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Abstract
Chemotherapy combined with checkpoint blockade antibodies targeting pro-
grammed cell death protein (PD-1) has achieved remarkable success in non-small
cell lung cancer. However, few patients benefit from long-term treatment.
Therefore, biomarkers capable of guiding the optimal therapeutic selection and
reducing unnecessary toxicity are of pressing importance. In our research, we
gathered serial blood samples from two groups of non-small cell lung can-
cer patients: 49 patients received a combination of therapies, and 34 patients
went under chemotherapy alone. Utilizing non-targeted metabolomic analysis,
we examined different metabolites’ disparity. Among the lot, L-phenylalanine
emerged as a significant prognostic marker in the combination treatment of
non-small cell lung cancer patients, interestingly absent in patients under sole
chemotherapy. The reduced ratio of L-phenylalanine concentration (two-cycle
treatment vs. pre-treatment) was associated with improved progression-free sur-
vival (hazard ratio = 1.8000, 95% confidence interval: 0.8566‒3.7820, p < 0.0001)
and overall survival (hazard ratio= 1.583, 95% confidence interval: 0.7416‒3.3800,
p< 0.005). We further recruited two validation cohorts (cohort 1: 40 patients and
cohort 2: 30 patients) to validate the sensitivity and specificity of L-phenylalanine
prediction. Our results demonstrate that a model based on L-phenylalanine
variations could serve as an early risk-assessment tool for non-small cell lung

#Yaqing Liu, Yu Ping, and Liubo Zhang are co-authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2025 The Author(s).MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

MedComm. 2025;6:e70100. wileyonlinelibrary.com/journal/mco2 1 of 13
https://doi.org/10.1002/mco2.70100

mailto:yizhang@zzu.edu.cn
mailto:wlp@zzu.edu.cn
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/mco2
https://doi.org/10.1002/mco2.70100


2 of 13 LIU et al.

Science Foundation of China,
Grant/Award Numbers: 82272873
82102869, 82102869, 82272873

cancer patients undergoing treatment, potentially facilitating strategic clinical
decision-making.
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1 INTRODUCTION

Non-small cell lung cancer (NSCLC) is one of three tumors
with the highest incidence rates in the world,1 and most
patients are diagnosed at an advanced stage.2 Over the past
decade, immunotherapy has shown great potential in the
treatment of NSCLC.3 Currently, it is used as a first-line
treatment for advancedmetastatic non-small cell lung can-
cer and as an adjuvant therapy for patients who cannot
undergo surgery.4
According to the National Comprehensive Cancer

Network guidelines, PD-L1 is the only recommended
biomarker for metastatic NSCLC.5 However, if a patient
is negative for PD-L1 expression, it is difficult to pre-
dict the efficacy of PD-1/PD-L1 inhibitors.6 Based on
our clinical findings, patients who do not express PD-
1/PD-L1 can benefit from immunotherapy,7 whereas some
patients with greater than 50% PD-1/PD-L1 expression
develop resistance to early treatment. Therefore, the use of
PD-1/PD-L1 expression alone to predict or evaluate treat-
ment response is inaccurate. Other biomarkers currently
available formonitoring patient responses to immunother-
apy include the tumor mutation burden (TMB),8 target
gene mutations (KRAS, EGFR, ALK, etc.),9 and circu-
lating tumor genes (ctDNA).10 However, these invasive
tests cannot be repeated to monitor a patient’s response
to immunotherapy promptly. Therefore, developing clin-
ically useful predictive biomarkers to accurately identify
patients who may benefit from treatment can help clini-
cians adjust treatment strategies on time and providemore
treatment opportunities for patients.
Currently, common blood biopsy methods used in

clinical and research studies include exosomes (EVs),11
tumor-induced platelets (TEP),12 and microbiota and
microbial metabolites.13–16 Blood biopsy samples have a
short half-life and require rapid processing with strict
requirements for sampling processing time. Currently,
standardized analytical methods are lacking. Therefore,
our study began from the perspective of metabolomics,
which is the closest link to phenotypes in the biologi-
cal framework of gene-transcription-proteinmetabolism.17
Changes in the genome and proteome can be represented
by metabolomics as genes and proteins regulate metabolic
pathways and rates, thereby affecting the concentra-

tion of small molecules in the body.17 These metabolites
directly reflect the physiological and pathological changes
that occur in organisms, and metabolomics is directly
correlated with changes in biological phenotypes.18 Fur-
thermore, the model could easily help clinicians decide
whether to continue PD-1Ab combined with chemother-
apy treatment, sampling in real-time repeatably, and more
cheaply than imaging, and support higher patient compli-
ance.
In our study, a comprehensive analysis was performed

to identify the serum metabolites that predict the effec-
tiveness of immunotherapy combinedwith chemotherapy,
and to determine whether changes before and after treat-
ment can be used as prognostic of response to combination
therapy in NSCLC. These predictions were validated using
independent randomized cohorts. Compared with before
treatment, an increase in the concentration of serum
metabolic biomarkers is associated with the survival of
patients with non-small cell lung cancer receiving combi-
nation therapy.

2 RESULTS

2.1 Patient cohorts and baseline
characteristics overview

Patients with NSCLCwho received chemotherapy alone or
chemotherapy combined with anti-PD-1 antibodies were
enrolled in this study. Peripheral blood was collected from
each patient to separate serum and PBMC after every cycle
of treatment (Figure 1A). All patients were evaluated for
clinical efficacy at baseline and after every treatment cycle,
according to RECIST 1.1. Overall, 170 patients with lung
cancer were enrolled in this study; 126 NSCLC patients
received chemotherapy combined with anti-PD-1 anti-
body and 41 NSCLC patients received chemotherapy alone
after screening (Figure 1B). Seven patients were excluded
for some reason (death, adverse events, or side effects);
remaining patients were divided into three cohorts: dis-
covery cohort (n = 83), validation cohort 1 (n = 40), and
validation cohort 2 (n = 30). The baseline clinical char-
acteristics of all the participants (39 responders and 10
non-responders) are presented in Table 1.
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F IGURE 1 Patients with chemotherapy treatment or chemotherapy plus PD-1Ab and throughout the study treatment. (A) Treatment
schedule outline of the clinical trial of treatment (pemetrexed and platinoid) plus PD-1Ab or mono-chemotherapy (pemetrexed and
platinoid), and sample collection time point (grey arrow). Serum from peripheral blood at the end of each treatment cycle is used for
non-targeted metabolomics and Elisa kit. (B) Cohort derivation, validation, and longitudinal assessment.

2.2 Non-targeted metabolomics
screening and analysis for serum
differences

Serum samples at the initiation of treatment (baseline) and
two cycles after treatment completion (post-treatment)
were collected from 83 patients with NSCLC and used for
non-targeted metabolomic analysis. Pooled quality con-
trol (QC) samples, correctly clustered based on OPLS-DA
(Figure S1A,B), verified the stability and repeatability of
the sample analysis sequence. Orthogonal partial least
squares discriminant analysis (OPLS-DA) revealed that
the metabolite features of NSCLC patients treated with
chemotherapy combined with anti-PD-1 antibodies dif-
fered (Figure 2A). In the non-response (NR) group, differ-
ent metabolites between the baseline and post-treatment
were enriched in organic acids and their derivatives. In
contrast, metabolites in the response (R) group exhib-
ited change in lipids and lipid-like molecules, organic
acids and derivatives, and organ heterocyclic compounds
(Figure 2B). Furthermore, the proportion of differen-
tial metabolites accounted for 7.94%, of which 5.29%
were upregulated and 2.65% were downregulated in the
NR group. The proportion of differential metabolites in
R group accounted for 7.4%, with 3.17% representing
increased metabolites and 4.23% representing decreased

in metabolites (Figure 2C). The OPLS-DA analysis of
the NR group treated with chemotherapy alone high-
lighted a unique metabolic landscape before and after
treatment, the visualization clearly separating the NR and
R groups, similar to Figure 2A (Figure 2D). In the NR and
R groups that received chemotherapy alone, the altered
metabolites were mainly concentrated in lipids and lipid-
like molecules, as well as organic acids and derivatives
(Figure 2E). In all, 7.14% of metabolites were different
between baseline and post-treatment in the NR group,
and 6.88% of metabolites were different in the R group
(Figure 2F).

2.3 Identification of metabolites
predictive of chemotherapeutic response

We further focused on different metabolites that indicate
the efficacy of combination treatment. First, we analyzed
the different metabolites at baseline and after treatment in
patients with NSCLC treated with combination treatment
(Figure 3A) or chemotherapy alone (Figure 3B).Aheatmap
revealed differential metabolites, including amino acids
and lipids (Figure 3A,B). Based on these differential
metabolites, we analyzed themetabolic pathways in which
the differential metabolites might be involved. In patients
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TABLE 1 Baseline characteristics of enrolled patients.

Discovery cohort Validation cohort 1 Validation cohort 2
R NR p-value R NR p-value R NR p-value

Age Average 59
(44–73)

56
(48–71)

0.3350 59.5
(51–73)

61.5
(46–72)

0.7529 58.87
(51–79)

57.785
(47–75)

0.5178

Female 16 6 5 7 8 6
ECOG 0 22 4 0.3536 14 12 0.5073 6 5 0.7048

1 17 6 6 8 9 10
Expression
of PD-L1

<1% 14 3 0.6250 6 9 0.0474 4 6 0.0425
≥1% and <49% 9 2 3 6 2 6
≥50% 11 2 10 2 8 1
Unknown 5 3 1 3 1 2

Surgery Yes 6 3 0.2869 5 2 0.2119 3 4 0.6660
No 33 7 15 18 12 11

Tumor 0 1 0 0.6614 1 0 0.0956 0 0 0.6065
1 5 1 0 1 7 6
2 16 2 9 7 4 3
3 10 4 9 5 2 1
4 7 3 1 7 2 5

Node 0 5 0 < 0.05 3 5 0.599 3 1 0.6295
1 3 0 2 1 5 6
2 7 6 7 4 4 3
3 24 4 8 10 3 5

Metastasis 0 19 4 0.6221 11 6 0.1098 7 4 0.2557
1 20 6 9 14 8 11

Disease
stage

1 5 0 0.107 2 1 0.8760 3 1 0.1395
2 6 1 2 3 5 1
3 6 5 5 4 4 7
4 22 4 11 12 3 6

Number of
tumor
metastasis

0 19 3 0.0736 11 6 0.3104 5 1 0.1942
1 10 1 1 2 4 6
2 6 1 3 2 3 1
3 3 4 4 5 2 6
5 1 1 1 5 1 1

Brain
metastasis

Yes 5 2 0.5627 4 8 0.1675 2 4 0.3613

No 34 8 16 12 13 11
Pleural
metastasis

Yes 10 3 0.7806 8 10 0.5250 3 5 0.4090
No 29 7 12 10 12 10

Note: Chi-square test for responders versus non-responders.
Abbreviations: NR, non-responders; R, responders.

who benefitted fromcombination treatment, themetabolic
pathways were mainly enriched in L-phenylalanine and
arginine metabolism (Figure 3C). Among the R group
who received chemotherapy, the metabolic pathways were
mainly enriched in L-phenylalanine-tyrosine metabolism
(Figure 3D), whereas in NR group, they were mainly
enriched in L-arginine metabolism (Figure 3E). Further-
more, considering that L-arginine and L-phenylalanine

metabolisms were the major enriched metabolic path-
ways, we compared the concentrations of L-arginine and
L-phenylalanine. Compared to baseline, the concentration
of L-arginine decreased in patients who benefited from
combination therapy (2.409 ± 0.8415 vs. 1.911 ± 0.6653;
Figure 3F) and in NR patients receiving chemotherapy
(3.233 ± 0.8189 vs. 2.343 ± 0.9018; Figure 3G). Addi-
tionally, the concentration of L-phenylalanine showed
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F IGURE 2 Examination of the metabolic profiles of serum specimens. (A) Scores plot of orthogonal partial least squares discriminant
analysis (OPLS-DA) of samples that received combination therapy in the discovery set based on the paired before and after treatment features.
Left: non-responder (NR) samples before (grey, pink) and after (grey blue) chemotherapy combine PD-1Ab; right: responder (R) samples
before (light pink) and after (green) chemotherapy combined with PD-1Ab. (B) Components of the changed serum metabolite in patients
before and after combination therapy. Left: NR; right: R. (C) Metabolomics analysis of serum metabolites in patients with combination
therapy. Left: NR; right: R. (D) Scores plot of OPLS-DA of samples received chemotherapy alone in the discovery set. Left: NR samples before
(blue) and after (grey) chemotherapy. Right: R samples before (yellow) and after (light blue) chemotherapy. (E) Components of the changed
serum metabolite in patients before and after treatment with chemotherapy. Left: NR; right: R. (F) Metabolomics analysis of serum
metabolites in patients with chemotherapy. Left: NR; right: R.

opposite changes in patients after treatment with combi-
nation therapy (Figure 3H), which decreased after treat-
ment in responders (4.559 ± 0.6762 vs. 3.919 ± 0.6351;
left) and increased after treatment in non-responders
(4.463 ± 0.5965 vs. 5.299 ± 0.5755; right). However, there
was no significant difference in the L-phenylalanine con-
centration between baseline and post treatment in patients
who received chemotherapy in both the R and NR groups
(Figure 3I). Therefore, changes in the concentration of L-
phenylalanine may be an ideal indicator of the specificity
of chemotherapy combined with anti-PD-1 antibody.

2.4 Changes in L-phenylalanine
concentration can reflect the efficacy of the
combination

Next, 20 R and 10 NR patients who received chemother-
apy combined with an anti-PD-1 antibody used for non-

targeted metabolomics were selected to determine the
concentration of L-phenylalanine using ELISA. In line
with the non-targeted metabolomics results, the concen-
tration of L-phenylalanine in the serum of non-responders
increased after treatment; however, the concentration of L-
phenylalanine decreased in responders (Figure 4A). Based
on the changing trend in L-phenylalanine concentration at
baseline and post treatment, we hypothesized that changes
in serum L-phenylalanine concentration might serve as
a prognostic of the clinical benefit of combination treat-
ment. Therefore, we designed a formula to visualize the
changes by calculating the ratio of the L-phenylalanine
concentration ([post-treatment concentration − baseline
concentration] to the baseline concentration). As shownby
the statistical results, the change values for the NR group
were mostly positive, whereas those for the R group were
mostly negative (Figure 4B). We evaluated the discrimi-
natory power of L-phenylalanine using receiver operating
characteristic (ROC) curves. The area under the curve
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F IGURE 3 L-phenylalanine concentrations were decreased in R patients and increased in NR patients. (A) Heatmap representing
metabolite changes in patients before combination treatment compared with before. (B) Heatmap representing metabolite changes in patients
after chemotherapy treatment compared with before. (C‒E) Bubble plot enrichment analysis of metabolic pathways of differential
metabolites. (C) NR patients received combination treatment; (D) R patients received chemotherapy; (E) NR patients received chemotherapy.
(F) The relative concentration of L-arginine in responders (n = 39) and non-responders (n = 10) before and after combination treatment. (G)
The relative concentration of L-arginine in responders (n = 20) and non-responders (n = 14) before and after chemotherapy. (H) The relative
concentration of L-phenylalanine in responders (n = 39) and non-responders (n = 10) before and after chemotherapy combination treatment.
(I) The relative concentration of L-phenylalanine in responders (n = 20) and non-responders (n = 14) before and after chemotherapy.
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F IGURE 4 Changes in serum L-phenylalanine levels reflect tumor response in NSCLC patients during chemotherapy combined with
PD-1Ab treatment. Patients treated with chemotherapy combined with the PD-1Ab were assessed at baseline (BL), best response (R), and
disease progression (PD). (A) L-phenylalanine levels plotted at baseline (BL), at the best response moment (R) in responders (n = 20), and at
the moment of disease progression (PD) in non-responders (n = 10). (B) Percentage change in serum L-phenylalanine in responders (n = 20)
and non-responders (n = 10) from baseline levels to four cycles after the start of treatment. A nonparametric Wilcoxon test was used to
compare median L-phenylalanine levels between responders and non-responders. (C) ROC curve results distinguishing responders from
non-responders in the discovery set. (D) Bar chart showing the arrangement of the change values in the tumor volume change histogram. (E)
Three-line tables and statistical graphs showing the proportion of responders and non-responders in each group higher or lower than the
cutoff value. (F and G) Kaplan–Meier survival curves stratified by progression-free survival (PFS) and overall survival (OS) according to
patient changes.

(AUC) for L-phenylalanine was 0.8650. The best cutoff
value for L-phenylalanine changes indicated that the effi-
ciency of combination treatment was 17.11% (Figure 4C).
Subsequently, the patients were divided into two groups
according to the cutoff value. Patients in the cutoff value
≥17.11% group showed progressive disease (PD) after com-
bination treatment (Figure 4D). In the cutoff value≥17.11%
group, the objective response rate (ORR) was 18.18% (2/11),
lower than in the cutoff value less than 17.11% group
(ORR 94.74%, 18/19) (Figure 4E). Finally, we followed-up
on progression-free survival (PFS) and (overall survival)
OS. We found that patients in the cutoff value ≥17.11%
group had shorter PFS (cutoff value≥17.11% group:median
PFS: 5 months; cutoff value <17.11% group: median PFS:
9 months) and OS (cutoff value ≥17.11% group: median
OS: 12 months; cutoff value <17.11% group: median OS:
19 months) compared to patients in the cutoff value less

than 17.11% group (Figure 4F,G). Therefore, we identified
and validated changes in L-phenylalanine concentration as
a prognostic of response to combination therapy.

2.5 Changes in L-phenylalanine
concentration preceded radiographic size
changes

Forty patients who received chemotherapy combined with
anti-PD-1 antibody therapy (R: n = 20; NR: n = 20)
were randomly selected for the validation cohort. Changes
in L-phenylalanine concentration in the NR group were
significantly higher than in the R group (Figure 5A). Sim-
ilarly, the samples were divided into two groups using a
cutoff value of 17.11%. Consistent with previous results in
the discovery cohort, the ORR in the cutoff value ≥17.11%
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F IGURE 5 Fold-change of L-phenylalanine relative concentration is correlated with the PD-1Ab efficacy in cancer patients. (A)
Percentages of change in serum L-phenylalanine in responders (n = 20) and non-responders (n = 20) from baseline levels to four cycles after
the start of treatment in validation 1. (B) Three-line tables and statistical graph show the proportion of responders and non-responders in each
group higher or lower than the cutoff value of the discovery cohort. (C) Kaplan–Meier survival curves stratified progression-free survival
(PFS, up) and overall survival (OS, down) by serum L-phenylalanine change in patients. (D) Results of L-phenylalanine levels are plotted in
baseline (BL), and at the best response moment (responders [n = 20], left) or the progression disease moment (non-responders [n = 20], right)
in validation 1. (E) Percentages of change in serum L-phenylalanine in responders (n = 20) and non-responders (n = 20) from baseline levels
to one cycle after the start of treatment in validation 1. (F) ROC curves result in distinguishing responders from non-responders for the
discovery set. (G) Bar chart showing the arrangement of the change values in the tumor volume change histogram according to R. (H)
Three-line tables and statistical graph show the proportion of responders and non-responders in each group higher or lower than the cutoff
value. (I) Kaplan–Meier survival curves stratified PFS (left) and OS (right) by change in patients.

group (6.25%, 1/16) was lower than in the less than 17.11%
group (79.17%, 19/24) (Figure 5B). PFS and OS in the cutoff
value ≥17.11% group were shorter than in the cutoff value
less than 17.11% group (Figure 5C).
However, although the changes in serum L-

phenylalanine at four cycles after therapy reflected
the clinical efficacy of combination therapy, clinicians
tend to prefer using CT to evaluate the therapeutic effect
after at least four cycles of treatment. We further inves-

tigated whether the change in serum L-phenylalanine
concentration after one cycle of therapy was a good
prognostic of clinical efficacy. Therefore, we dynamically
analyzed the changes in serum L-phenylalanine concen-
trations in patients in the validation cohort at different
time points after receiving combination treatment. The
L-phenylalanine concentration decreased in responders
one cycle after treatment, whereas the concentration of
L-phenylalanine in non-responders increased one cycle
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after treatment (Figure 5D). Furthermore, we undertook
an extended follow-up of 20 participants who were given
combination therapy, and their serum L-phenylalanine
concentrations were measured upon disease progres-
sion. At the onset of disease progression, all patients
demonstrated an individual variation in the elevation
levels of L-phenylalanine (Figure S2A). Moreover, the
L-phenylalanine concentrations from two arbitrarily
selected responders were monitored at baseline and dur-
ing each subsequent cycle. The findings suggested a slight
increase or decrease in L-phenylalanine concentration
when patients exhibited either stable disease or partial
response (Figure S2B,C).
Next, we used the same formula to visualize the changes

in L-phenylalanine concentration one cycle after treat-
ment and found that the change values for the NR group
were mostly positive, whereas those for the R group were
mostly negative (Figure 5E), consistent with the results
in Figure 4B. The AUC was 0.8400, and the best cutoff
value was 10.79% (Figure 5F). Patients in the validation
cohort were divided into two groups according to the cut-
off value in Figure 5F. Most patients in the cutoff value
≥10.79% group achieved PD after combination treatment
(Figure 5G). In the cutoff value ≥10.79% group, ORR was
12.5% (2/16), lower than in the cutoff value less than 10.79%
group (ORR 75%, 18/24) (Figure 5H). Patients with the cut-
off value less than 10.79% had significantly better PFS and
OS than patients with the cutoff value ≥10.79% (Figure 5I).
Taken together, changes in L-phenylalanine concentra-
tion can be used as an early clinical prognostic diagnostic
indicator before CT evolution.

2.6 Prospective validation of the
discriminant model

Finally, to verify the early clinical predictive efficiency of
L-phenylalanine levels, we conducted a prospective cohort
study (R: n = 15; NR: n = 15). The serum L-phenylalanine
concentration of each patient was measured at baseline
and one cycle after the treatment cycle. Patients in the
prospective cohort were divided into two groups based on a
cutoff value of 10.79% in Figure 5F. ORR in the cutoff value
≥10.79% group (26.67%, 4/15) was lower than in the cutoff
value less than 10.79% group (73.33%, 11/15) (Figure 6A).
CT images of the patients were obtained after four cycles
of treatment; tumors of most patients in the cutoff value
less than 10.79% group shrank after therapy, while tumors
in the cutoff value ≥10.79% group showed continuous pro-
gression (Figure 6B). The median PFS of patients with
the cutoff value ≥10.79% was 10 months (95% confidence
interval [CI]: 0.8148–3.409), significantly shorter than in
patients with the cutoff value less than 10.79% (Figure 6C).

Meanwhile, the median OS in the cutoff value less than
10.79% group was significantly longer than in the cutoff
value ≥10.79% group (Figure 6C).

3 DISCUSSION

This study identified a prognostic model based on changes
in L-phenylalanine concentration between baseline and
after four cycles of treatment, based on the results of
non-targeted metabolomics. The model was validated by
collecting patient imaging results and statistically analyz-
ing the PFS and OS. Retrospective validation sets were
collected to validate the prognostic models identified in
the discovery sets. To achieve early prediction of PD-1Ab
combination therapy and chemotherapy, we established
an earlier prognostic model based on the changes in
L-phenylalanine concentration between one cycle after
treatment and baseline in the retrospective validation set
and collected specimens as prospective validation sets.
This prognostic model can be easily used by doctors to
select patients who may benefit from a combination of
chemotherapy and PD-1Ab treatment, thus providing a
promising individualized strategy for this widely used
combination therapy.
L-phenylalanine, an essential amino acid,19 has a sta-

ble metabolic pathway and concentration fluctuation,20
with a physiological concentration in the body ranging
from 35 to 120 µmol/L.21 In our study, the concentration
of phenylalanine was within the normal range before and
after the combined treatment. Additionally, the patient
cohort in the current study was small, and the model
should be confirmed in a large cohort with multicenter
controls.
In our clinical cohort and metabolomic analysis, we

used the change in L-phenylalanine concentration as
the basis for the predictive model, in part because its
concentration only changed before and after treatment
with PD-1Ab combined with chemotherapy, whereas the
change before and after chemotherapy alone was not
significant. According to the literature, the increase in
the concentration of L-phenylalanine in the blood has
been reported in diseases such as HIV-1 infection, bone
health, sepsis, burns, and malignant tumors.22–27 The
changes in the concentration and roles of different types
of tumors were not the same. Ourmodel used only NSCLC
patients treated with PD-1Ab combined with chemother-
apy. Metabolic biomarkers should be further evaluated
in patients receiving combination therapy using serum
metabolic panels to predict the clinical effects of combi-
nation immunotherapy in patients with all tumor types.
Some studies have reported that increasing the concentra-
tion of certain amino acids such as arginine,28 taurine,29
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F IGURE 6 Fold-change of L-phenylalanine reflects that treatment of chemotherapy combined with PD-1Ab efficacy in validation 2. (A)
Three-line tables and a statistical graph showing the proportion of responders (n = 15) and non-responders (n = 15) in each group higher or
lower than the cutoff value. (B) The tumor sizes provided under the images were evaluated by physicians. (C) Kaplan–Meier survival curves
stratified progression-free survival (PFS, left) and overall survival (OS, right) by change in patients.

glutamine,30 and others can improve the therapeutic effect
of ICB and the antitumor function of T cells. Our study
found that after combination therapy, the L-phenylalanine
levels of non-responders slightly increased, whereas those
of responders significantly decreased. This change in con-
centration was used as a prognostic indicator before the
tumor imaging changed during the treatment process. In
addition to identifying this metabolic biomarker, the study
also provides new insights into improving the effectiveness
of combination therapy. We propose a treatment strategy
that combines PD-1 blockade and intervention to improve
clinical efficacy.
L-phenylalanine is ingested into cells, and hydrogen

peroxide (H2O2) and phenyl ketone acids are produced
through the oxidative deamination of L-phenylalanine,
which inhibits T-cell proliferation and signaling pathway
damage.31,32 This may partially explain why serum L-
phenylalanine levels in the non-benefit group of patients
receiving combined immunotherapy increased further.
To our knowledge, this is the first large cohort study

to use metabolic biomarkers to indicate the clinical
response of NSCLC patients to chemotherapy combined
with immunotherapy. The discrimination model estab-
lished in this study provides a feasible and convenient
strategy for the personalized application of chemotherapy
combined with immunotherapy. The high accuracy of the
model established in our study in identifying the possibil-
ity of a therapeutic response ensures further development
of prospective clinical trials.

4 CONCLUSIONS

Our study demonstrated a serum metabolite prognos-
tic model for changes in L-phenylalanine concentrations
after chemotherapy combined with PD-1 treatment in
patients with NSCLC to assess the response. The model
was validated through retrospective and prospective anal-
yses, demonstrating its potential as an early indicator of
therapeutic outcomes.

5 MATERIALS ANDMETHODS

5.1 Study population

The clinical data of patients diagnosed with NSCLC by
postoperative/biopsy pathology from February 2019 to
June 2023 were collected at the First Affiliated Hospi-
tal of Zhengzhou University. The clinical data collection
and specimen collection processes for this project were
approved by the Zhengzhou University Life Science Ethics
ReviewCommittee. All patients providedwritten informed
consent [approval number: 2021-KY-1105-002].
Inclusion criteria: patients aged 18–65 years, not receiv-

ing PD-1 monoclonal antibody and other immunotherapy
before enrollment, no sensitive gene mutations, ECOG
score ≤2 points, all tumor tissue specimens confirmed by
pathological diagnosis as NSCLC. The chemotherapeutic
regimen consisted of pemetrexed plus platinum. The com-
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bination therapy regimen comprised antibodies against
PD-1, pemetrexed + platinum. Lung CT tomography was
performed before starting the treatment plan. Patientswith
an unclear pathological diagnosis, those lost to follow-up,
and those who withdrew from the PD-1 monoclonal anti-
body treatment owing to adverse reactions or side effects
were excluded.

5.2 Clinical data and follow-up

Clinical data include age, gender (female vs. male), clin-
ical stage (stage 1–2 vs. stage 3–4), ECOG score, PD-L1
expression (CPS standard), surgical history (yes/no), num-
ber of pre-treatment metastases, whether distant metas-
tasis (brain, pleura, bone) occurred, previous treatment
regimen, and line of treatment.
All patients underwent lung CT scans every 2 months

after treatment initiation. For patients with lymph node
metastasis, whole-body PET/CT was performed every
6 months to determine the presence of distant metastases.
Furthermore, postoperative follow-up included abdominal
ultrasonography, tumor markers, routine blood tests, and
blood biochemical tests. PFS is defined as the period from
the start of treatment to the time when the sum of tumor
diameters increases by at least 20% of its volume or when
new metastatic lesions appear. OS was defined as the time
from the beginning of treatment to the last follow-up or
death.

5.3 Non-targeted metabolomics analysis

The patient’s peripheral blood was obtained and cen-
trifuged at 400 × g for 10 min within 1 h. The upper serum
was collected, and stored in a −80◦C refrigerator. The
relative abundance of serum metabolites was determined
using liquid chromatography-mass spectrometry (LC-MS).
We performed a comprehensive and systematic identifica-
tion and analysis of endogenous metabolites in the serum
and carried out cluster analysis based on the qualitative
analysis results to identify the keymetabolites that differed
between the groups.

5.4 Elisa assay

L-phenylalanine levels were measured in serum samples.
The concentration of L-phenylalanine was assessed using
an ELISA kit (Abcam, ab241000) following the manu-
facturer’s instructions. In this assay, L-phenylalanine is
metabolized by the simultaneous formation of NADH,
which reacts with a probe to generate an absorbance

that can be monitored colorimetrically at 450 nm. The L-
phenylalanine concentration was calculated according to
the standard curve obtained using the kit.

5.5 Statistical analysis

We used the chi-square test to compare categorical vari-
ables such as age and sex; the results are presented as
absolute counts and three-line graphs. For continuous
variables in the non-targeted metabolomics results, we
used the orthogonal partial least squares discriminant
analysis (OPLS-DA) method to reduce dimensionality and
screen important variables. First, the categorical variables
were used for univariate logistic regression analysis, and
all factors with p-values less than 0.05 were included in
the multivariable stepwise analysis. We needed to identify
the factors that can affect patient outcomes and develop
models for these factors. To evaluate the accuracy and sen-
sitivity of the predictive model, a retrospective validation
was set 1. Subsequently, the predictive performance of the
model was compared with that of the radiological exami-
nation to evaluate the applicability of the clinicalmodel. In
prospective validation set 2, we used the highest threshold
of Youden’s index (the sum of specificity and sensitivity) to
divide the patients into high- and low-risk groups. Finally,
the PFS and OS of the two patient groups were verified
using Kaplan–Meier (KM) curves. All analyses were per-
formed using Prism 8.0, SPSS, and R software (survival and
pROC).
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