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Abstract
We studied the paracrine function of mesenchymal stem cells (MSCs) derived from various sources in response to pulsed
focused ultrasound (pFUS). Human adipose tissue (AD), bone marrow (BM), and umbilical cord (UC) derived MSCs were
exposed to pFUS at two intensities: 0.45 W/cm2 ISATA (310 kPa PNP) and 1.3 W/cm2 ISATA (540 kPa PNP). Following pFUS, the
viability and proliferation of MSCs were assessed using a hemocytometer and confocal microscopy, and their secreted
cytokine profile determined using a multiplex ELISA. Our findings showed that pFUS can stimulate the production of
immunomodulatory, anti-inflammatory, and angiogenic cytokines from MSCs which was dependent on both the source of
MSC being studied and the acoustic intensity employed. These important findings set the foundation for additional mechanistic
and validation studies using this novel noninvasive and clinically translatable technology for modulating MSC biology.
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Introduction

Mesenchymal stem cells (MSCs) are multipotent stem cells1

that can be isolated from various tissues2–10. Although bone

marrow-derived MSCs (BM-MSCs) have traditionally been

used as the main source of MSCs in clinical practice, MSCs

derived from adipose tissue (AD-MSCs) and umbilical cord

(UC-MSCs) have emerged as new and readily available

sources with well-documented regenerative and immunomo-

dulatory properties11–14. While AD-MSCs can be easily iso-

lated with high yield from adipose tissue obtained during

routine liposuction/lipoplasty procedures15, UC-MSCs are

retrieved from the umbilical cord which is considered a

medical waste at the time of birth.

MSCs actively secrete cytokines and growth factors that

act either on themselves (autocrine function) or neighboring

cells (paracrine function) to modulate the immune system,

inflammatory response, as well as stimulate neo-angiogen-

esis16. For instance, MSC-secreted cytokines have been

implicated in the repair and regeneration of the central ner-

vous system (CNS)17, heart18–21, bone16,22, and other dam-

aged tissues23. Given that MSCs have the ability to sense and

respond to various stimuli24–26, several groups have investi-

gated preconditioning MSCs (i.e., intentionally exposing

them to a controlled amount of stimulus for a defined period

of time in order to produce the desired response) to enhance

their secretion of trophic factors16; these stimuli include

hypoxia27, thermal shock induction28, pharmacologic treat-

ment29, and proinflammatory (i.e., interferon-gamma

[IFN-g] or tumor necrosis factor-alpha [TNF-a]) cytokine

exposure30,31. However, following their administration into

patients, there is currently no way in which MSCs can be

actively stimulated.
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One approach to noninvasively stimulate MSCs, in a con-

trolled and systematic way outside of the body, as well as

inside the body following their administration, is to utilize

sound waves32. Focused ultrasound (FUS) is a novel tech-

nology, which can focus sound waves at specific locations

deep in the body with pinpoint accuracy but without the use

of any incisions. Pulsed FUS (pFUS) is a variation of this

technology that uses short duty cycles to minimize tempera-

ture elevations, thereby allowing the biomechanical effects

of ultrasound to predominate33. We have recently shown that

pFUS can stimulate pancreatic islets to increase insulin

release34. Hence, we hypothesized that pFUS can also sti-

mulate MSCs and modulate their paracrine function by

changing their profile of secreted cytokines. We therefore

examined the effect of pFUS on the viability and function

(determined by their paracrine function) of MSCs derived

from various sources (i.e., BM, AD, and UC-MSCs).

Materials and Methods

MSC Isolation and In Vitro Expansion

Human AD-MSCs and UC-MSCs were kindly donated from

the University of Miami (from Drs Ricordi and Patel)35,36,

and human BM-MSCs were donated from the laboratory of

diagnostic research at the NIH (from Dr Frank)37. All MSCs

were fully characterized as previously described35–37.

BM-MSCs and AD-MSCs were cultured in Mesenchymal

Stem Cell Growth Medium (Lonza, NJ, USA), supplemented

with 10% fetal bovine serum (FBS) with additional supple-

ments (MSCGM hMSC SingleQuot Kit, Lonza, NJ, USA).

UC-MSCs were cultured in low glucose Dulbecco’s modi-

fied Eagle medium (Fisher Scientific, Grand Island, NY,

USA) supplemented with 10% XcytepLUS (ibiologics),

1% glutamax (Gibco, Grand Island, NY, USA), 1% nones-

sential amino acid solution (NEAA; Gibco), and 1% peni-

cillin and streptomycin (Life Technologies, Grand Island,

NY, USA). All cells were cultured in the incubator at

37 �C with 5% carbon dioxide (CO2), and the culture media

were changed every 3 days.

MSC Stimulation with pFUS

pFUS was performed on MSCs as described previously34. For

each pFUS treatment, experiments were performed using a

six-well plate (Corning, USA) containing 105 MSCs/well.

MSCs (BM-MSC, AD-MSC, and UC-MSC) were first cul-

tured in well-plates for 24 h; the plates were then immersed in

an autoclaved water bath and placed above the pFUS trans-

ducer (KB Aerotech Inc., Lewiston, PA, USA) at the transdu-

cer’s focal spot (i.e., 50 mm away from the transducer

surface). For sound waves to cover all of MSCs cultured in

each well-plate, each well was divided into 25 spots (5 � 5

mesh, 5.75 mm distance between each point). Culture plates

were immobilized, while a 1 MHz piston transducer was

attached to an Acoustic Intensity Measurement System

(AIMS III, Onda, Sunnyvale, CA, USA) for precise

positioning of the pFUS transducer to cover all 25 spots. The

following pFUS parameters were fixed: 1 MHz frequency,

20% duty cycle, 100 Hz pulse repetition frequency, with a

total duration time of 6 min (i.e., 14.4 s/spot). MSCs were then

divided into three groups: Group 1: MSCs stimulated with

low intensity pFUS (i.e., 0.45 W/cm2 ISATA; 310 kPa peak

negative pressure [PNP]); Group 2: MSCs stimulated with

high intensity pFUS (i.e., 1.3 W/cm2 ISATA; 540 kPa PNP);

and Group 3: MSCs with no pFUS stimulation (controls).

Each treatment was repeated in duplicate.

Analysis of MSC-Secreted Cytokines

Following pFUS stimulation, MSCs were incubated at

37 �C and 5% CO2 for 48 h, after which time their culture

media was collected for multiplex immunoassay analysis

(human multiplex ELISA; eBiosciences/Affymetrix/

Fisher) to assess and measure the levels of secreted cyto-

kines. In brief, beads were first added to a 96-well plate

and washed (Biotek EL �405). Samples were then added

to the plate containing the mixed antibody-linked beads

and incubated at room temperature for 1 h followed by

overnight incubation at 4 �C on a plate shaker (500 rpm).

A biotinylated detection antibody was then added, after

which the plates were incubated at room temperature for

75 min on a plate shaker (500 rpm). Next, the samples

were washed and streptavidin-phycoerythrin added foll-

owed by incubation of the plates for 30 min at room

temperature on a plate shaker (500 rpm). The plates were

then washed, and a reading buffer was added to the wells.

Finally, a Luminex Flex 3D instrument was used to read

the plates with a lower bound of 50 beads per sample per

cytokine. Control assay beads (Radix Biosolutions) were

added to wells. Multiplex ELISA assays were performed

on all three sources of MSCs (i.e., BM-MSC, AD-MSC,

and UC-MSC), which were sampled twice, and the aver-

age cytokine value was taken from two separate readings.

The percentage change in cytokine expression from

pFUS-stimulated MSCs relative to control (i.e., nonstimu-

lated) MSCs was then calculated (Eq. 1):

Percentage change vs:control ¼ ODsample�ODcontrol

ODcontrol

� 100

where ODsample is the optical density (absorbance) of MSCs

stimulated with pFUS and ODcontrol is the optical density of

control MSCs. Data were compiled as a heat map with upre-

gulation represented as a red color gradient and downregula-

tion represented as a green color gradient. We then

categorized secreted cytokines into three subgroups: immu-

nomodulatory, anti-inflammatory, and angiogenic cytokines.

Determination of MSCs’ Morphology and Viability

Following pFUS stimulation, MSCs were incubated at 37 �C
and 5% CO2 for 48 h and then harvested and counted using a

hemocytometer38. Cell numbers were compared with the cell
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number at time point 0, and the results expressed as the fold

change versus control. Cell morphology was also observed

under a confocal microscope (Zeiss LSM710).

Statistical Analysis

All experimental data are expressed as the mean + SEM.

Statistical analysis of all quantitative data was performed

using one-way analysis of variance with post hoc Tukey test

(Astatsa.com; Online Web Statistical Calculators, USA)

with any differences considered statistically significant

when P < 0.05.

Results

Analysis of MSC-Secreted Cytokines

BM-MSCs. Stimulation of BM-MSCs with low-intensity and

high-intensity pFUS resulted in a 15% + 20% and 5% +
10% increase in cytokine secretion, respectively, when com-

pared with control BM-MSCs (Fig. 1A, P < 0.05). Stimula-

tion of BM-MSCs with low-intensity pFUS upregulated the

expression of a subset of immunomodulatory (IL31, SCF,

RANTES, IFNG, MIP1B, IFNA, TNFB, GROA, IL1A,

IL12P40, IL15, IL18, MCP3, ICAM1, VCAM1, IL22, and

ENA78), anti-inflammatory (FASL, IL1B, TGFB, IL1RA,

TGFB, IL9, BDNF, TRAIL, IL10, and IFNB), and angio-

genic (VEGFG, VEGF, FGFB, IL2, and EOTAXIN) cyto-

kines, while also downregulating the expression of the

angiogenic cytokine PDGFBB when compared with the con-

trol BM-MSCs (Fig. 1B, P < 0.05). Stimulation with

high-intensity pFUS caused upregulation of immunomodu-

latory (IL31, TNFA, MCP3, LEPTIN, and CD40 L),

anti-inflammatory (FASL, MIP1A, IL1B, IL6, IL8, IL9,

BDNF, IFNB, and LIF), and angiogenic (VEGFG, VEGF,

TGFA, FGFB, and PAI1) cytokines, while also downregu-

lating select immunomodulatory (IL23), anti-inflammatory

cytokine (TGFB) and angiogenic (IL2, and IP10) cytokines

when compared with control BM-MSCs (Fig. 1B, P < 0.05).

AD-MSCs. Stimulation of AD-MSCs with low-intensity and

high-intensity pFUS resulted in a 3% + 5% and 5% + 7%
increase in cytokine secretion, respectively, when compared

with control AD-MSCs (Fig. 1A, P < 0.05). Stimulation of

AD-MSCs with low-intensity pFUS upregulated the expres-

sion of a subset of immunomodulatory (IL15, MCP3,

VCAM1, and IL17F), anti-inflammatory (MIP1A, IL1RA,

and IFNB), and angiogenic (TGFA, IL7, IL2, and

EOTAXIN) cytokines, while also downregulating the

expression of the immunomodulatory cytokine IL31 when

compared with control AD-MSCs (Fig. 1B, P < 0.05). Sti-

mulation of AD-MSCs with high-dose pFUS also caused

upregulation of immunomodulatory (MCP3, ICAM1,

VCAM1, LEPTIN, and IL17F), an anti-inflammatory

(IFNB), and angiogenic (TGFA, SDF1A, IL7, IL2, and

EOTAXIN) cytokines when compared with control

AD-MSCs (Fig. 1B, P < 0.05).

UC-MSCs. Stimulation of UC-MSCs with low-intensity and

high-intensity pFUS resulted in a 10% + 15% and 15% +
17% increase in the cytokine secretion, respectively, when

compared with control UC-MSCs (Fig. 1A, P < 0.05). Stimu-

lation of UC-MSCs with low-intensity pFUS upregulated the

expression of a subset of immunomodulatory (GMCSF,

TNFA, MCP1, IL12P40, RESISTIN, VCAM1, LEPTIN,

CD40 L, IL17F), anti-inflammatory (MIP1A, IL6, IL8, LIF,

IFNB), and angiogenic (HGF, VEGFG, PDGFBB, VEGF,

TGFA, IL7, IL2, EOTAXIN) cytokines, while also downre-

gulating the expression of immunomodulatory (IL31,

MIP1B, TNFB, IL1A, IL23, IL15, IL18), anti-inflammatory

(FASL, IL1B, IL1RA, BDNF, TRAIL), and the angiogenic

cytokine IP10 when compared with control UC-MSCs

(Fig. 1B, P < 0.05). Stimulation of UC-MSCs with

high-dose pFUS caused upregulation of a subset of immuno-

modulatory (SCF, RANTES, TNFA, MCP1, GROA, IL1A,

IL12P40, IL18, MCP3, MIG, RESISTIN, IL21, ICAM1,

VCAM1, LEPTIN, CD40 L, EN78, and IL17F),

anti-inflammatory (MIP1A, IL6, IL8, IL9, NGF, EGF, GCSF,

LIF, and IFNB), and angiogenic (HGF, VEGFG, PDGFBB,

TGFA, SDF1A, IL5, IL7, IL2, and EOTAXIN) cytokines.

High-dose pFUS also caused downregulation of the immuno-

modulatory cytokine IL15 when compared with control

UC-MSCs (Fig. 1B, P < 0.05).

Determination of MSCs’ Morphology and Viability

Stimulation of all three types of MSCs (i.e., BM-MSCs,

AD-MSCs, and UC-MSCs) with pFUS, at both low and high

intensities, did not significantly change the morphology and

viability of MSCs compared towith their control (Fig. 2;

BM-MSCs: low intensity ¼ 1.01 + 1.00 fold change vs

control, high intensity ¼ 1.02 + 1.05, control ¼ 1.00 +
0.50; AD-MSCs: low intensity¼ 0.85 + 1.13, high intensity

¼ 0.90 + 0.77, control ¼ 1.00 + 0.50; UC-MSCs: low

intensity ¼ 0.96 + 0.60, high intensity ¼ 0.91 + 1.02,

control ¼ 1.00 + 0.50; P > 0.05).

Discussion

MSCs are a promising regenerative cellular therapy which

have been shown to have a significant benefit in multiple

preclinical models16–23. In addition to BM-MSCs,

AD-MSCs and UC-MSCs are now being used in clinical

trials to treat multiple conditions39,40. In this study, we inves-

tigated (1) whether pFUS (i.e., sound waves) can safely be

used to biomechanically stimulate MSCs and if this is depen-

dent on the acoustic intensity employed and (2) whether

different sources of MSCs respond differently to pFUS, as

determined by their cytokine profile.

Our results show that pFUS can be used in vitro, at low

and high intensities, with no adverse effect on MSC mor-

phology or viability. The effect of acoustic intensity on cyto-

kines is dependent on the source of MSCs with BM-MSCs

showing increased secretion at lower intensities, UC-MSCs

Razavi et al 3



showing increased secretion at higher intensities, and

AD-MSCs demonstrating the least amount of sensitivity to

sound waves at both high and low intensities. Finally, our

results show MSCs respond to pFUS in a source-dependent

manner, with each source producing a distinct cytokine pro-

file (i.e., the highest level of a cytokine produced by

BM-MSCs was IL15, for AD-MSCs was TGF-a, and for

UC-MSCs was LIF).

Given that pFUS can produce a different profile of cyto-

kines depending on the source of MSC, this will become impor-

tant for choosing a specific MSC for a particular disease

indication, especially if pFUS is used for preconditioning

Figure 1. Analysis of MSC-secreted paracrine cytokines. (A) Schematic and field distribution of pFUS used in our study for MSCs
stimulation: MSCs were first cultured in the well plates; the plate was then immersed in an autoclaved water and placed above the pFUS
transducer at the transducer’s focal spot. The transmitted ultrasound waves were produced by a function generator, amplified through a
power amplifier at a constant gain, and emitted from a focused piston transducer. In order for sound waves to cover whole MSCs cultured in
well-plate, each well was graded into 25 spots (5� 5 mesh, 5.75 mm distance between each point). (B) Stimulation of all three types of MSCs
(i.e., BM-MSCs, AD-MSCs, and UC-MSCs) with low-intensity or high-intensity pFUS resulted in changes in cytokine secretion compared
with control samples and (C) cytokines were characterized based on their immunomodulatory, anti-inflammatory, and angiogenic effects.
This data has been compiled as a heat map with upregulation represented as a red color gradient and downregulation represented as a green
color gradient. AD: adipose tissue; BM: bone marrow; MSCs: mesenchymal stem cells; pFUS: pulsed focused ultrasound; UC: umbilical cord.
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MSCs. In terms of the cytokine produced at the highest level for

each MSC, IL15 has been shown to induce the differentiation

and proliferation of T, B, and natural killer cells and induces

maturation of dendritic cells, thereby highlighting an important

immunomodulatory function41,42; TGF-a has been shown to

initiate multiple cell proliferation events that play a role in

wound healing as well as promoting angiogenesis43; LIF has

been shown to promote growth and cell differentiation as well

as modulate embryonic stem cell self-renewal and differentia-

tion44–46.

Taken together, it is clear that pFUS can be used to

stimulate MSCs. While the present study did not investigate

the mechanisms underlying this effect, possible pathways

include the mitogen-activated protein kinase47, focal adhe-

sion kinase activates-extracellular signal-regulated

kinase 1/248, and stromal cell-derived factor-1/C-X-C che-

mokine receptor type 449. These pathways have already been

shown to be activated following stimulation of stem cells

with low-intensity pulsed ultrasound (LIPUS)47–49. Future

work will aim to investigate these mechanisms systemically

Figure 2. Determination of MSC morphology and viability: stimulation of all three types of MSCs (i.e., BM-MSCs, AD-MSCs, and UC-MSCs)
with pFUS in both low and high intensity did not significantly change the (A) morphology and (B) viability of MSCs compared with control
samples. AD: adipose tissue; BM: bone marrow; MSCs: mesenchymal stem cells; pFUS: pulsed focused ultrasound; UC: umbilical cord.

Razavi et al 5



and the effects of different acoustic parameters on these

pathways, in order to better determine how to effectively

modulate the function of MSCs. Similar to other studies that

have compared the secretory profile of MSCs in response to

proinflammatory cytokines, our data also show that different

sources of MSCs respond differently to the same stimulus

(i.e., sound waves)50,51. Future studies will aim to better

understand the underlying molecular biology governing

these changes as well as other regenerative outputs of MSCs

(i.e., contents of their extracellular vesicles).

Ultrasound also has a well-documented influence on

MSC differentiation. However, there are some inconsisten-

cies, regarding how it affects MSCs in normal culture con-

ditions. While Kusuyama et al found that LIPUS enhances

stemness, in part by upregulating the stem cell factor

Nanog52, Lai et al found that LIPUS pushes MSCs toward

an osteogenic fate53, whereas Lee et al found continuous

LIPUS (cLIPUS) to push MSCs to a chondrogenic fate54.

These discrepancies may arise due to different ultrasound

settings, culture conditions, or cell source. What has consis-

tently been demonstrated is that when MSCs are already

induced toward a certain fate, LIPUS enhances differentia-

tion toward that lineage. For MSCs cultured in osteogenic

induction media, LIPUS enhances the expression of osteo-

genic markers55. When MSCs are cultured in a chondrogenic

medium, cLIPUS and LIPUS enhance the expression of

chondrogenic genes and the production of glycosaminogly-

cans56. Finally, a few studies have shown that cLIPUS57 and

LIPUS58 enhance the differentiation of MSCs into neural

fates, increasing the secretion of neurotrophic factors as well

as the expression of neural markers and calcium channels57.

While changes in the MSC secretome were evaluated in our

study, the phenotype stability of MSCs was not investigated.

However, previous studies59–61 have shown that the MSC

phenotype is a function of ultrasound intensity. For example,

a low-intensity ultrasound (< 0.2 W/cm2), applied as pulsed

LIPUS or cLIPUS wave, has been documented to enhance

the chondrocyte phenotype59, improve cartilage repair60, and

induce hBM-MSC chondrogenesis in vitro61 and in vivo62,

notably in the absence of exogenous chondroinductive bio-

chemical factors54. There is therefore a possibility of

changes in phenotype and differentiation potential in MSCs

using our pFUS parameters in both low (0.45 W/cm2) and

high (1.3 W/cm2) intensities; however, further studies will

be required to evaluate this phenomenon.

Finally, we will aim to better understand the ability of

translating this approach of using pFUS from the in vitro

setting (to precondition MSCs) to in vivo setting where we

can stimulate MSCs after they have been given into living

subjects. Once the pFUS parameters are optimized and vali-

dated, clinical applications of pFUS will only require that the

derated pFUS parameters match the optimized determined

pFUS parameters.

In summary, our study showed that pFUS can stimulate

MSCs, and the response profile is dependent on the intensity

of pFUS as well as the source of MSC. These important

findings should set the foundation for additional mechanistic

and validation studies using this noninvasive and translatable

technology in regenerative medicine.
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