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Evaluation of the antinociceptive 
activities of enaminone compounds 
on the formalin and hot plate tests 
in mice
Willias Masocha1, Samuel B. Kombian1 & Ivan O. Edafiogho2

Recently, we found that methyl 4-(4′-bromophenyl)aminocyclohex-3-en-6-methyl-2-oxo-1-oate 
(E139), an anticonvulsant enaminone, has antinociceptive activity in the hot plate test. In this study we 
evaluated the antinociceptive activity of five anilino enaminones E139, ethyl 4-(4′-chlorophenyl)amino-
6-methyl-2-oxocyclohex-3-en-1-oate (E121), ethyl 4-(4′-bromophenyl)amino-6-methyl-2-oxocyclohex-
3-en-1-oate (E122), methyl 4-(4′-chlorophenyl)amino-6-methyl-2-oxocyclohex-3-en-1-oate (E138) 
and ethyl 4-(4′-fluorophenyl)amino-6-methyl-2-oxocyclohex-3-en-1-oate (BRG 19) using the formalin 
and hot plate tests. E139 has been reported to exert its effects via enhancement of extracellular 
GABA levels, thus tiagabine, a GABA transporter inhibitor, was evaluated as a control together with 
indomethacin. Tiagabine had antinociceptive activity in both phase 1 (neurogenic pain) and phase 2 
(inflammatory pain) of the formalin test, whereas indomethacin had activity only in phase 2. E139 and 
E138 had antinociceptive activity in both phases of the formalin test, whereas E121 had activity only 
in phase 1 and BRG 19 had activity only in phase 2. E122 had no significant activity in either phase. In 
the hot plate test only E139 had antinociceptive activity. Administration of either bicuculline, a GABAA 
receptor antagonist, or CGP 35348, a GABAB receptor antagonist, blocked the antinociceptive activity 
of E139. In conclusion our results indicate that E139 has antinociceptive activity in the formalin and hot 
plate tests that are dependent on GABA receptors.

Enaminones are enamines of β -dicarbonyl compounds, whose chemistry and activities in models of diseases 
or disorders, principally seizures, have been reviewed before1–3. Enamines are unstable in aqueous solutions 
whereas, enaminones are chemically stable. Enaminones are formed by a reaction between a primary amine and 
a β-dicarbonyl compound. They have been used as intermediates or building blocks in synthetic and medicinal 
chemistry1–3 but they also have biological activities. One of the early studies published as an abstract reported 
analgesic, papaverine-like, and anticonvulsant activities of an enaminone compound4. Another early study 
investigated the hypoglycaemic activities of enaminone compounds and found that they had no hypoglycae-
mic activity5. However, several studies have shown positive results when the anticonvulsant activity of enami-
nones were investigated1,6–9. The anilino enaminones have been reported to have anticonvulsant activity with 
minimal adverse effects in in vitro and in vivo studies7,9–12. The anilino enaminone methyl 4-(4′ -bromophenyl)
aminocyclohex-3-en-6-methyl-2-oxo-1-oate (E139) has been utilised to study the mechanism of action of anti-
convulsant enaminones. The anticonvulsant effects of E139 have been attributed to suppression of tetrodotoxin 
(TTX)-sensitive sodium channels, enhancement of extracellular γ -aminobutyric acid (GABA) levels, activation 
of α 2-adrenoceptors and reversible suppression of glutamate-mediated excitatory postsynaptic currents1,7,13. 
Other enaminone congeners have also been shown to enhance GABAA receptor mediated responses by acting as 
positive allosteric modulators14.

We recently evaluated the activity of E139 in rodent models of paclitaxel-induced neuropathic pain15, taking 
into consideration that all the above molecules modulated by E139 have been shown to be involved in the patho-
genesis or are useful for the alleviation of neuropathic pain16–23. E139 attenuated paclitaxel-induced neuropathic 
pain in mice and rats. Moreover, it had antinociceptive activity in naïve mice, in the hot plate test15. This suggested 
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that enaminones might be a new class of analgesics, which will be an important addition taking into consideration 
that there are various types of pain not sufficiently managed with the currently available analgesics. However, 
there are no reports of studies on the antinociceptive effects of other enaminones. Thus, the objective of this study 
was to screen a series of enaminones with known effects on neural tissue and mechanism of action on a pain 
model to determine if some analogues have potential utility in managing pain. We evaluated the antinociceptive 
effects of five enaminone compounds in mice using the formalin and hot plate tests. The formalin test is used to 
evaluate persistent nociception caused by peripheral tissue injury and inflammation and is considered as one of 
the most valid models of clinical acute pain24,25 and used for evaluation of analgesic activity of potential analgesic 
compounds26–28.

Results
Chemistry.  The chemical structures of the five enaminone compounds (BRG19, E121, E122, E138 and E139) 
were completely characterized by spectral and elemental analysis. The chemical structures and C log P data for 
the five enaminones are shown in Table 1.

Effects of indomethacin, tiagabine and enaminones in the formalin test.  The effects of indo-
methacin, in the formalin-induced nociception were evaluated as a positive control for a drug with effects on 
inflammatory nociception and those of tiagabine were evaluated because it increases extracellular levels of GABA 
in the brain, one of the mechanisms of action of some anticonvulsant enaminones such as E1397. Indomethacin is 
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Table 1.   Structures of evaluated enaminones, C log P values,  inhibition of flinches by enaminones in the 
formalin test and antinociceptive effect in the hot plate test after 1.5 h at most effective dose.
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a nonsteroidal anti-inflammatory drug (NSAID), which has been shown to inhibit only the inflammatory phase 
(phase 2) of the formalin test26. On the other hand, tiagabine has been reported to inhibit both phases (phase 
1 and 2) of the formalin test29. The administration of indomethacin 10 and 40 mg/kg had no significant effect 
on the phase 1 cumulative flinches in the formalin test (p >  0.05) but significantly reduced phase 2 cumulative 
flinches from 635 ±  62 to 412 ±  91 and 361 ±  69, respectively (p <  0.05 for both doses; n =  9 for indomethacin 
10 mg/kg and 10 for indomethacin 40 mg/kg; Fig. 1A,B). The reductions in phase 2 cumulative flinches caused by 
indomethacin 10 and 40 mg/kg were 35% and 43%, respectively. The administration of tiagabine 5 and 10 mg/kg 
significantly reduced both phase 1 and 2 cumulative flinches from 252 ±  16 to 157 ±  36 and 635 ±  62 to 243 ±  65, 
respectively for 5 mg/kg (p <  0.05 and p <  0.01, respectively; n =  9) and from 252 ±  16 to 157 ±  18 and 635 ±  62 
to 239 ±  65, respectively for 10 mg/kg (p <  0.01 for both phases, respectively; n =  8); Fig. 1C,D). Both doses of 
tiagabine (5 and 10 mg/kg) reduced the cumulative flinches in phase 1 and phase 2 by, 38% and 62%, respectively.

The administration of E139 significantly reduced both phase 1 and 2 cumulative flinches. Only 15 mg/kg of 
E139 significantly reduced phase 1 cumulative flinches from 266 ±  19 to 196 ±  23 (p <  0.05), whereas the lower 
doses did not (p >  0.05, n =  16–23; Fig. 2A,B). On the other hand 10 mg/kg of E139 significantly reduced phase 2 
cumulative flinches from 496 ±  52 to 288 ±  42, respectively (p <  0.05), whereas the other doses, did not (p >  0.05, 
n =  16–23; Fig. 2A,B). The reduction in phase 1 cumulative flinches caused by E139 15 mg/kg was 27%, whereas 
that produced by 10 mg/kg in phase 2 was 42%.

The administration of E121 significantly reduced only phase 1 cumulative flinches. Two doses of E121 (5 and 
10 mg/kg) used significantly reduced phase 1 cumulative flinches from 288 ±  22 to 193 ±  25 and 199 ±  18, respec-
tively (p <  0.05 for all doses; n =  8–9). The percent reductions in phase 1 cumulative flinches caused by E121 5 
and 10 mg/kg were 33% and 31%, respectively.

The administration of E138 significantly reduced both phase 1 and 2 cumulative flinches. Two doses 2.5 and 
15 mg/kg of E138 significantly reduced phase 1 cumulative flinches from 316 ±  20 to 239 ±  22 and 229 ±  19, 
respectively (p <  0.05 for all doses; n =  12–14; Fig. 2D). On the other hand 2.5 mg/kg of E138 significantly 
reduced phase 2 cumulative flinches from 590 ±  77 to 320 ±  39 (p <  0.05), whereas the other doses, did not 
(p >  0.05, n =  12–13; Fig. 2D). The reduction in phase 1 cumulative flinches caused by E138 2.5 and 15 mg/kg 
were 24% and 28%, respectively, whereas that produced by 2.5 mg/kg in phase 2 was 46%.

The administration of E122 did not produce any significant changes in the cumulative flinches either in phase 
1 or 2 (p >  0.05; n =  10–15; Fig. 2E).

Figure 1.  Antinociceptive effects of indomethacin and tiagabine in the formalin test in BALB/c mice. 
Effects of indomethacin (A,B) and tiagabine (C,D) on paw flinches induced by injection of 5% formalin s.c. on 
the paw dorsum measured using an automated flinch detection system from 1 to 40 minutes. (A,C) Time course 
of flinches, (B,D) Cumulative flinches phase1 (1–9 minutes) and phase 2 (10–40 minutes) (n =  8–14 per group). 
*P <  0.05 and **P <  0.01 compared to vehicle-treated mice.
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The administration of BRG19 significantly reduced only phase 2 cumulative flinches. One dose of BRG19 
(15 mg/kg) used significantly reduced phase 2 cumulative flinches from 513 ±  61 to 277 ±  78 (p <  0.05; n =  8). 
The percent reduction in phase 2 cumulative flinches caused by BRG19 15 mg/kg was 46%.

Effects of enaminones and GABA receptor antagonists in the hot plate test.  In the hot plate test, 
mice treated with E139 10 mg/kg had reaction latency times significantly higher than vehicle-treated animals 
as we previously described15 (p <  0.05; n =  12, Fig. 3A), however E121, E122, E138 and BRG19 (0.1 to 40 mg/
kg) had reaction latency times similar to vehicle-only-treated control animals (p >  0.05; n =  8–12; Fig. 3B–F). 
Baseline values of mice treated with vehicle, E139, bicuculline, which is a GABAA receptor antagonist, CGP 
35348, which is a GABAB receptor antagonist, and mice pretreated with either bicuculline or CGP 35348 before 
treatment with E139 10 mg/kg were similar (p >  0.05; n =  8, Fig. 4). Mice that were treated with bicuculline a 
GABAA receptor antagonist, had reaction latency times similar to vehicle-only-treated control animals (p >  0.05; 
n =  8, Fig. 4A) at 1.5 hours after drug administration (a time point when E139 had peak effect, as described 
previously15). Mice pretreated with bicuculline before treatment with E139 10 mg/kg had reaction latency times 
similar to vehicle-only-treated control animals (p >  0.05; n =  8, Fig. 4A), whereas those treated with E139 alone 
had higher reaction latency (p <  0.01; n =  8, Fig. 4A) at 1.5 hours after drug administration. Mice pretreated 
with bicuculline before treatment with E139 10 mg/kg had reaction latency times lower than E139-only-treated 

Figure 2.  Antinociceptive effects of enaminones in the formalin test in BALB/c mice. Time course of 
flinches in animals treated with vehicle or different doses of E139 (A). Effects of E139 (B), E121 (C), E138 
(D), E122 (E), and BRG 19 (F) on phase1 (1–9 minutes) and phase 2 (10–40 minutes) cumulative paw flinches 
induced by injection of 5% formalin s.c. on the paw dorsum measured using an automated flinch detection 
system (n =  8–20 per group). *P <  0.05 compared to vehicle-treated mice.
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animals (p <  0.05; n =  8, Fig. 4A) but similar to bicuculline-only- treated animals (p >  0.05; n =  8, Fig. 4A) at 
1.5 hours after drug administration. Mice that were treated with CGP 35348, a GABAB receptor antagonist, had 
reaction latency times similar to vehicle-only-treated control animals (p >  0.05; n =  8, Fig. 4B) at 1.5 hours after 
drug administration. Mice pretreated with CGP 35348 before treatment with E139 10 mg/kg had reaction latency 
times similar to vehicle-only-treated control animals (p >  0.05; n =  8, Fig. 4B), whereas those treated with E139 
alone had higher reaction latency (p <  0.01; n =  8, Fig. 4B) at 1.5 hours after drug administration. Mice pretreated 
with CGP 35348 before treatment with E139 10 mg/kg had reaction latency times lower than E139-only-treated 
animals (p <  0.05; n =  8, Fig. 4B) but similar to CGP 35348-only-treated animals (p >  0.05; n =  8, Fig. 4B) at 
1.5 hours after drug administration. Thus, blocking GABAA or GABAB receptors had similar antagonistic effects 
on the antinociceptive effects of E139 in the hot plate test.

Figure 3.  Antinociceptive effects of enaminones in the hot plate test in BALB/c mice. Effects of E139 (A), 
E121 (B), E138 (C), E122 (D) and BRG 19 (E) on reaction latency of mice to the hot plate (55 ±  1 °C) at different 
times after administration (n =  8–12 per group). *P <  0.05 and **P <  0.01 compared to vehicle-treated mice.
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Discussion
Recently, we reported that E139, an anticonvulsant anilino enaminone compound, has antinociceptive activity in 
the hot plate test15. Our current study shows that E139 and E138 have antinociceptive activity in both phases of 
the formalin test, whereas the other enaminones tested (E121, E122 and BRG 19) were active in one phase only or 
did not have any activity at all. In the hot plate test, only E139 had antinociceptive activity, which was blocked by 
both GABAA and GABAB receptor antagonists.

Of the five anilino enaminones evaluated only E139 and E138 had significant antinociceptive activity in both 
phase 1 and 2 of the formalin test. Phase 1 is considered to be due to direct activation of peripheral C-fibres by 
the irritant (formalin) and thus considered neurogenic, whilst the second phase is considered to be due to inflam-
matory nociception28,30. Our results suggest E139 and E138 might have similar activity to drugs that enhance 
the extracellular levels of GABA such as GABA transporter inhibitors, which inhibit both phases of the formalin 
test29, but not indomethacin, which inhibits only the inflammatory phase26. The chemical structure of E139 and 
E138 has the enaminone system (NH-C=C-C=O), ester and halogen functional group. Specifically, E139 has a 
methyl ester with bromophenyl group and E138 has a methyl ester with chlorophenyl group. The enantiomers of 
E139 and E138 existed as racemic mixtures in the compounds. The C log P value for the most active enaminones 
were 4.06 for E139 and 3.91 for E138. The range of C log P values for all five enaminones was 3.87 to 4.59. There 
was no correlation between C log P values and antinociceptive activity of the five enaminones evaluated in this 
study. Therefore, we could not generalize that increase in C log P values of enaminones necessarily increased their 
antinociceptive activity. This observation was also made with other enaminones when we attempted to correlate C 
log P values with anticonvulsant activity10,31. We found no correlation between C log P values and anticonvulsant 
activity of enaminones. However, with very similar chemical features in the structures of the five enaminones, in 
this study, it appears that C log P value of about 4.00 was optimum for antinociceptive activity of the enaminone 
compounds. Even with two strikingly similar enaminones E122 and E139 differing only in the ethyl ester in 
E122 as compared to the methyl ester in E139, the one with C log P value of 4.59 (E122) was inactive in the hot 
plate test, while the analog with C log P value of 4.06 (E139) provided antinociceptive effect in the hot plate test. 
Whereas E139 was active in the formalin test, E122 had no significant activity in the formalin test because it was 
more lipophilic that E139. The enaminones with much lower or higher C log P values than 4.00 were generally less 
active. In comparing the activity of E139, E138, and E121, it was observed that E138 and E121 that had chlorophe-
nylamino moiety in their chemical structures exhibited activity only in the formalin test. The difference between 
the enaminones active in both phases and those active in only one phase or not active in the formalin test is the 
presence of a methyl ester group (for E139 and E138) versus an ethyl ester group (for BRG19, E121 and E122). 
The structure-activity relationship (SAR) between E139 and E138 is that a bromo group is required for antino-
ciceptive activity in the hot plate test, if there exists a methyl ester rather than an ethyl ester in the enaminone 
compound that has a C log P value of about 4.00. Hence BRG19, E121, E122, and E138 were not as active as E139 
in the hot plate test. The C log P values indicate the ability of the enaminones to cross membranes and the blood 
brain barrier and to be distributed throughout the body of the experimental animal. An optimum C log P value 
of 4.00 of the enaminone was necessary for antinociceptive effect in the hot plate test. There has to be a balance 
between membrane permeability and the increase in C log P values of medicinal compounds to have the desired 
pharmacological effect31.

One of the mechanisms of action of E139 as an anticonvulsant is the enhancement of extracellular GABA 
levels in the brain1,7,11. The evidence for an indirect action of E139 was published by Kombian et al. in 20057. 
In that study, the effect of E139 on synaptic responses were blocked by a GABAB receptor antagonist but not a 
GABAA chloride channel blocker and occluded by a GABA reuptake blocker and a GABA transaminase enzyme 
inhibitor7. Furthermore, a previous report by Mulzac and Scott32 showed that the enaminone pharmacophore 
(compound ADD 196022) did not affect tritriated GABA (3H-GABA) binding. This would suggest that direct 
interaction with a GABA binding site is unlikely for E139. Thus, the mechanism of action of E139 was adduced as 

Figure 4.  GABA receptor antagonists block the antinociceptive effects of E139 in the hot plate test in 
BALB/c mice. Effects of (A) a GABAA receptor antagonist bicuculline and (B) a GABAB receptor antagonist 
CGP 35348 hydrate on the antinociceptive effects of E139 in BALB/c mice (n =  8) at 1.5 h after administration 
in the hot plate test. **p <  0.01 compared to mice treated with vehicle and #p <  0.05 and ##p <  0.01 to mice 
treated with E139 at the same time point after treatment.
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indirect possibly via GABA-T inhibition or GABA reuptake inhibition. Drugs that increase extracellular GABA 
levels in the brain have been shown to have antinociceptive activity in both the formalin and hot plate tests29,33,34. 
On the other hand, NSAIDs and anti-inflammatory drugs have antinociceptive effects in the formalin test but 
not in the hot plate test35,36. E139 had antinociceptive activity in the hot plate test similar to what we previously 
described15, suggesting that E139 has activity similar to drugs that enhance GABA levels. The antinociceptive 
activity of E139 in the hot plate test was blocked by a GABAA receptor antagonist, bicuculline, and a GABAB 
receptor antagonist, CGP 35348, the latter similar to what has been described for tiagabine previously33, further 
confirming that the antinociceptive effects of E139 are partly due to the activation of both GABA receptors, possi-
bly by raising the levels of endogenous GABA. Both GABAA and GABAB receptors are involved in regulating pain 
sensation and agonists of either receptor have antinociceptive activities37.

In conclusion, our results show that some but not all anilino enaminones have antinociceptive activities. The 
active anilino enaminone, E139, has antinociceptive activities in both phases of the formalin test and in the hot 
plate test that are dependent on activity of both GABAA and GABAB receptors. The antinociceptive activity of 
E139 is partly due to modulation of the GABAergic system. Thus this anilino enaminone may serve as lead com-
pound for further research and development into novel analgesic agents.

Methods
Synthesis of enaminones.  The five enaminones BRG19, E121, E122, E138, and E139 were resynthesized 
and characterized by methods that were previously reported6,8. In brief, the starting diketo compound was dis-
solved in absolute ethanol and added to a solution of the corresponding amino compound in absolute ethanol. 
The reaction mixture was refluxed for 8–10 hours, cooled to room temperature, and evaporated using a rotor 
vaporator. The crude product was recrystallized from a suitable organic solvent, or solvent-mixture. Spectral and 
elemental analysis confirmed the chemical structures of the enaminone compounds. The analytical samples of 
the five enaminones had the following characteristics: BRG 19 had melting point of 150–152 °C with molecular 
weight of 296.36; E121 had melting point of 161–163 oC with molecular weight of 312.81; E122 had melting point 
of 151–154 °C with molecular weight of 357.26; E138 had melting point of 178–180 °C with molecular weight of 
298.79; and E139 had melting point of 188–190 °C with molecular weight of 343.24.

C log P determination.  The calculated partition coefficient (C log P) values for BRG19, E121, E122, E138, 
and E139 were determined by using the ChemBioDraw Ultra 14 Suite (Computer software by PerkinElmer). 
Where the enaminone compound had one or more chiral centers, the enantiomers existed together as a racemic 
mixture. The C log P values were determined for the racemic mixtures10,31.

Animals.  Female BALB/c mice (8 to 12 weeks old; 20–30 g; n =  625) used in this study were kept in tempera-
ture controlled (24 ±  1 °C) rooms with food and water given ad libitum. The animals were supplied by the Animal 
Resources Center (ARC) at the Health Sciences Center (HSC), Kuwait University, Kuwait. All experiments were 
performed during the same period of the day (8:00 AM to 4:00 PM) to exclude diurnal variations in pharmaco-
logical effects. The animals were handled in compliance with European Communities Council Directive 86/609 
for the care of laboratory animals and ethical guidelines for research in experimental pain with conscious ani-
mals38. All methods were carried out in accordance with the approved guidelines and regulations of the HSC 
Ethical Committee for the use of Laboratory Animals in Teaching and in Research, Kuwait University. All pro-
cedures were approved by the Ethical Committee for the use of Laboratory Animals in Teaching and Research, 
HSC, Kuwait University.

Drugs and drug administration.  Indomethacin (Sigma-Aldrich, St Louis, MO, USA) was dissolved in 
phosphate buffered saline (PBS); tiagabine, bicuculline and CGP 35348 hydrate (Sigma-Aldrich, St Louis, MO, 
USA) in normal saline (NaCl 0.9%) and enaminones (resynthesized in-house6,9) in peanut oil. The drugs were 
freshly prepared before administration and administered intraperitoneally (i.p.) to mice at a volume of 10 ml/kg 
body mass. Indomethacin and tiagabine were administered to mice 1 hour before subcutaneous (s.c.) administra-
tion of formalin (5%; 20 μ l). Enaminones were administered 1.5 hours before administration of formalin, taking 
into consideration the time the enaminone E139 produced significant antinociceptive effect in the hot plate test15. 
Bicuculline, a GABAA receptor antagonist, and CGP 35348 hydrate, a GABAB receptor antagonist, were admin-
istered 15 minutes before the administration of E139 for the hot plate test.

Formalin test.  An automated formalin test (automated nociception analyzer, ANA) developed by Yaksh  
et al.39, was used to evaluate chemical nociception as described previously40. Small metal bands were placed 
around the base of mice left hind paw and fixed in place with cyanoacrylate glue. The mice were placed in a cylin-
drical test chamber at least 1 hour before administration of formalin into the paw dorsum. After formalin injec-
tion, mice were returned to the chamber and flinches counted for 40 min with an automated device as described 
before39,40. When formalin is injected into the paw it induces nociception in mice, which causes the mice to 
flinch and raise the paw to lick it. Movement of the metal band on the mouse’s paw (during flinching) alters the 
electromagnetic field. The resulting signal was fed to a computer that uses the response amplitude and duration 
to separate flinches from normal locomotor activity. Formalin induces nociception in mice in a biphasic manner. 
The phases of the formalin test were defined as phase 1 also known as early phase (neurogenic nociception) from 
1–9 minutes and phase 2 also known as late phase (inflammatory nociception) from 10–40 minutes. Cumulative 
flinches for each phase, i.e. sum of flinches from 1 to 9 minutes for phase 1 and from 10 to 40 minutes for phase 2, 
were compared between the vehicle-treated and the drug-treated animals.

Hot plate test.  Reaction latencies to hot plate test were measured before (baseline latency) and after drug 
administration. Briefly, mice were placed on a hot plate (Panlab SL, Barcelona, Spain) with the temperature 
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adjusted to 55 ±  1 °C. The time to the first sign of nociception, paw licking, flinching or jump response was 
recorded and the animal immediately removed from the hot plate. A cut-off period of 20 seconds was maintained 
to avoid damage to the paws.

Data and statistical analyses.  The software GraphPad Prism version 5.00 (GraphPad Software Inc., USA) 
was used for plotting graphs, data and statistical analyses. Statistical analyses were performed using unpaired 
Student’s t test when only one dose was used, one-way analysis of variance (ANOVA) followed by Newman-Keuls 
Multiple Comparison Test for multiple dose effect for each compound, two way ANOVA followed by Bonferroni 
post-tests for dose effect over time. The differences were considered significant at p <  0.05. The results in the text 
and figures are expressed as the means ±  S.E.M.
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