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Abstract: We synthesized a series of polystyrene derivatives modified with precursors of liquid
crystal (LC) molecules via polymer modification reactions. Thereafter, the orientation of the LC
molecules on the polymer films, which possess part of the corresponding LC molecular structure,
was investigated systematically. The precursors and the corresponding derivatives used in this study
include ethyl-p-hydroxybenzoate (homopolymer P2BO and copolymer P2BO#, where # indicates
the molar fraction of ethylbenzoate-p-oxymethyl in the side chain (# = 20, 40, 60, and 80)), n-butyl-
p-hydroxybenzoate (P4BO), n-hexyl-p-hydroxybenzoate (P6BO), and n-octyl-p-hydroxybenzoate
(P8BO). A stable and uniform vertical orientation of LC molecules was observed in LC cells fabricated
with P2BO#, with 40 mol% or more ethylbenzoate-p-oxymethyl side groups. In addition, the LC
molecules were oriented vertically in LC cells fabricated with homopolymers of P2BO, P4BO, P6BO,
and P8BO. The water contact angle on the polymer films can be associated with the vertical orientation
of the LC molecules in the LC cells fabricated with the polymer films. For example, vertical LC
orientation was observed when the water contact angle of the polymer films was greater than ~86◦.
Good orientation stability was observed at 150 ◦C and with 20 J/cm2 of UV irradiation for LC cells
fabricated with the P2BO film.

Keywords: anisotropic material; liquid crystal; orientation layer; polystyrene; n-alkyl-p-hydroxybenzoate

1. Introduction

Liquid crystals (LCs) are attractive materials, which have intermediate phase between
ordinary liquids and three-dimensional solids. The LC molecules, which are anisotropic
materials, play an imperative role in materials science when it comes to investigate the
correlation between chemical structure and physicochemical properties. In addition, the
LC molecules can be used in numerous applications owing to their extraordinary physico-
chemical properties, such as dielectric anisotropy, optical anisotropy, and susceptibility to
external electric field and/or magnetic fields [1]. It is important to orient the LC molecules
in one direction, which plays an imperative role in the industrial applications as well as
scientific research [2–9]. The most well-known example of these efforts is the development
of the liquid crystal display (LCD), which involves an orientation layer, and is widely used
in portable display devices such as smartphones [10,11]. It has been found that liquid crys-
tal (LC) molecules can be oriented by the anisotropic characteristics of a substrate surface
via numerous contact and noncontact methods, such as mechanical rubbing, stretching,
lithography, polarized ultraviolet (UV) radiation, and ion beam treatment [12–19]. Due
to its simplicity and rapidity, the mechanical rubbing of polymeric surfaces is the most
commonly used contact method for controlling not only the orientation direction, but also
the pretilt angle of the LC molecules [20,21]. Films of polyimide derivatives have been
widely employed as LC orientation layers using the rubbing technique because the polymer
films provide considerable stability for the LC orientation [22–26]. However, the rubbing
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process can result in unexpected problems, such as dust generation, physical damage, and
electrostatic charge on the orientation layer surfaces [27–29]. Thus, noncontact methods
to orientate the LC molecules have been investigated to overcome the drawbacks of the
rubbing method. Photoalignment has been proposed as a promising noncontact orientation
technology for next-generation LC display applications, such as flexible displays, because
it has the advantages of cleanliness, lack of restrictions with respect to surface morphology,
and suitability for large glass substrates. Numerous polymers, including a variety of pho-
toreactive functional groups that can undergo photoisomerization, photodimerization, and
photodegradation, have been studied as photoalignment layers [30–32]. The orientation of
the LC molecules between two substrates can be classified into two groups according to the
degree of variation from the LC director in the cells. For example, LC molecules in planar,
tilted, and vertically oriented LCs preferably align in one direction; however, molecules in
splay, twist, bend, and hybrid LCs are not aligned in one direction [33]. Conventional dis-
play panel technologies, such as the twisted nematic mode, which have been generally used
for LCDs, have the disadvantages of a narrow viewing angle and low contrast ratio [34,35].
Therefore, other modes with wide viewing angles and high contrast ratios, including the
in-plane switching (IPS) mode, fringe-field switching (FFS) mode, and vertical alignment
(VA) modes have been developed [36–38]. Among these modes, the VA mode has an
especially high contrast ratio owing to minimal retardation [39–41]. Additionally, nematic
LCs, wherein the director is oriented vertically to the surface of the substrate, have been
studied for sensor applications because of their susceptibility to small perturbations and
any binding events [42–45], which can be observed not only with the naked eye but also
with optical techniques such as polarized optical microscopy (POM) [46,47]. The vertical
orientation of LC molecules can be determined using the relationship between the surface
tension of the liquid crystalline material (γlc) and the surface energy of the orientation
layer (γs) according to the Friedel–Creagh–Kmetz experimental rule [48–50]. For example,
liquid crystalline materials can be oriented vertically on the substrate surface when γlc > γs.
Polyimides (PIs) with side chains, such as long alkyl groups, have been studied in order to
achieve the vertical orientation of LC molecules. However, the post-baking and cleaning
temperatures required to prepare the orientation layer from PI derivatives are too high
for the manufacture of flexible plastic products [51–53]. Recently, vertically oriented LC
layers using polystyrene (PS) derivatives synthesized via a polymer substitution reaction
have been developed for electro-optical applications, including flexible displays, owing
to their advantages of low temperature processability and superior optical transparency.
PS derivatives, grafted with natural extracts, long alkyl groups, or fluoroalkyl groups,
have been developed to orient LC molecules vertically on substrates using noncontact
methods. For example, the vertical orientation of LC molecules in LC cells fabricated with
PS derivatives substituted with natural extracts, such as capsaicin, eugenol, and vanillin,
was observed when the substituent ratio was greater than 60 mol%. This is due to the long
alkyl groups of the natural extracts, which are related to the low surface energy owing to
the steric effect of the alkyl groups on the polymer film surface [54–57].

In this study, we synthesized a series of PS derivatives with n-alkylbenzoate-p-
oxymethyl side groups in order to systematically investigate the LC behavior of the orien-
tation layer fabricated with PS derivatives structurally similar to LC molecules. The LC
molecules were vertically oriented in the LC cells fabricated with these polymer films when
the substituent ratio was only 40 mol%. These results indicate that similarities between
the chemical structure of the orientation layer and the LC molecules are favorable for the
vertical orientation of LC molecules. The synthesis and characterization of these polymers
as well as the optical properties of the assembled LC cells with unrubbed polymer films
were studied.
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2. Materials and Methods
2.1. Materials

4-Chloromethylstyrene, 4′-pentyl-4-biphenylcarbonitrile (5CB, ne = 1.7360, no = 1.5442,
and ∆ε = 14.5, where ne, no, and ∆ε represent the extraordinary refractive index, ordinary
refractive index, and dielectric anisotropy, respectively) and silica gel were purchased
from Merck Co. (Seoul, Korea). Benzophenone, sodium, and hexane were purchased from
Aldrich Co. (Seoul, Korea). Ethyl-p-hydroxybenzoate, n-butyl-p-hydroxybenzoate, n-hexyl-
p-hydroxybenzoate, and n-octyl-p-hydroxybenzoate were obtained from the Tokyo Chemi-
cal Industry Co. (Tokyo, Japan). Potassium carbonate, 2,2′-azobisisobutyronitrile (AIBN),
tetrahydrofuran (THF), molecular sieves (4 Å), and N,N′-dimethylacetamide (DMAc) were
acquired from Daejung Chemicals & Metals Co. (Siheung, Korea). Methanol was supplied
by SK Chemical Co. (Ulsan, Korea). DMAc and ethanol were dried over molecular sieves.
THF was dried by refluxing with benzophenone and sodium, followed by distillation. 4-
Chloromethylstyrene was purified by column chromatography with silica gel using hexane
as an eluent to remove any impurities and inhibitors (tert-butylcatechol and nitroparaffin).
AIBN was purified by crystallization using methanol. Poly(4-chloromethylstyrene) (PCMS)
was synthesized through conventional free radical polymerization of 4-chloromethylstyrene
using AIBN under a nitrogen atmosphere. The mixture was cooled to room temperature
and poured into methanol to obtain a white precipitate. The precipitate was further pu-
rified by Soxhlet extraction using boiling methanol to remove the remaining monomer
(4-chloromethylstyrene) and low-molecular-weight PCMS. AIBN was used as an initiator.
All other reagents and solvents were used as received.

1H NMR of PCMS (400 MHz, CDCl3, δ/ppm): δ = 1.01–1.88 (–CH2–CH–Ph–, 3H),
δ = 4.13–4.77 (–Ph–CH2–Cl, 2H), δ = 6.00–7.22 (CH2–CH–PhH–CH2–, 4H).

2.2. Preparation of n-alkylbenzoate-p-oxymethyl Modified Polystyrene

The following procedure was used to synthesize all n-alkylbenzoate-p-oxymethyl-
substituted polystyrenes (PABOs), where the alkyl group was –COO–(CH2)nH (2, 4, 6, and
8). The synthesis of ethylbenzoate-p-oxymethyl-substituted polystyrene (P2BO) is provided
as an example. A mixture of PCMS (0.300 g, 1.97 mmol), ethyl-p-hydroxybenzoate (0.492 g,
2.96 mmol, 150 mol% compared with PCMS), and potassium carbonate (0.491 g, 3.55 mmol,
120 mol% compared with ethyl-p-hydroxybenzoate used substituent) in DMAc (50 mL)
was heated to 70 ◦C and magnetically stirred at 200 rpm under a nitrogen atmosphere. The
substitution reaction lasted for 24 h. Thereafter, the solution mixture was cooled to room
temperature and poured into methanol to obtain a white precipitate. The precipitate was
further purified by several reprecipitations from DMAc solution into methanol, and then a
Soxhlet extractor was used to remove potassium carbonate and the remaining salts with
boiling methanol. P2BO was obtained in >80% yield after drying under vacuum overnight.

1H NMR of P2BO (400 MHz, CDCl3, δ/ppm): δ = 0.98–2.38 (–CH2–CH–Ph–CH2–,
–COO–CH2–CH3, 6H), δ = 4.13–4.49 (–Ph–COO–CH2–CH3, 2H), δ = 4.72–5.12 (–Ph–CH2–O–
Ph–, 2H), δ = 6.09–8.13 (–CH2–CH–PhH–CH2–O–PhH–COO–, 8H).

Similarly, n-butylbenzoate-p-oxymethyl (P4BO, n = 4), n-hexylbenzoate-p-oxymethyl
(P6BO, n = 6), and n-octylbenzoate-p-oxymethyl-substituted polystyrene (P8BO, n = 8) were
synthesized using the same procedure, except that n-butyl-p-hydroxybenzoate (0.575 g,
2.96 mmol, 150 mol% compared with PCMS), n-hexyl-p-hydroxybenzoate (0.658 g, 2.96 mmol,
150 mol% compared with PCMS), and n-octyl-p-hydroxybenzoate (0.741 g, 2.96 mmol,
150 mol% compared with PCMS) were used instead of ethyl-p-hydroxybenzoate. The syn-
thesis process of each homopolymer is described in detail in the Supplementary Materials.

1H NMR of P4BO (400 MHz, CDCl3, δ/ppm): δ = 0.86–1.81 (–CH2–CH–Ph–CH2–,
–COO–CH2–(CH2)2–CH3, 10H), δ = 4.17–4.39 (–Ph–COO–CH2–CH2–, 2H), δ = 4.70–5.06
(–Ph–CH2–O–Ph–, 2H), δ = 6.09–8.11 (–CH2–CH–PhH–CH2–O–PhH–COO–, 8H).

1H NMR of P6BO (400 MHz, CDCl3, δ/ppm): δ = 0.76–1.87 (–CH2–CH–Ph–CH2–,
–COO–CH2–(CH2)4–CH3, 14H), δ = 4.12–4.34 (–Ph–COO–CH2–CH2–, 2H), δ = 4.67–5.06
(–Ph–CH2–O–Ph–, 2H), δ = 5.99–8.14 (–CH2–CH–PhH–CH2–O–PhH–COO–, 8H).
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1H NMR of P8BO (400 MHz, CDCl3, δ/ppm): δ = 0.77–1.78 (–CH2–CH–Ph–CH2–,
–COO–CH2–(CH2)6–CH3, 18H), δ = 4.16–4.33 (–Ph–COO–CH2–CH2–, 2H), δ = 4.74–5.03
(–Ph–CH2–O–Ph–, 2H), δ = 5.95–8.18 (–CH2–CH–PhH–CH2–O–PhH–COO–, 8H).

The copolymer of P2BO, designated P2BO#, where # denotes the degree (mol%) of
substitution of chloromethyl to the ethylbenzoate-p-oxymethyl group, was prepared using
the same procedure as that for P2BO, except that <150 mol% of ethyl-p-hydroxybenzoate
was used. P2BO20, P2BO40, P2BO60, and P2BO80 were prepared with 0.065 g (0.39 mmol),
0.131 g (0.79 mmol), 0.196 g (1.18 mmol), and 0.263 g (1.58 mmol) of ethyl-p-hydroxybenzoate,
respectively, using excess quantities of potassium carbonate (120 mol% compared with
ethyl-p-hydroxybenzoate). The synthesis process of each copolymer is described in detail
in the Supplementary Materials.

2.3. Film Preparation and LC Cell Assembly

Solutions of P2BO#, PABO (P2BO, P4BO, P6BO, and P8BO) in THF (1 wt%) were
filtered using a poly(tetrafluoroethylene) membrane with a pore size of 0.45 µm. Then, thin
polymer films were prepared by spin-coating (2000 rpm, 60 s) onto 2.0 cm × 2.5 cm glass
substrates using the 1 wt% THF solution of P2BO#, PABO (P2BO, P4BO, P6BO, and P8BO).
LC cells were fabricated by assembling two polymeric layers onto two glass substrates
using spacers with thicknesses of 4.25 µm. The physicochemical properties of 4-pentyl-
4-cyanobiphenyl (5CB), such as surface tension, have been documented in numerous
studies because of their accessible nematic temperature range (near room temperature),
high positive dielectric anisotropy, and remarkable chemical stability. Therefore, 5CB was
selected to fabricate the LC cells to investigate the correlation between the orientation layer
and LC molecules via physicochemical interactions [58–61]. The cells were filled with
nematic LCs (5CB). The manufactured LC cells were sealed using an epoxy glue.

2.4. Instrumentation
1H-nuclear magnetic resonance (NMR) spectroscopy using an MR400 DD2 (Agilent

Technologies, Inc., Santa Clara, CA, USA), differential scanning calorimetry (DSC) using
a Q-10 (TA Instruments, Inc., New Castle, DE, USA), and POM images of LC cells using
a Nikon Eclipse E600 POL (NIKON, Inc., Tokyo, Japan) equipped with a polarizer and a
Nikon Coolpix 995 digital camera (NIKON, Inc., Tokyo, Japan) were employed to charac-
terize the synthesized materials. The static contact angles of water on the polymer films
were determined using a KRÜSS DSA10 (KRÜSS Scientific Instruments Inc., Hamburg,
Germany) contact angle analyzer equipped with drop shape analysis software (KRÜSS
Scientific Instruments Inc., Hamburg, Germany). The contact angles for each sample were
measured more than four times on three independently prepared films, and the average
values were used. UV stability tests were conducted on the LC cells using a VL-6.LC
lamp (λmax = 365 nm, Vilber Lourmat, Paris, France) to investigate the effects of a severe
environment. The exposure dose of UV irradiation on the LC cells was measured with a
UV detector using a GT-513 (Giltron, Seoul, Korea).

3. Results and Discussion

The synthetic routes used to prepare the PABO (P2BO, P4BO, P6BO, and P8BO) and
P2BO# copolymers (P2BO20, P2BO40, P2BO60, and P2BO80) are shown in Figure 1. It has
been reported that a conversion rate of a substitution reaction can decrease as the degree of
replacement increases [62]. However, the conversion ratios in this substitution reaction of
the chlorine atom in PCMS by nucleophilic compounds, such as phenolate compounds,
have been observed to approximately agree with each feeding ratio of substituent according
to previous studies [63,64]. The acidity of phenolic compounds can be enhanced by electron-
withdrawing substituents group in ortho or para position to the hydroxyl group [65,66].
The phenol group of the n-alkyl-p-hydroxybenzoate can be readily dissociated to the proton
and the phenolate anion, which is a strong nucleophile, because the structure of phenolate
anion can be stabilized by resonance structures. In addition, the benzylic carbon in PCMS



Polymers 2021, 13, 2058 5 of 13

is relatively electron-deficient, because of the electron-withdrawing groups, namely the
chlorine and phenyl groups, which are attached directly to the carbon [67]. Moreover, the
structure of the transition state in this substitution reaction can be stabilized by conjugation
with the benzene ring. Therefore, the high conversion rate in this polymer modification
reaction can be explained not only by the electrophilicity of benzylic carbon in PCMS, but
also the chemical structure stability of the phenolate anion as a nucleophile.
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Figure 1. Synthetic route to ethylbenzoate-p-oxymethyl (P2BO# and P2BO, n = 2), n-butylbenzoate-
p-oxymethyl (P4BO, n = 4), n-hexylbenzoate-p-oxymethyl (P6BO, n = 6), and n-octylbenzoate-p-
oxymethyl-substituted polystyrene derivatives (P8BO, n = 8), where # represents the molar fraction
of ethyl-p-hydroxybenzoate containing monomeric units in the polymer.

Copolymers with different substitution ratios (mol%) were obtained by varying the
molar ratio of ethyl-p-hydroxybenzoate in the reaction mixture. Almost 100% conversion
of chloromethyl to oxymethyl was achieved when 150 mol% of ethyl-p-hydroxybenzoate,
n-butyl-p-hydroxybenzoate, n-hexyl-p-hydroxybenzoate, and n-octyl-p-hydroxybenzoate
were reacted with PCMS at 70 ◦C for 24 h. Figure 2 shows the 1H NMR spectra of P2BO as
an example. The chemical composition of the monomeric units in the obtained polymers
was confirmed using 1H NMR spectroscopy. The 1H NMR spectrum and assignment of
the P2BO peaks are shown in Figure 2. The 1H NMR spectrum of P2BO indicates the
presence of protons from the P2BO derivatives (δ/ppm = 0.98–2.38 (6H), 4.13–4.49 (2H),
4.72–5.12 (2H), 6.09–8.13 (8H); peaks a, b, c, and d). The degree of substitution from
chloromethyl to oxymethyl was calculated to be approximately 100% by comparing the
integrated area of the oxymethyl peak in the 4.72–5.12 ppm range and the phenyl group
peaks in the 6.09–8.13 ppm range. The 1H spectra of the other polymers, including PCMS,
PABO and P2BO#, are shown in Figures S1–S8. The integrations and calculations for
P2BO# and PABO were performed, and the results were typically within ±10% of the
expected values. Considerable challenges still exist to the exactitude of the quantification,
even though quantitative NMR measurements have often been proven to be robust and
reproducible. The sizes of NMR signals, which were produced from the same source,
can be variable under different conditions, such as sample composition, excitation purse
angle, NMR tube size, sample volume, and other experimental and geometrical parameters.
The substitution ratios of each polymer calculated from 1H NMR spectrum should be
interpreted in consideration of possibility of errors in integral values [68]. In addition,
13C NMR spectroscopy was used to examine the chemical structure of the polymers,
respectively. Each of the spectra is shown in Figures S9–S17. These polymers were soluble
in medium-polarity solvents with low boiling points, such as THF and chloroform, and in
aprotic polar solvents, including N,N′-dimethylformamide and DMAc. The solubility of the
polymer samples in various solvents was sufficient for the application of P2BO# and PABO
as thin-film materials. Among the organic solvents, THF was chosen as the coating solvent



Polymers 2021, 13, 2058 6 of 13

for thin-film fabrication because of its low eco-toxicity and good biodegradability [69].
In addition, these polymer thin films can be fabricated at a low temperature using a wet
process, owing to their good solubility in volatile organic solvents.
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The thermal properties of the polymers were studied using DSC at a heating and
cooling rate of 10 ◦C/min under a nitrogen atmosphere. All polymers were amorphous, and
only one glass transition temperature was determined from the extrapolated intersection
of the asymptotes for the glassy and rubbery regions for enthalpy (Figure 3) [70,71]. It
has been demonstrated that the Tg values of polymers can be increased by manipulating
the polarity of the side group and that the values can be increased or decreased with an
increase in side group bulkiness [72,73]. As the molar content of the n-alkylbenzoate-p-
oxymethyl side group increased from 20 mol% to 100 mol%, the Tg value decreased from
110.6 ◦C for P2BO20 to 70.3 ◦C for P2BO. In addition, as the number of carbon atoms in
the alkyl moiety of the n-alkylbenzoate-p-oxymethyl side group increased from 2 to 8, the
Tg value decreased from 70.3 ◦C for P2BO to 19.5 ◦C for P8BO (Table 1). These results
can be interpreted as an increase in the free volume of the polymers, which is influenced
by the grafting of the n-alkylbenzoate-p-oxymethyl side group. Intermolecular and/or
intersegmental interactions of the polymers are weaker with increasing distance between
the polymer chain segments, which can lead to a decrease in Tg.
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Table 1. Reaction conditions and results for the synthesis of the P2BO# and PABO (P2BO, P4BO,
P6BO, and P8BO).

Polymer
Designation

Feed Ratio of
n-alkyl-p-hydroxybenzoate

(mol%)

Degree of Substitution
(mol%, ±10%)

Tg
(◦C)

P2BO20 20 20 110.6
P2BO40 40 40 89.2
P2BO60 60 60 74.4
P2BO80 80 80 71.9

P2BO 150 100 70.3
P4BO 150 100 43.9
P6BO 150 100 28.5
P8BO 150 100 19.5

Owing to the interactions between the LC molecules and the orientation layer, the
molecular orientation of LC molecules can be induced by the chemical composition of the
latter [74,75]. The polymer having even-number alkyl side chains can be preferrable as
vertical orientation layer for liquid crystal than the orientation layer with odd-number
methylene groups in the side chains [76,77]. Therefore, LC cells made from films of
PS derivatives, substituted with precursors of LC molecules with an even number of
methylene groups, such as ethylbenzoate-p-oxymethyl, n-butylbenzoate-p-oxymethyl, n-
hexylbenzoate-p-oxymethyl, and n-octylbenzoate-p-oxymethyl in the side chain, were
fabricated using 5CB in order to investigate the orientation behavior of the LC molecules
on polymer films with LC-like moieties. Figure 4a shows a photograph of the LC cells
fabricated with the PABO films, including P2BO, P4BO, P6BO, and P8BO. These LC
cells showed uniform vertical LC orientation behavior over the entire area under two
crossed polarizers. POM images of the LC cells were obtained in the orthoscopic (top)
and conoscopic (bottom) modes (Figure 4b) to systematically investigate the orientation
of the LC molecules. The LC cells were vertically oriented and exhibited a Maltese cross
pattern in the conoscopic POM images. In addition, the LC cells assembled with the PABO
films exhibited orientation stability over several months. The vertical orientation of the
LC molecules may be influenced by the similarity of the molecular structures between the
orientation layer and the LC molecules.
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We also observed the orientation behavior of the LC molecules in P2BO# cells using
5CB to investigate the effect of the molar content of the ethylbenzoate-p-oxymethyl side
group in the polymer. Figure 5a shows photographs of the LC cells made from P2BO#
and P2BO films. The P2BO20 LC cells exhibited LC textures with birefringence, while
uniform vertical LC orientation was observed for P2BO40, P2BO60, P2BO80, and P2BO
over the entire area. Moreover, the LC orientation behavior of the LC cells fabricated with
the P2BO# and P2BO films was investigated by observing their POM images for a more
accurate analysis (Figure 5b). A random planar or a partial vertical LC orientation was
observed in the LC cells fabricated using the P2BO20 film. However, P2BO# with 40 mol%
or more of ethylbenzoate-p-oxymethyl side groups (P2BO40, P2BO60, and P2BO80) and
P2BO films produced stable vertical LC orientation, as shown by the dark orthoscopic
images and the Maltese cross patterns observed in the conoscopic images. The Maltese cross
patterns in the conoscopic POM images of the P2BO40, P2BO60, P2BO80, and P2BO films
indicate that there are no discernible differences in the LC orientation of polymers with
different molar fractions of ethylbenzoate-p-oxymethyl in their side groups. The vertical
orientation of the LC cells was observed for P2BO40, which contained only 40 mol%
ethylbenzoate-p-oxymethyl groups. This result suggests that high similarity between the
molecular structure of the LCs and the alignment layer assists with the vertical orientation
of the LC molecules.
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Figure 5. (a) Photograph, (b) orthoscopic (top) and conoscopic (bottom) polarized optical microscopy
(POM) images of the LC cells fabricated with P2BO# (P2BO20, P2BO40, P2BO60, and P2BO80)
and P2BO.

An understanding of the relationship between the orientation behavior of LC molecules
and the surface properties of polymer films is important for the application of LCs in sev-
eral fields. It is known that LC molecules can be oriented vertically on the substrate
surface when the surface energy of the substrate is smaller than the surface tension of the
LC [78–80]. It is well known that the low surface energy of polymer films, hydrophobicity
of the surface, and low wettability can result in high contact angles for water on polymer
films [81–83]. Therefore, the static contact angle of water on the P2BO# and PABO films
was measured to investigate the effect of wettability on the LC orientation (Table 2 and
Figure 6). Vertical orientation was observed for the LC molecules on P2BO40, P2BO60,
P2BO80, P2BO, P4BO, P6BO, and P8BO films. The contact angles of water on the polymer
films were 86◦, 87◦, 89◦, 90◦, 91◦, 92◦, and 93◦, respectively. However, the LC cells fabri-
cated with P2BO20, which had a water contact angle of 81◦, did not reveal uniform vertical
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LC orientation behavior. Therefore, the vertical LC orientation behavior could be ascribed
to the hydrophobic character of the polymer film, such as when the water contact angle is
greater than approximately 86◦.

Table 2. Water contact angle and LC alignment behavior of the polymer films.

Polymer
Designation Water Contact Angle (◦) a Vertical LC Aligning Ability b

P2BO20 81 X
P2BO40 86 O
P2BO60 87 O
P2BO80 89 O

P2BO 90 O
P4BO 91 O
P6BO 92 O
P8BO 93 O

a Measured from static contact angles. b O: Uniform vertical LC alignment, X: Planar LC alignment.
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It was considered appropriate to use chemically inert homopolymers (PABO) to
fabricate the LC devices because of the chemical reactivity of the chloromethyl group in
the copolymer (P2BO#). Among the series of prepared polymers, P2BO was chosen as a
promising material to orient the LC molecules, as it showed stable bulk thermal properties,
confirmed by high Tg values, and satisfactory hydrophobicity to allow the fabrication
of LC cells by the capillary method. Therefore, the reliability evaluation of the LC cells
fabricated with P2BO was conducted under harsh conditions, such as high temperatures
and UV irradiation, in order to substantiate the LC orientation stability. Figure 7 shows
the thermal stability behavior of the LC cells fabricated using P2BO films estimated from
conoscopic POM images after heating for 10 min at temperatures of 100, 150, and 200 ◦C.
The POM images of the LC cells fabricated with the polymer film indicate that the vertical
LC orientation was maintained for 10 min at 150 ◦C, which is therefore the maximum
processing temperature of this polymer for LC cell applications. In addition, the UV
stabilities of the LC cells fabricated with the P2BO film were estimated from conoscopic
POM images. Conoscopic POM images of the LC cells were captured after UV irradiation
at 5, 10, and 20 J/cm2. As shown in Figure 7, no discernible differences in the vertical LC
orientation on the P2BO film were observed in the conoscopic POM images, indicating that
the vertical LC alignment of the LC cells was maintained even under high UV irradiation.
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4. Conclusions

A copolymer series of ethylbenzoate-p-oxymethyl-substituted polystyrenes (P2BO#
and homopolymer n-alkylbenzoate-p-oxymethyl-substituted polystyrenes (P2BO, P4BO,
P6BO, and P8BO) were synthesized to evaluate the LC orientation behavior of polymer
films. Vertical LC orientation behavior was observed for the LC cells made from polymers
with a higher molar content of ethylbenzoate-p-oxymethyl side groups. For example, the
LC cells fabricated with polymers with 40 mol% or more of ethylbenzoate-p-oxymethyl
(P2BO40, P2BO60, P2BO80, and P2BO) side groups exhibited vertical LC orientation,
while the LC cells fabricated from P2BO films with less than 20 mol% of ethylbenzoate-p-
oxymethyl side groups revealed partial LC textures with birefringence. Vertical orientation
was observed for the LC molecules in cells fabricated from polymer films, despite the
short side chain length of P2BO and the low substitution ratio of approximately 40 mol%.
These results suggest that similarity between the chemical structure of the orientation layer
and LC molcules can be beneficial for achieving vertical orientation in LC molecules. The
vertical LC orientation behavior correlated well, and the polymer films had a water contact
angle larger than approximately 86◦, owing to the unique structure of the n-alkylbenzoate-
p-oxymethyl side chain. These polymer series can dissolve, readily, in medium-polarity
solvents with low boiling points, such as tetrahydrofuran or chloroform. In addition,
high temperature treatment for the baking process stage of the film fabrication is not
demanded at all, as opposed to a conventional orientation layer made from polyimide
derivatives. Therefore, we believe that the PABO polymer series are potential candidates
for an LC orientation layer for next-generation applications with low temperatures based
on wet processes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13132058/s1. Preparation of n-alkylbenzoate-p-oxymethyl modified polystyrenes;
Figures S1–S8: 1H nuclear magnetic resonance (NMR) spectra of PCMS, P2BO20, P2BO40, P2BO60,
P2BO80, P4BO, P6BO, and P8BO; Figures S9–S17: 13C NMR spectra of PCMS, P2BO20, P2BO40,
P2BO60, P2BO80, P2BO, P4BO, P6BO, and P8BO.s
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