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Abstract

Urinary tract infections (UTIs) afflict over 9 million women in America every year, often necessitating long-term prophylactic
antibiotics. One risk factor for UTI is frequent sexual intercourse, which dramatically increases the risk of UTI. The mechanism
behind this increased risk is unknown; however, bacteriuria increases immediately after sexual intercourse episodes,
suggesting that physical manipulation introduces periurethral flora into the urinary tract. In this paper, we investigated
whether superinfection (repeat introduction of bacteria) resulted in increased risk of severe UTI, manifesting as persistent
bacteriuria, high titer bladder bacterial burdens and chronic inflammation, an outcome referred to as chronic cystitis.
Chronic cystitis represents unchecked luminal bacterial replication and is defined histologically by urothelial hyperplasia and
submucosal lymphoid aggregates, a histological pattern similar to that seen in humans suffering chronic UTI. C57BL/6J mice
are resistant to chronic cystitis after a single infection; however, they developed persistent bacteriuria and chronic cystitis
when superinfected 24 hours apart. Elevated levels of interleukin-6 (IL-6), keratinocyte cytokine (KC/CXCL1), and
granulocyte colony-stimulating factor (G-CSF) in the serum of C57BL/6J mice prior to the second infection predicted the
development of chronic cystitis. These same cytokines have been found to precede chronic cystitis in singly infected C3H/
HeN mice. Furthermore, inoculating C3H/HeN mice twice within a six-hour period doubled the proportion of mice that
developed chronic cystitis. Intracellular bacterial replication, regulated hemolysin (HlyA) expression, and caspase 1/11
activation were essential for this increase. Microarrays conducted at four weeks post inoculation in both mouse strains
revealed upregulation of IL-1 and antimicrobial peptides during chronic cystitis. These data suggest a mechanism by which
caspase-1/11 activation and IL-1 secretion could predispose certain women to recurrent UTI after frequent intercourse, a
predisposition predictable by several serum biomarkers in two murine models.
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Introduction

Nearly nine million people present each year to primary care

physicians with a urinary tract infection (UTI), costing nearly $2

billion yearly [1,2]. Women suffer the majority of these infections,

with the lifetime risk approaching 50% [3]. Furthermore, 25–40%

of these women will suffer recurrent UTI (rUTI), with 1.5 million

women referred to urology clinics and often requiring prophylactic

antibiotics to prevent recurrence [4–6]. Uropathogenic E. coli
(UPEC) are responsible for.80% of community acquired UTI

and 50% of nosocomial UTI [7,8]. In the absence of antibiotic

therapy, up to 60% of women experience symptoms and/or

bacteriuria lasting months after initial infection [9–12], implying

that cystitis is not always self-limiting. Furthermore, if the infection

persists without adequate treatment, the organisms have the

capacity to ascend the ureters, causing pyelonephritis and sepsis

[13]. Antibiotic resistant organisms further complicate infection

and threaten to increase the likelihood of chronic UTI,

pyelonephritis and potentially bacteremia [14,15]. UTIs are

increasingly being treated with fluoroquinolones, which in turn

has led to a rise in resistance and the spread of multi-drug resistant

microorganisms globally, which is a looming worldwide crisis

[16,17]. It is therefore imperative to understand the molecular

mechanisms that underlie this problematic disease in order to

develop novel therapies.

Sexual intercourse is one of the most significant risk factors

predisposing otherwise healthy women to UTI. Early studies

demonstrated that sexual intercourse led to a 10-fold increase in

bacteria/ml of urine and a subsequently increased predisposition

to developing a UTI within 24 hours thereafter [5,18–21]. More

recent studies have shown that the frequency with which a woman

has sexual intercourse dramatically impacts the likelihood of

developing both acute and rUTI [4,22,23]. Scholes et. al found a

direct association between the number of episodes of sexual

intercourse in a given month and the risk of developing rUTI.

However the significance of the timing between these episodes of

sexual intercourse is unknown. Are evenly spaced episodes

associated with an equal risk or, instead, does an episode prime
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the bladder for rUTI if another insult follows within a sensitive

period? To address this question, we developed a model of

sequential infection in mice to explore the hypothesis that a

sensitive period exists after an initial bacterial insult to the bladder

in which the likelihood of developing severe, chronic infection is

dramatically increased.

Murine models of UTI have been used to decipher complexities

of this disease in naı̈ve individuals. UPEC are capable of

colonizing multiple body habitats and niches, including both

intracellular and extracellular locations within the bladder, as well

as in the gastrointestinal (GI) tract and the kidneys. Selective

pressure and bacterial population bottlenecks during colonization

impact the ultimate fate of disease [24–27]. Adhesive pili

assembled by the chaperone/usher pathway (CUP), such as type

1 pili, contain adhesins at their tips that function in adherence and

invasion of host tissues and in biofilm formation on medical

devices. Upon introduction of UPEC into the bladder, bacteria

bind to either mannosylated uroplakin plaques or b1-a3 integrin

receptors on the epithelial surface of the bladder via the type 1

pilus FimH adhesin [28–30]. Upon internalization, UPEC can be

exocytosed as part of a TLR4 dependent innate defense process

[31]. In addition to expulsion of individual bacteria, the host can

exfoliate superficial facet cells to shed attached and invaded

bacteria into the urine for clearance [29]. A small fraction of

invaded bacteria escape into the host cell cytoplasm, where they

are able to subvert expulsion and innate defenses by replicating

into biofilm-like intracellular bacterial communities (IBCs) [24,32].

UPEC eventually flux out of these communities with a substantial

proportion existing as neutrophil resistant filaments [33,34].

Importantly, evidence of IBCs and bacterial filaments have been

observed in women suffering acute UTI, one to two days post self-

reported sexual intercourse, but not in healthy controls or

infections caused by Gram-positive organisms, which do not form

IBCs [21]. IBCs have also been observed in urine from children

with an acute UTI [35]. Additionally, IBC formation and the

innate immune response of cytokine secretion and exfoliation have

been observed in all tested mouse strains, but the long-term

outcome of infection differs [36–38].

There are two main, mutually exclusive, outcomes to acute

infection in C3H/HeN mice: either chronic bacterial cystitis

(chronic cystitis), which is characterized by persistent high titer

bacteriuria (.104 CFU/ml) and high titer bacterial bladder

burdens (.104 CFU) two or more weeks after inoculation,

accompanied by chronic inflammation [37,39], or resolution of

bacteriuria [37]. Mice that resolve infection may harbor small

populations of dormant UPEC called Quiescent Intracellular

Reservoirs (QIRs) [40]. Other mouse strains exhibit varied

proportions of these two outcomes. C57BL/6J mice resolve

bacteriuria within days and thus are resistant to chronic cystitis,

but are susceptible to QIR formation [40,41]. In contrast, other

TLR4-responsive C3H background sub-strains and closely

related CBA/J and DBA/2J mice experience persistent high-

titer bacteriuria and bladder colonization by UPEC in the

presence of chronic inflammation lasting at least four weeks post-

infection (wpi). During chronic cystitis, persistent lymphoid

aggregates and urothelial hyperplasia with lack of superficial

facet cell terminal differentiation accompany luminal bacterial

replication [37]. These same histological findings of submucosal

lymphoid aggregates and urothelial hyperplasia have been

observed in humans suffering persistent bacteriuria and chronic

cystitis [42]. Since murine chronic cystitis predisposes to

recurrent chronic UTI after antibiotic-mediated bacterial clear-

ance, this is also a relevant model to interrogate the mechanism

of recurrent cystitis [37]. In mouse models of UTI, mice initially

experience urinary frequency and dysuria as determined by

reaction to noxious stimuli and nerve responses during acute

infection [43,44]; however, during chronic cystitis bacterial

replication may exist in an asymptomatic carrier state as studies

have not been conducted to determine whether dysuria persists.

Interestingly, higher serum levels of interleukins (IL) 5 and 6,

keratinocyte cytokine (KC/CXCL1), and granulocyte colony-

stimulating factor (G-CSF) in C3H/HeN mice at 24 hours post

infection (hpi) predicted the development of persistent bacteriuria

and chronic cystitis thereafter, suggestive of a host-pathogen

checkpoint during acute infection that predicts long term

outcome [26,37]. In women with an acute UTI, increased

amounts of serum CXCL1, M-CSF, and IL-8 correlated with

subsequent rUTI, suggesting a similar checkpoint [45].

In this manuscript, we developed a superinfection model to

mimic the clinical scenario of frequent sexual intercourse

whereby sequential inocula are introduced within a brief period

of time. C57BL/6J mice are resistant to chronic cystitis when

singly infected; however, 30% of C57BL/6J mice developed

chronic cystitis when superinfected 24 hours after the initial

infection. Serum elevations of IL-6, KC, and G-CSF prior to

superinfection predicted the development of persistent bacteriuria

in C57BL/6J mice similar to singly infected C3H/HeN mice.

Superinfecting C3H/HeN mice 1–6 hours after the initial

inoculation increased the proportion of mice experiencing

chronic cystitis. In order for this elevation to occur, we found

that the initial UPEC inoculum (the ‘‘priming’’ inoculation) must

be alive, invasive, capable of intracellular replication, and able to

regulate hemolysin expression. Inhibition of the caspase 1/11

inflammasome prior to priming reduced bacterial CFU at four

wpi relative to DMSO-treated mice. Microarray analysis of

mouse bladders four wpi revealed that both C57BL/6J and

C3H/HeN mice secreted antimicrobial peptides and IL-1 during

chronic infection. In contrast to C3H/HeN mice, immunoglob-

ulin expression was upregulated in C57BL/6J mice experiencing

chronic cystitis. This immunoglobulin expression was absent in

C57BL/6J mice that resolved infection and in C3H/HeN mice.

Our data suggest mechanisms whereby certain women may be

susceptible to rUTI after frequent sexual intercourse dependent

on intracellular bacterial replication and the host immune

response.

Author Summary

Urinary tract infections (UTIs) affect millions of women
each year resulting in substantial morbidity and lost
wages. Approximately 1.5 million women are referred to
urology clinics suffering from chronic recurrent UTI on a
yearly basis necessitating the use of prophylactic antibiot-
ics. Frequent and recent sexual intercourse correlates with
the development of UTI, a phenomenon referred to
clinically as ‘‘honeymoon cystitis.’’ Here, using superinfec-
tion mouse models, we identified bacterial and host
factors that influence the likelihood of developing chronic
UTI. We discovered that superinfection leads to a higher
rate of chronic UTI, which depended on bacterial replica-
tion within bladder cells combined with an immune
response including inflammasome activation and cytokine
release. These data suggest that bacterial inoculation into
an acutely inflamed urinary tract is more likely to lead to
severe UTI than bacterial presence in the absence of
inflammation. Modification of these risk factors could lead
to new therapeutics that prevent the development of
recurrent UTI.

Superinfection Enhances Severe Bladder Infection
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Results

Time-sensitive enhancement of infection
Studies suggest that a host-pathogen checkpoint within the first

24 hpi determines UTI outcome in C3H/HeN mice [26,37]. In

addition, the chronic inflammation observed in mice experiencing

chronic cystitis was found to predispose to rUTI after re-infection

[37]. Thus, we hypothesized that superinfecting mice during this

period of acute inflammation would increase the proportion of

mice experiencing chronic cystitis. We transurethrally infected 7–

8 week old female C3H/HeN mice with 107 CFU UTI89 or PBS

as the priming inoculation and superinfected them 1–2, 6, or

24 hours thereafter. Enumeration of bacterial CFU at one wpi as

an initial screen revealed a dramatic increase in the proportion of

mice experiencing chronic cystitis in mice superinfected 1–6 hours

after priming compared to singly infected or PBS treated mice

(Fig. 1A). We used a cutoff of 106 CFU to demarcate mice

experiencing high-titer bacterial infection at one week. Impor-

tantly, we did not observe a significant increase in CFU when a

single inoculum was doubled (26107 CFU). Superinfection at

24 hpi had no effect on bacterial titers at one week, suggesting that

the factors predisposing to increased susceptibility to chronic

cystitis upon superinfection wane over time [26]. However,

inoculation with PBS followed by UTI89 24 hpi did lead to high

titers in 60% of mice. While this result is perplexing, it possibly

reflects that sacrifice six days post infection was not sufficient to

delineate the typical bimodal distribution of outcomes [37]. The

process of catheterization also induces inflammation, which may

not have resolved by 6 dpi [46]. We conducted all subsequent

C3H/HeN superinfections one hour after priming.

Since early severe inflammatory responses predispose to chronic

cystitis [37], we hypothesized that the initial inoculum primed the

bladder by initiating an innate immune response to intracellular

bacteria that predisposed to a higher proportion of mice

experiencing chronic cystitis upon superinfection. We utilized a

panel of UTI89 mutants in fimH, ompA, and kps that have been

shown to differ in their ability to: i) invade and form IBCs and ii)

persist during chronic cystitis in co-infection experiments [47,48].

Mature IBCs caused by WT bacteria are clonally derived from a

single invasive event [24]. The mannose-binding pocket of FimH

Fig. 1. Superinfections of C3H/HeN mice. A) Mice were infected with 107 CFU UTI89, 26107 CFU UTI89, or PBS and re-infected with UTI89 at the
indicated time points. One week total bladder titers are shown. Percentage of mice likely to develop chronic cystitis is displayed at the top of the
column based on a CFU cutoff of 106. Asterisks indicate p,0.05 from the PBS control and singly infected mice. B–D) Mice were infected with the
indicated strain or PBS and re-infected one hour later. Urine titers were determined over time and four-week bladder titers are displayed. The fraction
of mice with chronic cystitis is displayed at the top of each column. Red data points indicate resolved infection. Horizontal bars indicate median
values. The dashed line at 20 CFU represents the LOD, and the dashed line at 106 (A) or 104 CFU (B–D) represents the chronic cystitis cutoff for urine
and bladder titers. Panel A reflects 2–4 experiments with 5–9 mice per group. Panel B is 2–7 experiments with 4–5 mice per group. Panel C–D are 3
experiments with 4–5 mice per group. Statistical comparisons were determined using Fisher’s exact test based on the fraction of mice experiencing
chronic cystitis.
doi:10.1371/journal.ppat.1004599.g001

Superinfection Enhances Severe Bladder Infection
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is invariant among sequenced UPEC [47], and the binding

pocket mutant, FimH::Q133K, is defective in mannose-binding

and can neither invade the bladder epithelium nor form IBCs.

FimH undergoes compact and elongated conformational chang-

es wherein the receptor binding domain bends approximately

37u with respect to the pilin domain. The mannose-binding

pocket is deformed in the compact conformation whereas the

elongated conformation is mannose binding proficient [49,50].

Several residues outside the mannose-binding pocket (positions

27, 62, 66 and 163) are under positive selection in clinical UPEC

isolates compared to fecal strains [47] and have been shown to

function in modulating the conformational changes between the

elongated and compact states [48]. FimH::A27V/V163A pre-

dominantly adopts a high-mannose binding, elongated confor-

mation. Its expression results in: i) a 10-fold reduction in

intracellular CFU one hpi and ii) a defect in the ability to form

IBCs at six hpi. FimH::A62S shifts the equilibrium towards the

compact conformation. Expression of this allele results in: i) a 10-

fold reduction in intracellular CFU one hpi and ii) a 10-fold

reduction in IBC formation compared to WT UTI89 [47,48].

UTI89DompA forms half the number of IBCs as UTI89 [51],

and UTI89Dkps is defective in IBC formation. UTI89Dkps can

replicate intracellularly and the IBC defect can be rescued by co-

inoculation with WT UTI89, which results in mixed strain, non-

clonal, IBCs [52].

We primed mice with these strains and superinfected one hpi

with WT UTI89 and assessed bacteriuria at days 1, 7, 14, and 21

and enumerated bladder titers at 28 dpi. Mice were designated as

having chronic cystitis if they had urine bacterial titers greater than

104 CFU/ml at each time point and bladder titers greater than

104 CFU at sacrifice [37]. We found that the FimH::A27V/

V163A allele was incapable of priming the bladder for the

development of chronic cystitis (p,0.05 relative to WT superin-

fection). In contrast, FimH::A62S did not significantly differ from

PBS or WT superinfection; therefore, it may be capable of

priming, though to a lesser degree. UTI89DompA and UTI89Dkps
were both able to prime the bladder for enhanced chronic cystitis

relative to PBS when superinfected one hpi with WT UTI89 (p,

0.05 and p,0.01 respectively; Fig. 1C). We also primed with heat-

killed UTI89 and found that live, but not heat killed, UTI89 were

capable of priming the bladder indicating that bacterial products

such as LPS were insufficient (Fig. 1B). These data indicate that

live and invasive UTI89 capable of at least some degree of

intracellular replication are required for the priming to enhance

the incidence of chronic cystitis upon superinfection of UTI89.

Taken together these data suggest that priming begins during

invasion and early IBC formation.

UPEC hemolysin and caspase 1/11 activation are
essential

One of the most potent host defenses to eliminate adherent and

invaded UPEC is superficial facet cell exfoliation [29]. The process

of exfoliation is activated in part by the bacterial expression of

hemolysin (HlyA) [53](Nagamatsu et al. in review). UTI89DcpxR
overexpresses HlyA, leading to exfoliation and attenuation in our

murine model of cystitis (Nagamatsu et al. in review). The

UTI89DcpxRDhlyA double mutant was not attenuated, suggesting

that the in vivo defect was due to increased hemolysin expression

(Nagamatsu et al. in review). The ability of UPEC to rapidly build

up in numbers in the form of IBCs and then disperse to

neighboring cells may be part of a mechanism to subvert an

exfoliation response. Thus, fine-tuning the expression of HlyA

during acute bladder infection may serve to maximize UPEC

persistence and give UPEC a fitness edge against the host innate

inflammatory response. Interestingly, in C3H/HeN mice, UTI89

DhlyA is not attenuated throughout infection and causes chronic

cystitis comparable to UTI89; however, other reports suggest

deletion of HlyA in UPEC CFT073 decreases virulence [54]. We

investigated the role of hemolysin in priming the bladder for

chronic cystitis upon superinfection by utilizing UTI89DhlyA or

UTI89DcpxR as the initial inoculation followed by WT UTI89

one hpi. Both of these strains were statistically significantly

different when compared to WT UTI89 as the priming inoculum.

Therefore, we conclude that neither was capable of priming the

bladder for enhanced chronic cystitis (Fig. 1D). Thus, too high or

low expression of hemolysin abolished the ability of UTI89 to

prime for enhanced chronic cystitis implying that an optimal level

of hemolysin expression is critical for priming the bladder for

enhanced chronic cystitis.

HlyA-mediated exfoliation is in part due to its ability to trigger

degradation of paxillin, a scaffold protein that modulates the

dynamics of cytoskeletal rearrangements [55]. HlyA can also

trigger cell death in human bladder epithelial cells and release of

IL-1a via caspase-4 (the murine ortholog is caspase-11) activation

and caspase-1-dependent IL-1b secretion via activation of the

NLRP3 inflammasome pathway, which orchestrates additional

cell death (Nagamatsu et al. in review). We hypothesized that

inflammasome and caspase 1/11 activation were essential for

superinfection. Thus, mice were treated intravesically with a dose

of caspase 1/11 inhibitor or DMSO one hour prior to priming and

a second dose with the priming inoculum to test this hypothesis

(Fig. 2A). Providing two doses of the inhibitor was previously

shown to be effective in dampening in vivo inflammatory

responses. In vitro, the inhibitor dramatically reduced downstream

elements of inflammasome activation, IL-1a and IL-1b secretion,

when bladder cells were infected with UTI89 (Nagamatsu et al. in

review). Caspase 1/11 inhibition significantly reduced median

bladder titers at four weeks after superinfection relative to the

DMSO control group (Fig. 2B). We also saw a trend of caspase 1/

11 inhibition in reducing the proportion of WT superinfected mice

experiencing chronic cystitis to single infection levels (Fig. 2B).

DMSO also reduced the proportion of mice experiencing

persistent bacteriuria and chronic cystitis, but to a lesser degree

than caspase 1/11 inhibition (Fig. 2B vs. Fig. 1B–D), suggesting

an anti-inflammatory role of DMSO alone. Intriguingly, DMSO

was recently found to inhibit the NLRP3 inflammasome [56].

Taken together, these data implicate hemolysin and the NLRP3

inflammasome in the priming response to enhanced chronic

cystitis.

We further investigated whether chemical exfoliation could

enhance the proportion of mice experiencing chronic cystitis prior

to a single infection. We utilized the cationic protein, protamine

sulfate, which has previously been used to exfoliate the superficial

facet cell layer of the urothelium [40,57]. A 10 mg/mL dose

delivered intravesically in 50 mL PBS was shown to exfoliate 65%

of the facet cell layer 12 hours after treatment while an additional

booster dose of 50 mg/mL led to 95% exfoliation [40]. We

utilized these concentrations to initiate, but likely not complete,

the process of exfoliation one hour prior to infection with UTI89.

We did not observe a significant increase in the proportion of mice

experiencing chronic cystitis over PBS pretreatment (Fig. 2C).

Thus, these data suggest that at least partial IBC formation in

conjunction with caspase 1/11 activation primes the bladder for

enhanced chronic cystitis, but chemical initiation of exfoliation is

not sufficient. Taken together, these data suggest that exfoliation

per se might not play a significant role in impacting the likelihood

of enhanced chronic cystitis but instead may reflect a downstream

marker of the priming event.

Superinfection Enhances Severe Bladder Infection
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Superinfection leads to chronic cystitis in a resistant
mouse strain

C57BL/6J mice typically rapidly resolve bacteriuria and are

resistant to chronic cystitis upon single inoculation with UPEC

[37,38]. Five to ten percent of the time after inoculation with

UTI89, C57BL/6J mice experience persistent bacteriuria, but this

is generally due to kidney infection without concomitant high titer

bladder infection [37,41]. This degree of kidney infection is not

infectious dose dependent and therefore likely due to ureteric

reflux of the bacteria during experimental inoculation [37]. We

investigated whether superinfecting C57BL/6J mice during acute

infection would stimulate an immune response leading to chronic

cystitis. We inoculated bladders with PBS or 107 CFU of UTI89

followed by superinfection with UTI89 1, 6, 24, 48 hours or one

week after initial infection and collected urine at days 1, 7, 14, and

21 dpi followed by enumeration of bladder and kidney titers at

28 dpi (Fig. 3). A 24 hpi superinfection resulted in 35% of mice

sustaining persistent bacteriuria with bladder titers .104 CFU at

four weeks compared to 0% in the singly infected group (Fig. 3A).

Kidney titers were also increased in the mice with persistent

bacteriuria, but we did not observe a significant increase in the

proportion of mice with kidney infection greater than 104 CFU

(Fig. 3B). These data suggest that at 24 hours after infection the

bladders of C57BL/6J mice were primed to develop chronic

cystitis upon superinfection. We investigated whether an ascending

kidney infection plays a role in predisposing these mice to chronic

cystitis by inoculating PBS into the bladder, either 24 hours before

or after infection with UTI89, to stimulate a bladder and ureter

stretch response or potentially increase reflux of bacteria into the

kidneys, respectively. We determined the percentage of mice with

persistent bacteriuria and those with bladder and kidney titers

greater than 104 CFU at sacrifice (Table 1). We found in all

conditions that persistent bacteriuria was a 100% predictor of

kidney titers.104 CFU at four wpi. Persistent bacteriuria also

predicted bladder titers greater than 104 CFU at four wpi in

C57BL/6J mice superinfected 24 hpi with UTI89. For the group

Fig. 2. Role of caspase 1/11 and exfoliation in C3H/HeN superinfections. A) Inoculation protocol shown for caspase inhibition studies of
panel B. B) Four-week total bladder titer based on inhibitor or vehicle. C) Mice were inoculated with PBS, UTI89 or the indicated dose of protamine
sulfate in 50 mL PBS and inoculated one hour later with UTI89. Urine was collected weekly and overall bladder titers are shown at four weeks. Panel B
represents 5 experiments with n = 5–10 mice per group. Panel C represents 2 experiments with n = 5–10 mice per group. B–C) Observations in red
indicate resolved infection. Percent of mice with persistent bacteriuria and chronic cystitis is shown at the top of each column. For Panel B and C, a
Fisher’s Exact Test was used to determine significance between proportions of mice experiencing chronic cystitis. Mann-Whitney U Test was used to
compare median CFU values in Panel B.
doi:10.1371/journal.ppat.1004599.g002

Superinfection Enhances Severe Bladder Infection
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of mice inoculated with PBS before the initial UTI89 infection,

persistent bacteriuria did not correlate with high bladder titers

suggesting these bacteria were only replicating in the kidneys.

Serially infecting with two inocula of UTI89 trended towards

increased persistent bacteriuria and chronic cystitis compared to

the group inoculated with UTI89 followed by PBS at 24 hpi

(P = 0.066; Table 1 and Fig. 4A). Kidney titers of UTI89

superinfected mice were significantly higher than when PBS was

used to prime or superinfect perhaps suggesting that repeat

infection may also increase susceptibility to pyelonephritis

(Fig. 4B). Thus, a 24 hpi superinfection of WT UTI89 led to

increased rates of persistent bacteriuria and chronic cystitis;

however, bladder/ureter stretch or kidney ascension at 24 hpi may

contribute to this increase.

C3H/HeN mice that progress to chronic cystitis upon single

inoculation can be predicted by elevated serum levels of IL-5, IL-

6, KC, and G-CSF at 24 hpi [37]. We hypothesized that similar

elevations would predict sensitization to chronic cystitis in

C57BL6/J mice if they were subsequently superinfected. Thus,

we determined levels of 23 serum cytokines from C57BL/6J mice

24 hrs after initial inoculation with PBS or UTI89 prior to

superinfection. We then superinfected a subset of the mice initially

infected with UTI89 (superinfection in Fig. 5) leaving the other

mice untouched (UTI89 group). All mice were evaluated with

urine titers over 28 d and sacrificed to enumerate bladder titers.

We stratified the superinfected mice based on outcome four weeks

later as determined by persistent bacteriuria and chronic cystitis.

We found elevations of serum KC (Fig. 5A), IL-6 (Fig. 5B), and G-

CSF (Fig. 5C) in mice that progressed to chronic cystitis relative to

those that resolved infection or were mock-infected with PBS.

Therefore, higher levels of these cytokines correlate with chronic

cystitis that develops later if mice are superinfected. At the time we

obtained serum, the single infection and superinfection groups

were identical, and no statistical differences existed among them.

These data demonstrate that a subset of C57BL/6J mice respond

to an initial infection in a way that results in higher specific serum

cytokine levels and primes them to develop chronic cystitis if an

additional insult is delivered 24 hpi.

Response to infection differs between C3H/HeN and
C57BL/6J

During chronic cystitis of singly-infected C3H/HeN mice, the

bladder epithelium is hyperplastic and normal terminal differen-

tiation of the superficial facet cell layer, including the expression of

surface uroplakins, does not occur [37]. In this environment, the

bacteria are able to persist extracellularly by an unknown

Fig. 3. C57BL/6J mice are susceptible to chronic cystitis when superinfected 24 hpi. A–B) Mice were transurethrally infected with PBS or
UTI89 and re-infected at the indicated timepoints with UTI89. Urine was tracked weekly and four-week total bladder (A) and kidney pair (B) titer is
displayed. N = 2–4 experiments with 4–5 mice per group. Statistical differences determined by Fisher’s Exact test.
doi:10.1371/journal.ppat.1004599.g003
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mechanism. To assess this, we conducted scanning electron

microscopy analysis on bladder tissue harvested at four wpi and

found that bacteria replicate in the presence of ongoing epithelial

exfoliation and neutrophil influx in chronic cystitis of both C3H/

HeN and C57BL/6J mice (S1A–D Fig.). This analysis supports

previous experiments that have shown that during chronic cystitis

the majority of bacteria are extracellular, replicating in the urine

or adherent to underlying transitional epithelial cells [24,37]. The

mechanism by which bacteria adhere in the absence of uroplakins

has not been demonstrated in vivo, but in vitro studies have shown

that FimH binds integrins and other host proteins such as TLR4

[30,58,59]. Alternatively additional adhesive factors such as other

CUP pili may play a role. Interestingly, during chronic cystitis,

neutrophils, which we observed to be actively engulfing bacteria,

are insufficient for clearing infection; however, the reason for this

is unclear. Mature superficial facet cells could not be discerned at

this time point, but were present in mock-infected mice (S1E Fig.).

Patients with persistent bacteriuria or rUTI have been reported to

have similar histopathology [42]. In order to identify the bladder

micro-environment in which UPEC replicate during chronic

cystitis, we conducted microarray analysis on RNA extracted from

bladders four wpi. C3H/HeN mice were singly-infected and

C57BL/6J mice were superinfected to develop chronic cystitis.

Mice from each strain inoculated with PBS were used as controls.

Depicted in Fig. 6 are the expression profiles relative to the global

average with green indicating increased expression and red

denoting decreased. C3H/HeN mice experiencing chronic cystitis

had a dramatically different expression profile from resolved and

mock-infected mice (Fig. 6A). Uroplakins were among the most

downregulated genes during chronic cystitis in both mouse

models, consistent with the lack of terminally differentiated

superficial facet cells (S1 Fig.). Eleven of the 20 (55%) most

upregulated genes during chronic cystitis were the same in both

mouse strains (S1 Table). The functional categorization revealed

that most of the up-regulated genes function in inflammatory

response, cytokine release, and ion binding [60–62]. Of interest

among these genes in both of these mouse models is the

inflammasome-related cytokines IL-1. We have shown that UPEC

activate the caspase 4 murine homologue, caspase 11, during acute

infection in a hemolysin-dependent fashion (Nagamatsu et. al. in

review). Despite these similarities, interesting differences existed in

the ongoing inflammatory response in mice experiencing chronic

cystitis (S1 Table). In C57BL/6J mice, the inflammatory response

is immunoglobulin- and cytokine-mediated whereas in C3H/HeN

mice, we noted a remarkable absence of upregulated immuno-

globulin genes. The increased expression of antimicrobial peptides

such as RegIIIc and the calgranulins (s100a8 and s100a9) is

interesting because this increased expression is not sufficient to

eliminate bacterial replication during chronic cystitis. Interestingly,

C3H/HeN mice that were mock infected exhibited a very similar

profile to mice that resolve infection (Fig. 6A). Contrary to C3H/

HeN mice, C57BL/6J mice that resolved infection differed

significantly from either chronic cystitis or mock infected mice,

suggesting an element of altered physiology and immunological

memory of the infection (Fig. 6B). This information supports

research that serially infecting mice that resolve infection makes

them less susceptible to recurrent infection [37,63]. What is

interesting here is that the mechanisms by which this occurs may

differ between mouse strains, and possibly by extension, women.

Discussion

We have developed models of bacterial superinfection of the

urinary tract, which may provide insight into the connection
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between recent and frequent sexual intercourse and the suscep-

tibility to the development of chronic UTI [5,22]. Our results

demonstrate that superinfection resulted in increased susceptibility

to chronic cystitis in both susceptible and resistant mouse genetic

backgrounds, but the time window for priming differed between

strains. We have previously shown that chronic cystitis predisposes

to severe rUTI upon a subsequent infection weeks to months after

clearance of the first infection with antibiotics [37]. Clinically,

millions of women take post-coital and prophylactic antibiotics so

as not to develop rUTI [64]. Therefore, if clinically applicable, our

results detailed here may partially explain why frequent sexual

intercourse is such a strong risk factor for UTI. The necessity of

prophylactic antibiotics could be obviated if the risk factors and

bacterial traits identified here can be altered in the clinical

population of women suffering chronic rUTIs.

Frequent sexual intercourse is among the most important risk

factors for rUTI in young women [22]. Peri-urethral carriage of

the causal strain and sexual intercourse immediately precede the

development of a rUTI [5]. Sexual intercourse likely introduces

mixed populations of bacteria into the urinary tract, with E. coli
being the most common [18]. In this environment, UPEC invade

bladder tissue and replicate, forming IBCs and bacterial filaments,

which have been observed in human urine in 40% of patients

suffering acute UTI, 24–48 hours after reported sexual intercourse

[21]. These data may provide mechanistic insight as to the

frequent clinical observation that recent and frequent sexual

intercourse over a brief period of time leads to increased rates of

rUTI [23]. Furthermore, elevated levels of serum CSF1, CXCL-1,

and CXCL-8 in women with acute UTI were associated with a

higher rate of rUTI [45]. Using C3H/HeN and C57BL/6J mice,

Fig. 4. UTI89 Superinfection of C57BL/6J mice increases bladder and kidney infection. A–B) mice were infected with PBS or UTI89 Kanr

and re-infected 24 hrs later with PBS or UTI89 Spectr. Urine was tracked over four weeks and total bladder (A) and kidney pair titer (B) is displayed.
Number above columns indicates number of mice with persistent bacteriuria with bladder (A) or kidney (B) titer.104 CFU. Data represents 3–8
experiments with n = 4–29 mice per group. Panels also include data reproduced from Fig. 3. Statistical differences determined by Fisher’s Exact test.
doi:10.1371/journal.ppat.1004599.g004

Fig. 5. Serum cytokine signature of C57BL/6J mice with persistent bacteriuria. Serum was obtained 24 hrs after initial inoculation prior to
superinfection. Levels of 23 cytokines were determined and cytokines showing significant differences between resolved and chronic superinfected
mice are shown. Levels of KC (A), IL-6 (B), and G-CSF (C) shown in pg/mL. Data represent 4–6 experiments with n = 4–29 mice per group. Statistical
differences determined by One-Way ANOVA overall and Mann-Whitney U test for pairwise comparisons.
doi:10.1371/journal.ppat.1004599.g005
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we have shown that superinfection during the period of acute

infection dramatically increases the proportion of mice that

experience chronic cystitis with inoculations of 107 UPEC (Fig. 1A

and 3A). The bacterial characteristics responsible for frequent

recurrences are beginning to be assessed [65]. Hemolysin is

expressed by 50% of UPEC isolates, but is more likely to be

associated with symptomatic UTI [66]. It is possible that

hemolysin-mediated exfoliation and caspase 1/11 activation leads

to UTI-associated symptoms. In our studies, we found that an

increase in priming for chronic cystitis correlated with the bacterial

ability to invade and replicate within the bladder tissue (Fig. 1B–

C), and through hemolysin to activate caspase 1/11 leading to IL-

1 secretion and bacterial replication (Fig. 1D and 2B). Activation

of caspase 1/11 has been shown to contribute to epithelial cell

death in vitro and exfoliation in vivo in C3H/HeN mice,

suggesting that caspase-mediated exfoliation may expose the

underlying epithelium upon which UPEC replicates during

chronic cystitis (Nagamatsu et. al. in review). Inhibition of caspase

1/11 protected superinfected mice from chronic cystitis (Fig. 2),

suggesting a role for cytokines downstream of caspase activation

including IL-1a and IL-1b, identified in our microarray of four-

week bladders (Fig. 6; S1 Table). A microarray analysis revealed

that in C3H/HeN and C57BL/6J mice, 11/20 of the most

upregulated genes during chronic cystitis were the same.

Differences between the responses to infection in these mouse

strains may result from the dramatic increase in kidney infection or

QIR presence in C57BL/6J relative to C3H/HeN mice [37,40].

Further, this data supports the hypothesis that a muted inflam-

matory response to UPEC infection is more likely to lead to

resolution [26]. Also, our studies suggest that serum biomarkers

such as IL-6, KC, and G-CSF may predict a predisposition to

rUTI (Fig. 5) [37]. Recently, it was demonstrated that cytokines

involved in immune cell chemotaxis and maturation (the human

homolog of KC included) during acute UTI enhanced the

likelihood of developing rUTI [45].

We have created mouse models that have identified both

bacterial and host immune factors that may predispose women to

rUTI. Inhibiting caspase-mediated inflammation or downstream

effectors may serve to prevent a UTI from becoming a chronic or

recurrent UTI. Further work to identify bacterial and host factors

that influence the balance between resolution and chronic

infection is required to lead to better treatments clinically. The

ability of UPEC to invade bladder tissue allows it to transcend

stringent bottlenecks during infection [24,25,27]. The ability to

replicate intracellularly also impacts the ability of a second

invading strain to proliferate in the bladder environment (Fig. 1B–

C). The molecular basis of bacterial colonization of the bladder

during chronic cystitis is an area of active investigation. Previously,

it has been shown that mannosides are effective in treating chronic

cystitis arguing that FimH-mediated binding plays an important

role [67]. It has recently been demonstrated that FimH variation

outside of the binding pocket affects protein conformation and

pathogenicity of UPEC [48]. This variation may impact bacterial

adherence and replication during chronic cystitis. Furthermore,

because invasion and intracellular replication appear to influence

the likelihood to develop chronic cystitis, treatments with soluble

compounds such as mannosides that block the ability of UPEC to

invade the tissue or compounds that might alter FimH conforma-

tion hold promise as effective means to prevent or treat rUTI [67–

70]. These analyses may allow us to identify high-risk patients for

more aggressive therapy and/or anti-virulence compounds to limit

this troubling disease.

Materials and Methods

Bacterial strains
All WT bacterial strains utilized were derivatives of UTI89,

including tagged, isogenic UTI89 isolates, kanamycin resistant

UTI89 attHK022::COM-GFP, kanamycin resistant UTI89 with re-

integrated UTI89 FimH, spectinomycin resistant UTI89

attl::PSSH10-1, and chloramphenicol resistant UTI89

[24,47,71]. FimH mutant strains, DompA, Dkps, DhlyA, DcpxR
were all previously published [47,51,52](Nagamatsu et al. in

review).

Mouse infections
Bacteria for infection were prepared as previously described

[72]. Six to seven week old female C3H/HeN (Harlan) or C57BL/

Fig. 6. Microarray gene changes for C3H/HeN and C57BL/6J bladders. A) C3H/HeN heatmap analysis for mice that resolved infection,
experienced chronic cystitis, or were mock infected with PBS. B) C57BL/6J heatmap analysis for mice mice that resolved infection, experienced
chronic cystitis, or were mock infected with PBS. Depicted is a representative analysis of two biological and three technical replicates.
doi:10.1371/journal.ppat.1004599.g006
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6J (Jackson) were transurethrally infected with a 50 mL suspension

containing 56106–26107 CFU of UTI89 or relevant mutant in

PBS under 3% isofluorane. Protamine Sulfate (Sigma) was

dissolved in PBS and caspase 1/11 inhibitor Ac-YVAD-CMK

(BACHEM) was dissolved in DMSO and transurethrally inocu-

lated into the bladder. At indicated timepoints after infection, mice

were anesthetized and infected again. Venous blood was obtained

at 24 hpi, just prior to re-infection, by submandibular puncture

and centrifuged at max speed at 4uC in Microtainer serum

separation tubes (BD) and stored at 220uC until use. Cytokine

expression was measured using the Bio-Plex multiplex cytokine

Group I bead kit array (Bio-Rad), which measures 23 cytokines.

Urine was obtained by gentle suprapubic pressure and serially

diluted and plated on appropriate antibiotic plates. Mice were

sacrificed by cervical dislocation under isofluorane anesthesia, and

their organs were aseptically removed. Chronic cystitis was

determined if animals had urine titers.104 CFU/mL at 1, 7,

14, 21 dpi and bladder titers.104 CFU at sacrifice at 28 dpi [37].

Animals that resolved infection and had a recurrence or had

resolved the infection with reservoir titers.104 CFU were marked

in red and considered to have resolved the chronic infection.

Organ titers shown are the total bacterial burden.

Ethics statement
The Washington University Animal Studies Committee ap-

proved all mouse infections and procedures as part of protocol

number 20120216, which was approved 01/11/2013 and expires

01/11/2016. Overall care of the animals was consistent with The
guide for the Care and Use of Laboratory Animals from the

National Research Council and the USDA Animal Care Resource
Guide. Euthanasia procedures are consistent with the ‘‘AVMA

guidelines for the Euthanasia of Animals 2013 edition.’’

Microarray experiments
C3H/HeN or C57BL/6J mice were infected as discussed

above. After 28 days, animals that had developed chronic cystitis,

resolved the infection, or aged matched PBS controls were

sacrificed for RNA isolation. Upon sacrifice, 5 bladders from each

condition were immediately pooled and homogenized in Trizol for

RNA isolation according to the manufacture’s suggested protocol.

DNase treatment was performed to remove any contaminating

DNA before submission to the Genome Technology Access

Center for sample processing and hybridization on Affymetrix

Mouse Gene 1.0 chips in triplicate. Data was analyzed using the

Partek Genomics Suite. Gene lists were compiled using fdr-

ANOVA analysis with a significance cut off of p,0.001.

Experiments were repeated twice with a representative analysis

shown. Microarray data are available in the ArrayExpress

database (www.ebi.ac.uk/arrayexpress) under accession number

E-MTAB-2930.

Scanning electron microscopy
Mice were infected as described above. Bladders were

aseptically harvested, bisected, and splayed. Bladders were fixed

in 2.0% glutaraldehyde in 0.1M sodium phosphate buffer

overnight. Bladders were then washed three times with 0.1M

sodium phosphate buffer and de-ionized water before being fixed

in 1.0% osmium tetroxide. Bladders were washed and then critical

point drying was performed with absolute ethanol and liquid

carbon dioxide. Sputter coating was performed with gold-

palladium using a Tousimis Samsputter-2a. Images were obtained

on a Hitachi S-2600H operated at 20 kV accelerating voltage.

Statistical analysis
Datapoints below the limit of detection (LOD) were set to the

LOD for graphical representation and statistical analysis. For

cytokine data, values out of the range of the instrument were not

included for analysis. Fisher’s exact test was utilized to determine

differences between groups for rates of chronic cystitis. One-way

ANOVA was utilized to determine whether any cytokine

differences were apparent and pairwise assessment of median

values was determined by Mann-Whitney test. Unless otherwise

indicated, p,0.05 was considered significant. Analyses were

performed in Graphpad Prism 5.0.

Supporting Information

S1 Fig. Bacteria replicate on the bladder surface during
chronic cystitis. Bladders of C3H/HeN and C57BL6 mice

were splayed four wpi and fixed in glutaraldehyde. A–B) Chronic

C3H/HeN bladders. C–D) Chronic C57BL/6J bladders. E) Mock

infected C57BL/6J bladder shown for comparison.

(TIF)

S1 Table Genes with highest fold change of chronic
cystitis versus resolved.

(PDF)
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