employed to overcome problems related to multiclass classification [12–14]. Some
studies have used KNN and SVM to classify foods according to origin [15, 16]. In addition, Logit-
Boost can address multiclass classification problems using a parametric method [17, 18].

In the present study, we genotyped 4,122 pigs that originated from 104 farms using a cus-
tomized SNP chip. Based on these data, we attempted to develop a POO prediction model con-
sidering three variable factors: (1) Kinship-based filtering was applied to assess the
applicability of classification-based approaches for practical POO prediction; (2) the wrapper-
method was used as a feature selection step to remove redundant features [19]; (3) LogitBoost,
SVM, and KNN were used as classifiers. We compared classification performance using combi-
nations of these factors to identify the optimal POO prediction model.

Materials and Methods

Prescreening SNP markers to generate the customized SNP chip
A total of 384 pigs belonging to five major commercial breeds (19 Korean native black pigs, 17
Landrace, 168 Yorkshire, 84 Berkshire, and 96 Duroc) were genotyped using an Illumina Porcine
SNP60 chip to prescreen SNPmarkers. SNPs were filtered according to several criteria (minor
allele frequency [MAF]� 0.05, missing rate� 0.10, and Hardy-Weinberg equilibrium test p-
value� 0.001). Following this filtering step, we retrieved 39,785 SNPs for Korean native black
pigs, 42,156 SNPs for Landrace, 44,961 SNPs for Yorkshire, 41,408 SNPs for Berkshire, and
39,652 SNPs for Duroc. Among these, 312 SNPmarkers that were identified in five breeds
(MAF� 0.4) were retrieved, and four to nine SNPs with lower linkage disequilibrium (LD) were
selected for each chromosome. As a result, 133 SNP markers were obtained. We next performed
additional genotyping for 1,045 muscle tissue samples obtained from 11 slaughterhouses (detailed
information regarding slaughterhouses is provided in S1 Table) throughout the Republic of Korea
to confirm that the selected SNP markers were evenly distributed for each location. Ultimately, 96
SNPmarkers including known SNPs for individual animal identification were selected while tak-
ing into account the geographical distribution of SNPmarkers (0.3� allele frequency� 0.7).
These 96 SNPmarkers were used as features in downstream analyses, including feature selection
and classification. More detailed information regarding these markers is presented in S2 Table.
All genotyped samples were obtained from pigs slaughtered for meat production.
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Genotyping 96 SNPs and kinship coefficient-based subset generation
for development of the traceability prediction model
From April to June 2014, 4,122 slaughtered commercial pigs originating from 104 different farms
were genotyped using a customized SNP chip manufactured by Illumina (provided by the S1
Dataset). Some individual animals and SNPs were filtered out (MAF< 0.01 and genotype miss-
ing rate> 0.9) using PLINK v1.07 [20]. As a result, 3,974 individual pigs and 92 SNPs remained.

Most pigs in the livestock industry are derived from a crossbred population, and sires and
semen are shared with several farms. Therefore, the origins of pigs are not clearly distinguish-
able because of genetic similarity. However, sows are generally not shared among farms and
produce piglets several times during their lives [21, 22]. Therefore, we assumed that piglets pro-
duced from a single sow might have genetically close relationships. In practice, because genetic
information regarding sows in a farm could be considerably dissimilar, it is necessary to screen
farms consisting of unrelated individuals to distinguish pigs according to their farms. We
employed kinship coefficients [23] to evaluate the genetic relationships. The King 1.4 software
was used to calculate pairwise kinship coefficients within each farm [23]. The relationship
between two individuals is classified by a kinship coefficient> 0.353 as monozygotic twins
(0.177, 0.353), as parent-offspring or sibling pairs (0.088, 0.177), as second-degree relative pairs
(such as half-siblings, avuncular pairs or grandparent-grandchild pairs; 0.044, 0.088) or as
third-degree relative pairs (such as first cousins), while< 0.044 indicates unrelated pairs [23].

To infer the degree of genetic relatedness to attain reasonable classification accuracy, we
generated four subsets of data composed of farms to satisfy the following criteria: mean of the
kinship within a farm� 0.00, 0.05, 0.10, and 0.15. The subset with a kinship mean� 0.00 had
741 individuals from twenty farms, the subset with a kinship mean� 0.05 included 235 indi-
viduals from eight farms, the subset with a kinship mean� 0.10 included 134 individuals from
five farms, and the subset with a kinship mean� 0.15 contained 67 individuals from two
farms. To visualize the distribution of individuals by their genetic information in the four sub-
sets, scatter plots were generated by principal component analysis (PCA) using A Tool for
Genome-wide Complex Traits Analysis (GCTA) [24].

Wrapper-based feature selection for removing redundant SNPmarkers
Feature selection is an important step for improving classification performance. Although we
already performed a prescreening step to generate an SNP marker set suitable for traceability,
redundant or irrelevant features might be included in this set. Therefore, we utilized the wrap-
per method [25] to extract valuable features. The wrapper method is a classifier-dependent
approach designed to search for feature subsets that would produce the best accuracy. There
were two approaches for extracting the best feature subset. The first was top-down selection for
which a model was evaluated after eliminating one feature from the entire feature set and
replacing the eliminated feature with another. This process was repeated for all features
(Approach 1). The second approach was bottom-up selection in which the evaluation step was
conducted using only one feature (Approach 2).

Classifiers for multiclass prediction
One main reason for the limited research on traceability prediction is that this type of predic-
tion presents a representative multiclass classification problem. For multiclass data, classifica-
tion is often associated with several difficulties [26, 27]. Unfortunately, most traditional
classifiers were developed for binary classification, which cannot be directly employed for mul-
ticlass prediction. There are two approaches for addressing multiclass classification problems.
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The first is a one-against-all approach employing binary classifiers such as the support vector
machine (SVM) and LogitBoost [28]. The second is use of classifiers able to predict multiclass
data, such as the k-nearest-neighbor (KNN).

LogitBoost is a recently developed boosting algorithm that can handle multiclass problems
by considering multiclass logistic loss [17, 18]. This technique has been used to predict protein
structural classes known as representative multiclass problems [29]. Other approaches, includ-
ing SVM- and KNN-based multiclass prediction, have been implemented in many fields [12–
14]. KNN, which is one of the simplest methods, classifies an instance according to a majority
vote of its k nearest instances. SVM is a high-performance classifier that builds an optimal
hyperplane containing the largest distances from support vectors in each given class. As a
result, spaces distinguished based on the hyperplanes represent specific classes and predict
unknown class data (test data).

In the present investigation, we used these classifiers with the following parameters: Logit-
Boost I = 20, KNN (IBk) k = 11, and SVM (SMO) kernel = Radial Basic Function (RBF) Kernel,
which is implemented in the RWeka [30] package of the R software. These parameter values
were determined based on the results of a greedy search using various parameter values for
each classifier (S2 Fig). The default for the RWeka package was used for all other parameters.

Comparison of classification performance
We compared the classification performance of three classifiers (LogiBoost, KNN, and SVM)
according to classification accuracy [31], balanced accuracy [32], sensitivity [31], specificity
[31], area under the curve (AUC) values [33], and a receiver operating characteristic (ROC)
curve [31] with 10-fold cross-validation to avoid overfitting. ROC curves were generated by
calculating the false positive and true positive rates for continuous thresholds. We used the
ROCR package [34] of the R software to calculate and visualize the ROC curves.

Simulation analysis for estimating the effects of biases
To investigate the effects of biases generated by the various sample sizes and number of classes
in different kinship-based subsets, we performed a simulation analysis. We used the LogitBoost
classifier and 92 features to estimate biases in the simulation analysis. Three types of simula-
tions were carried out. Whole simulations were repeated 1000 times using sampling without
replacement, and 10-fold cross-validations were performed to analyze classification accuracies
for each repetition. The first simulation was conducted to survey the impact of the number of
classes. To assess this effect, we adjusted the number of classes in the whole kinship-based sub-
sets to two, which was the smallest value among subsets. We then randomly selected two clas-
ses for each repetition. Sample sizes varied according to random sampling. The second
simulation was conducted to survey the effects of sample size. We fixed the sample size at 67,
which was the smallest value among all of the subsets. The numbers of classes varied according
to random sampling. Finally, we simultaneously investigated the effects of two biases by adjust-
ing both sample size and number of classes.

Results and Discussion

Assessment of prediction model performance for traceability
classification
In the present study, we applied three representative multiclass classifiers to four subsets of
SNP data based on kinship-based filtering. In addition, 2 (top-down and bottom-up) × 3
(LogitBoost, SVM, and KNN) wrapper-based feature selection methods were used to generate
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the best prediction model for traceability. The entire pipeline for data processing including
classification is presented as a schematic diagram in Fig 1. Specific elements (classifier, feature
subset, and kinship coefficient) were expected to be directly associated with prediction accu-
racy. We investigated the influence of these elements by calculating the prediction accuracy
from various points of view. First, we determined how distinguished the individual animals
were according to the farms of origin using four subsets based on kinship coefficient-based fil-
tering. As shown in Fig 2, the four subsets established based on the cutoff criteria (mean of the
kinship within a farm� 0.00, 0.05, 0.10, and 0.15, respectively) were visualized by PCA. As the
cutoff criterion increased, greater segregation among farms was observed. These findings imply

Fig 1. A diagram representing the processes of building the predictionmodel for traceability. The prescreening process for selecting the SNPmarkers
consists of two major steps: retrieval of common SNPs for five pig breeds and selection of SNPmarkers based on geographical distribution (farm location).
Farms were filtered by the kinship coefficient mean and four subsets were generated. The feature selection process for removing redundant features was
performed using two approaches (detailed descriptions of these techniques are provided in the manuscript) and three classifiers. Using the selected features,
classification performance was evaluated based on three factors (classification accuracy, balanced accuracy, and ROC curves).

doi:10.1371/journal.pone.0139685.g001
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that traceability prediction could be performed when individuals on one farm have highly simi-
lar genetic information, which was expected. Using the PCA, we observed subsets with differ-
ent numbers of samples and farms depending on the cutoff criterion. Therefore, these figures
should be interpreted with caution in terms of bias due to the smaller number of classes, larger
sample size, and larger number of features, which generally improve accuracy when classifica-
tion is performed.

We next calculated the power of explanation for traceability prediction for each SNP. We
defined “feature score” as the contribution of a feature to the accuracy for classification. In
Approach 1, a feature score was calculated based on the accuracy of whole features minus the

Fig 2. Scatter plots for four subsets with different kinship coefficient criteria (X-axis: Eigen vector 1 and Y-axis: Eigen vector 2). Scatter plots were
generated by PCA using GCTA [24]. Each point represents an individual animal and is colored based on the farm information. When the kinship cutoff
increased, each farm was more clearly distinguishable.

doi:10.1371/journal.pone.0139685.g002
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accuracy associated with eliminating a feature. For Approach 2, a feature score was the accu-
racy associated with using that feature. As expected, only a few outliers were observed for all
feature scores (S3 Table and S1 Fig). Most outliers fell below the lower quantile, indicating that
the majority of prescreened features were well selected (S1 Fig). If the prescreening step had
not identified meaningful features for POO prediction, outliers would be observed below the
lower quantile and above the upper quantile due to randomness. Therefore, we confirmed that
the customized chip containing 96 SNPs was suitable for POO prediction. We also demon-
strated that some features should be removed from the prediction model for better accuracy.

We next performed feature selection before carrying out classification analysis. As shown in
Fig 3, we calculated the classification accuracy for the different classifiers and the number of
features (features were added to the feature set for the prediction model in order of the feature
score generated in Approaches 1 and 2). Four subsets were used to compare classification per-
formance depending on the classifiers and feature sets. Accuracy was determined using 10-fold
cross-validation to avoid overfitting. As expected, a subset with more features and higher kin-
ship had better classification accuracy. Overall, we observed a pattern in which accuracy gradu-
ally increased with the number of features. These findings indicated that the customized chip
was appropriately designed for traceability because only a few irrelevant features might be

Fig 3. Line plots for comparing classification accuracy according to several factors, including classifiers, feature subsets, and kinship-based
filtered subsets. The X-axis contains the number of features (1 to 92 SNPs), while the Y-axis shows classification accuracy. Approach 1 is the top-down
feature selection method while Approach 2 is the bottom-up feature selection technique. LogitBoost-based classification accuracy is represented by the red
line. Lines corresponding to the KNN and SVM classification methods are green and blue, respectively.

doi:10.1371/journal.pone.0139685.g003
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included for the 96 SNPs. Generally, including a large number of irrelevant features in a whole
feature-set does not increase accuracy, although the features are included in the prediction
model. Thus, we again concluded that the 96 pre-selected SNPs were suitable for traceability.

Interestingly, the LogitBoost classifier showed better performance in terms of accuracy than
the other classifiers in most situations. This remarkable result indicated that the LogitBoost
classifier was more suitable for predicting animal or food origin. It is difficult to constantly
obtain a better performance with a specific classifier in diverse situations, as shown by compar-
ison of the SVM and KNN classifiers. Nevertheless, with the exception of one situation
(kinship� 0.15 and Approach 1), the LogitBoost classifier consistently performed better than
the others. In addition, the classification accuracy achieved with LogitBoost had a smaller vari-
ance than that of the other classifiers in most situations (Table 1). LogitBoost also outper-
formed the other classifiers in terms of efficiency, with greater levels of accuracy observed
when using a relatively small number of features. Overall, the results of this study demon-
strated that LogitBoost appears to be the best method for POO prediction in terms of perfor-
mance assessment when using accuracy as a measurement.

Although classification accuracy is good for evaluating classifiers, unintended bias is occa-
sionally generated. For example, intact accuracy may produce misleading information about
general performance when a classifier is evaluated using an imbalanced dataset. In such cases,
classification accuracy is not a reliable measure for assessing a prediction model. To avoid an
inflated performance estimation for imbalanced data, we employed another measure, balanced
accuracy. The balanced accuracies were calculated as the average accuracies for each class. To
further compare classification accuracy and balanced accuracy, we calculated balanced accura-
cies for the same combinations of factors as shown in Table 1. As indicated in Table 2, Logit-
Boost still generally produced better results than the other methods in terms of balanced
accuracy. The D89 class that contained only four individual animals always showed poor per-
formance, as indicated by a balanced accuracy of zero. Although the D89 class had a high kin-
ship coefficients mean, PCA demonstrated that individuals in this class overlapped entirely
with individuals in other classes (Fig 2). Collectively, the characteristics of the D89 class includ-
ing small sample size and an overlap of individuals with animals from other classes caused
poor performance in terms of balanced accuracy. We also found that the D62 class had

Table 1. Best classification accuracies for diverse situations (two different feature selection approaches, four different kinship filtered sets, and
three classifiers). Levels of accuracy were calculated by 10-fold cross-validation and expressed as the means ± 10-fold variance. Bold represents greater
accuracy than other classifiers for each kinship-based filtered subset.

Approach 1 Approach 2

Kinship Algorithm # of Features Mean ± Variance # of Features Mean ± Variance

LogitBoost 83 0.652 ± 0.002 81 0.661 ± 0.004

� 0.00 KNN (IBk) 80 0.557 ± 0.006 90 0.549 ± 0.001

SVM (SMO) 86 0.588 ± 0.004 87 0.578 ± 0.001

LogitBoost 72 0.878 ± 0.002 85 0.868 ± 0.005

� 0.05 KNN (IBk) 88 0.720 ± 0.015 81 0.726 ± 0.010

SVM (SMO) 88 0.784 ± 0.004 90 0.747 ± 0.009

LogitBoost 47 0.950 ± 0.002 64 0.942 ± 0.003

� 0.10 KNN (IBk) 24 0.833 ± 0.013 28 0.850 ± 0.005

SVM (SMO) 73 0.792 ± 0.009 50 0.790 ± 0.008

LogitBoost 53 0.992 ± 0.001 4 0.992 ± 0.001

� 0.15 KNN (IBk) 82 0.983 ± 0.003 20 0.992 ± 0.001

SVM (SMO) 73 0.967 ± 0.005 72 0.909 ± 0.007

doi:10.1371/journal.pone.0139685.t001
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Table 2. Evaluation of predicted performance according to balanced accuracy. The balanced accuracies were calculated by 10-fold cross-validation.
Values represent the mean ± 10-fold variance. Figures written in bold represent a higher level of balanced accuracy than those of the other classifiers in each
class. Figures given in parentheses represent the number of features used in classifiers.

Kinship � 0.00

Approach 1 Approach 2

Class LogitBoost (83) KNN (IBk) (80) SVM (SMO) (86) LogitBoost (81) KNN (IBk) (90) SVM (SMO) (87)

D1 0.387 ± 0.124 0.050 ± 0.025 0.000 ± 0.000 0.446 ± 0.146 0.133 ± 0.104 0.017 ± 0.003

D2 0.683 ± 0.057 0.729 ± 0.039 0.810 ± 0.035 0.829 ± 0.026 0.808 ± 0.044 0.742 ± 0.030

D10 0.422 ± 0.068 0.421 ± 0.088 0.701 ± 0.039 0.513 ± 0.061 0.389 ± 0.114 0.612 ± 0.032

D11 0.713 ± 0.033 0.676 ± 0.107 0.695 ± 0.042 0.735 ± 0.036 0.624 ± 0.100 0.625 ± 0.108

D13 0.751 ± 0.039 0.823 ± 0.024 0.905 ± 0.011 0.703 ± 0.025 0.810 ± 0.027 0.913 ± 0.018

D18 0.418 ± 0.041 0.245 ± 0.071 0.277 ± 0.117 0.547 ± 0.048 0.254 ± 0.032 0.291 ± 0.109

D27 0.540 ± 0.067 0.532 ± 0.065 0.513 ± 0.076 0.585 ± 0.083 0.416 ± 0.051 0.521 ± 0.062

D38 0.774 ± 0.045 0.712 ± 0.074 0.682 ± 0.064 0.857 ± 0.057 0.685 ± 0.051 0.697 ± 0.074

D59 0.797 ± 0.060 0.642 ± 0.069 0.648 ± 0.098 0.768 ± 0.050 0.698 ± 0.047 0.677 ± 0.063

D60 0.755 ± 0.091 0.067 ± 0.044 0.145 ± 0.038 0.611 ± 0.114 0.108 ± 0.034 0.361 ± 0.118

D61 0.605 ± 0.150 0.462 ± 0.160 0.150 ± 0.114 0.185 ± 0.082 0.273 ± 0.044 0.000 ± 0.000

D62 0.923 ± 0.017 0.469 ± 0.064 0.475 ± 0.131 0.840 ± 0.040 0.608 ± 0.062 0.486 ± 0.066

D66 0.655 ± 0.082 0.448 ± 0.170 0.340 ± 0.062 0.463 ± 0.115 0.407 ± 0.038 0.411 ± 0.145

D89 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

D90 0.693 ± 0.080 0.827 ± 0.038 0.527 ± 0.132 0.708 ± 0.104 0.717 ± 0.068 0.689 ± 0.133

D100 0.638 ± 0.082 0.889 ± 0.035 0.663 ± 0.094 0.705 ± 0.110 0.833 ± 0.125 0.746 ± 0.048

D102 0.770 ± 0.037 0.355 ± 0.055 0.683 ± 0.120 0.862 ± 0.030 0.364 ± 0.038 0.702 ± 0.049

D103 0.452 ± 0.031 0.607 ± 0.095 0.492 ± 0.045 0.418 ± 0.100 0.517 ± 0.081 0.468 ± 0.100

D107 0.733 ± 0.063 0.787 ± 0.045 0.757 ± 0.040 0.818 ± 0.076 0.718 ± 0.080 0.795 ± 0.024

D114 0.766 ± 0.056 0.630 ± 0.077 0.678 ± 0.050 0.683 ± 0.102 0.628 ± 0.055 0.747 ± 0.040

Balanced Accuracy 0.624 ± 0.061 0.518 ± 0.067 0.507 ± 0.065 0.614 ± 0.070 0.500 ± 0.060 0.525 ± 0.061

Kinship � 0.05

Approach 1 Approach 2

Class LogitBoost (72) KNN (IBk) (88) SVM (SMO) (88) LogitBoost (85) KNN (IBk) (81) SVM (SMO) (90)

D11 0.975 ± 0.006 0.940 ± 0.018 0.933 ± 0.028 0.975 ± 0.006 0.980 ± 0.004 0.933 ± 0.012

D59 0.793 ± 0.103 0.904 ± 0.029 0.832 ± 0.032 0.938 ± 0.010 0.848 ± 0.032 0.751 ± 0.057

D60 0.843 ± 0.029 0.150 ± 0.065 0.597 ± 0.142 0.717 ± 0.073 0.204 ± 0.045 0.575 ± 0.132

D62 0.955 ± 0.009 0.767 ± 0.063 0.727 ± 0.052 0.963 ± 0.006 0.693 ± 0.066 0.718 ± 0.100

D66 0.900 ± 0.024 0.661 ± 0.061 0.696 ± 0.080 0.795 ± 0.116 0.591 ± 0.081 0.623 ± 0.090

D89 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

D90 0.838 ± 0.035 0.802 ± 0.076 0.947 ± 0.014 0.875 ± 0.045 0.806 ± 0.106 0.944 ± 0.014

D100 0.900 ± 0.044 0.941 ± 0.015 0.867 ± 0.048 0.967 ± 0.011 0.889 ± 0.111 0.817 ± 0.114

Balanced Accuracy 0.776 ± 0.031 0.646 ± 0.041 0.700 ± 0.049 0.779 ± 0.033 0.626 ± 0.056 0.670 ± 0.065

Kinship � 0.10

Approach 1 Approach 2

Class LogitBoost (47) KNN (IBk) (24) SVM (SMO) (73) LogitBoost (64) KNN (IBk) (28) SVM (SMO) (50)

D59 1.000 ± 0.000 0.896 ± 0.022 0.947 ± 0.007 1.000 ± 0.000 0.925 ± 0.016 0.950 ± 0.013

D62 1.000 ± 0.000 0.917 ± 0.031 0.745 ± 0.051 1.000 ± 0.000 0.942 ± 0.016 0.922 ± 0.017

D66 0.942 ± 0.016 0.785 ± 0.060 0.847 ± 0.046 0.930 ± 0.027 0.848 ± 0.028 0.677 ± 0.108

D89 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

D100 0.950 ± 0.025 0.933 ± 0.020 0.811 ± 0.050 0.963 ± 0.012 0.900 ± 0.026 0.622 ± 0.129

Balanced Accuracy 0.778 ± 0.008 0.706 ± 0.026 0.670 ± 0.031 0.779 ± 0.008 0.723 ± 0.017 0.634 ± 0.053

(Continued)
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particularly high balanced accuracy for the LogitBoost classifier throughout all kinship-based
subsets. For example, the LogitBoost classifier had a balanced accuracy of 0.923 for the kin-
ship-based subset (kinship� 0.00), while the KNN- and SVM-based approaches had balanced
accuracy values of 0.469 and 0.475, respectively. This phenomenon was consistently observed
for the other kinship-based subsets.

LogitBoost-based approaches constantly showed better balanced accuracy than other tech-
niques, except for the subset with a kinship mean� 0.15, for which the KNN had a more bal-
anced accuracy. However, the overall balanced accuracies were relatively low compared to
analysis of the classification accuracy. These findings indicated that there were biases caused by
imbalanced classes, which led to overestimation during analysis of the classification accuracy.
Nevertheless, the findings from the accuracy and balanced accuracy analyses demonstrated that
LogitBoost had better performance than the other methods, with a few exceptions. Overall, Logit-
Boost appears to be a more suitable model for POO prediction in terms of consistency. We also
found that balanced accuracy increased with a higher mean kinship coefficient for the subsets.

By assessing the prediction model based on accuracy and balanced accuracy, we found that
the LogitBoost classifier outperformed previously known classifiers for POO prediction. When
balanced accuracy was used as a measurement, we also observed a strong class-specific accu-
racy pattern. To further investigate this pattern, ROC curves were produced as another tech-
nique for predicting performance (Fig 4). Strong farm-specific curves were observed. We again
found that the D89 class had the lowest performance. The distinct difference between curves
for the D89 class and those for the other classes can be interpreted as differences in suitability
for the prediction model. Thus, ROC curves can be used to screen out a class that is unsuitable
for the prediction model. Additionally, ROC curves showed better performance when the
mean kinship coefficient increased, as indicated by the AUC values shown in S4 Table.

Effects of biases of the kinship-based filtering approach on assessment
of the prediction model
Although several performance measures including accuracy, balanced accuracy, ROC curves,
and AUC values showed better performance for POO prediction when the kinship cut-off cri-
terion was greater, some bias-associated problems that prevented accurate model assessment
remained. There are two types of bias, difference in sample size and difference in number of
classes. In general, reducing the number of classes and/or a large training sample size leads to
greater classification accuracy. In the current study, kinship-based filtering subsets had diverse
sample sizes and numbers of classes. For this reason, our suggested kinship-based filtering
approach was affected by the two types of bias, which represented a limitation of our study
design. Therefore, we investigated the effects of the biases. To accomplish this, we performed
three simulation analyses by adjusting the number of classes, the sample size, or both. The
results of the first simulation analysis are shown in the top of Fig 5. The data in this figure con-
firmed that our previous assessment results were underestimated owing to the effects of the

Table 2. (Continued)

Kinship � 0.15

Approach 1 Approach 2

Class LogitBoost (72) KNN (IBk) (88) SVM (SMO) (88) LogitBoost (85) KNN (IBk) (81) SVM (SMO) (90)

D59 0.950 ± 0.025 0.989 ± 0.001 0.988 ± 0.002 1.000 ± 0.000 1.000 ± 0.000 0.975 ± 0.006

D100 0.852 ± 0.031 0.933 ± 0.020 0.858 ± 0.037 0.950 ± 0.025 0.875 ± 0.051 0.775 ± 0.068

Balanced Accuracy 0.901 ± 0.028 0.961 ± 0.010 0.923 ± 0.019 0.975 ± 0.013 0.938 ± 0.026 0.875 ± 0.037

doi:10.1371/journal.pone.0139685.t002
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Fig 4. ROC curves for different kinship-based subsets to evaluate the suitability of specific farm groups with the LogitBoost classifier. To calculate
sensitivity and specificity, data were divided in half and used as a training and test set. Threshold-specific performance could then be monitored using
continuous cutoffs based on the ROC curves. All processes were conducted for the four subsets with two approaches. The D89 class showed the lowest
performance in most cases.

doi:10.1371/journal.pone.0139685.g004
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Fig 5. Results of sample size and number of classes correction. Data for the three simulation analyses were generated by adjusting three factors
(sample size, number of classes, or both). For the top box-plot, sample size was set at 67, which was the smallest of the four subsets. For the middle box-plot,
the number of classes was set at two, which was also the smallest for the four subsets. Finally, the bottom box-plot was generated using 26 samples (the
smallest sample size among all classes) for each class (binary class). To determine the classification accuracies, 10-fold cross-validations were performed.
All of these processes were conducted 1000 times using 92 features. Red dots represent the previously calculated observed accuracies.

doi:10.1371/journal.pone.0139685.g005
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number of classes. The previous accuracies fell below median levels in all kinship subsets. In
addition, four kinship-based subsets had similar median levels of accuracy when the number of
classes was adjusted. Contrary to the first simulation, the second simulation showed that accu-
racies were overestimated because of the effects of sample size. As shown in Fig 5, the previous
accuracies represented by red points were located above the median levels for all kinship sub-
sets. In addition, the median accuracies for the four kinship-based subsets differed significantly.
The two simulations described above confirmed that the number of classes has a significant
influence on classification accuracy because accuracies in the second simulation varied more
drastically according to differences in the number of classes, contrary to those in the first simu-
lation. Finally, we simultaneously evaluated the effects of the two biases (as shown at the bot-
tom of Fig 5), which revealed that the results were generally underestimated. However, the
standard deviation of the accuracies decreased as the kinship coefficient cutoff increased.

Taken together, the results of the simulation studies indicated that the number of classes has
a greater effect on classification accuracy than sample size. In addition, a higher kinship coeffi-
cient cutoff produced a lower standard deviation for the accuracies when both sample size and
number of classes were constant. These findings indicated that we can expect to gain greater
classification accuracy for populations with a higher kinship coefficient if the effects of sample
size or number of classes are controlled. Although we controlled these biased factors in the sim-
ulation analysis, there was no practical method for fixing these two factors at equal values. This
is because we did not collect samples while considering kinship coefficient values because the
primary study design focused on identifying SNPs for individual identification. We actually
screened the samples according to kinship coefficient after sample collection, which was a
major limitation of our study. Nevertheless, the overall relationship between kinship coefficient
and classification accuracy was consistent. Consequently, we determined that greater classifica-
tion accuracy accompanied an increased kinship coefficient mean. We also obtained a reason-
able accuracy distribution for the subset with a kinship coefficient greater than 0.10. These
results imply that we can utilize a kinship coefficient of 0.10 as a criterion for pig traceability.

Application of the prediction model for a practical traceability system
In this study, we concluded that the LogitBoost method was most suitable for POO prediction.
LogitBoost has been utilized for various areas of data analysis such as protein structure predic-
tion [29]. This method outperformed the SVM classifier for predicting protein structural clas-
ses. In addition, LogitBoost was employed for tumor classification using gene expression data
[35]. Other types of data analysis such as text classification were also included in Logitboost
applications [36]. Furthermore, the classifier has been employed in various fields that deal with
multiclass prediction. Since POO prediction was also a representative type of multiclass classi-
fication, we anticipated that LogitBoost would be applicable. Not surprisingly, LogitBoost was
successfully used for POO prediction. To the best of our knowledge, this is the first time the
LogitBoost classifier has been implemented for traceability classification with genotyping data.
Consequently, a few improvements should be made to enable the practical use of suggested
approaches.

It is clear that when individual organisms originate from the same population they will have
similar genotypes [37]. In the current study, we used kinship coefficients to measure the degree
of the relationship between individuals based on this assumption. The results showed that sub-
sets with a higher kinship coefficient had better performance. In particular, individuals within
groups with a kinship coefficient higher than 0.1 were identified with reasonable accuracy
using all of the evaluated statistics. If an original population was bound with an adequate rela-
tionship (pairwise kinship coefficient mean� 0.10), it was possible to identify the original
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population of a given individual with reasonable accuracy. Our findings revealed that the sug-
gested prediction model would be helpful for improving current traceability systems.

Conclusion
In this study, we showed that the LogitBoost classifier had higher performance than other sys-
tems evaluated (KNN and SVM) using various performance measures and conditions. In addi-
tion, subsets with a higher kinship coefficient were shown to have better performance for POO
prediction. These findings indicate that LogitBoost can be employed for traceability if an origi-
nal population is genetically related. The findings of our study will provide a basis for improv-
ing existing traceability systems.
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