
Citation: Chen, C.; Chandra, S.;

Seo, H. Automatic Pavement Defect

Detection and Classification Using

RGB-Thermal Images Based on

Hierarchical Residual Attention

Network. Sensors 2022, 22, 5781.

https://doi.org/10.3390/s22155781

Academic Editor: Gwanggil Jeon

Received: 27 June 2022

Accepted: 22 July 2022

Published: 2 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Automatic Pavement Defect Detection and Classification Using
RGB-Thermal Images Based on Hierarchical Residual
Attention Network
Cheng Chen 1 , Sindhu Chandra 2 and Hyungjoon Seo 2,*

1 Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China;
cheng.chen19@student.xjtlu.edu.cn

2 Department of Civil Engineering and Industrial Design, University of Liverpool, Liverpool L69 3BX, UK;
s.chandra@liverpool.ac.uk

* Correspondence: hyungjoon.seo@liverpool.ac.uk; Tel.: +44-(0)151-795-7312

Abstract: A convolutional neural network based on an improved residual structure is proposed to
implement a lightweight classification model for the recognition of complex pavement conditions,
which uses RGB-thermal as input and embeds an attention module to adjust the spatial, as well as
channel, information of the images. The best prediction accuracy of the proposed model is 98.88%,
while the RGB-thermal is used as input and an attention mechanism is used. The attention mechanism
increases the attention to detail of the image and regulates the use of image channels, which enhances
the final performance of the model. It is also compared with state-of-the-art (SOTA) deep learning
models, indicating our model has fewer parameters, shorter training time, and higher recognition
accuracy compared to existing image classification models. A visualization method incorporating
gradient-weighted class activation mapping (Grad-CAM) is proposed to analyze the classification
results, comparing the data the model learns from the images under different input data.

Keywords: pavement defect classification; deep learning; hierarchical residual attention network;
attention mechanism; visual interpretation

1. Introduction

With the growth of city traffic and the resulting increase in traffic volume over recent
years, the timely maintenance of paved roads has become very important. Pavements
can be damaged due to the effects of temperature change and climate change [1]. Water
penetration into pavement cracks can exacerbate damage, resulting in structural defects in
pavements [2]. Damage to the pavement not only affects the safety of the driver but can
also cause casualties due to traffic accidents. Therefore, immediate maintenance is required
for safe road operation.

Currently, pavement crack detection is performed manually, and repair mainly in-
volves filling the cracks with sealant. Automated pavement detection systems have been
studied, but previous studies have mainly focused on crack extraction. However, for com-
plex road conditions, existing methods are limited in identifying elements in the pavement,
including cracks [3]. Multi-sensor fusion processing ideas for complex pavement conditions
have been studied with technologies such as acceleration sensors [4], infrared sensors [5],
and multi-vision cameras [6]. 3D laser scanning can also provide additional identification
information to optical images of roads [7]. Therefore, studies that identify damage to the
pavement through various sensors have been conducted as a flow of research. This study
also has limitations in that it is not possible to inspect all pavements at the national level.
3D laser scanning has also been used recently to detect the displacement and damage of
infrastructure [8–13]. Zhao et al., (2022) used a machine learning algorithm to detect the
movement of the retaining structure [14].
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Additionally, there has been a shift from manual to automatic pavement defect detec-
tion due to the advancements in computer vision and artificial intelligence (AI). Automatic
detection systems are expected to identify different pavement cracks quickly under various
conditions, even under adverse weather conditions [15]. However, because a single sensor
cannot handle the challenging conditions, and a basic detection model also cannot handle
the redundant data from several sensors, it raises growing challenges for defect detection
modeling [16]. To this end, data acquisition requires the selection of appropriate sensors to
quantify the pavement damage. Acquisition systems based on optical devices are easier
to develop and operate than any other type of system (vibration, LiDAR (light detection
and ranging)) due to their reduced sensitivity to motion and vibration. However, the
use of optical devices alone cannot eliminate the effect of factors such as illumination on
the accuracy of quantifying pavement damage. Multi-sensor synergy can improve and
compensate for the lack of information from a single sensor [17]. Kim et al., [18] introduced
a new deep learning framework for camera and LiDAR sensor fusion. Chen et al., [19]
proposed a simple fusion method using 50% transparency of thermal images and RGB
images, which effectively improves recognition accuracy. Thermal imaging tends to have
better real-time efficiency and lower costs [20]. Thermal images are also used for pavement
crack detection, where the surface temperature distribution pattern is directly related to the
pavement crack profile and can be used as an indicator of crack depth [21].

Another trend for crack detection in road pavements is to analyze raw data using
algorithms such as deep learning and machine learning as data analysis technology ad-
vances. For automatic pavement detection, studies using acceleration data and studies
using images are in progress [19,22]. Image processing achieves image recognition through
machine learning, and machine learning can be divided into conventional machine learning
and deep learning [23]. Image processing can be required to remove various elements of
the pavement from the image data [24]. Zou et al., proposed a shadow removal algorithm
before crack extraction to remove the effect of shadows on road surface detection [25].
However, crack recognition requires the support of some machine learning algorithms,
such as Support Vector Machine (SVM), Radial Basis Function (RBF), K-Nearest Neighbor
(KNN), and Random Decision Forest [26,27]. Principal component analysis (PCA) was
used in conjunction with machine learning to speed up single-crack identification [22].
Xu et al., [28] aimed to assess pavement damage by extracting cracks and potholes, classify-
ing them from vision. Due to their better generalization and portability, convolutional neu-
ral networks (CNNs) have been gradually applied to extract crack features in combination
with image processing methods [29]. Sholevar et al., [30] proposed a deep convolutional
neural network (CNN) as a detection system for asphalt pavement cracks, which is capable
of robust detection and classification of pavement cracks. Li et al., [31] proposed a new
method to automatically classify image blocks cropped from 3D pavement images using a
CNN model. A deep learning-based supervised method with the ability to handle different
pavement conditions is proposed [32]. An autonomous measurement scheme is introduced
to collect, analyze, and map image-based distress data in real-time [33]. The stability
and superiority of the optimal algorithm were verified through testing and comparison
studies [34]. To address these issues, an instance segmentation network for pavement crack
detection was proposed [35].

With the advancement of deep learning, the more useful sensor data and deeper and
wider networks mean that more information can be obtained, but at the same time, it may
make the input information redundant and invalid, which may reduce the performance of
the model. Hu et al., [36] proposed SENet (Squeeze and Excite Network) to try to solve
this problem. SENet uses a new feature recalibration strategy to automatically obtain the
importance of each feature channel. Woo et al., [37] proposed CBAM (Convolutional Block
Attention Module), which is a feed-forward convolutional neural network that combines
spatial and channel attention mechanisms. Since it is a lightweight module, it can be
integrated into a convolutional neural network structure to enhance the performance of the
multi-sensor detection model.
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Considering the limitations of existing pavement defect detection methods based on
optical images, such as the susceptibility to uneven illumination and the false detection
rate for complex road conditions, an effective CNN framework is proposed to process RGB-
thermal images for pavement defect classification of complex pavement conditions. Deep
learning networks based on hierarchical residual networks and attention mechanisms are
proposed, inspired by hierarchical residual networks for effectively extracting multiscale
features and attention mechanisms for reassigning weights to multi-sensor data. The
proposed framework merges residuals into the network, which solves the problem of
increasing computational complexity and the number of parameters due to the stacking of
convolutional layers in traditional convolutional neural networks. The proposed model is
trained to learn one weight per input to emphasize important features and ignore irrelevant
features, which assigns a weight to the input information from multi-sensors, thus filtering
out information that is not effective for classification performance. In addition, to visualize
the most typical feature information, we compute an attention map by mapping with a
re-weighted depth feature map. The results of the AvgPool and MaxPool layers in the
attention module are fed to two 1D convolutions and a kernel-size value-adjusted 1D
convolution to qualitatively analyze the effectiveness of the network classification. This
paper is structured as follows: The research dataset in this study is described in Section 2.
Section 3 provides a specific description of the proposed model. Section 4 describes the
main results of our study. In Section 5, we discuss the limitations of the study and possible
further work, followed by the conclusion section (Section 6).

2. Dataset and Preprocessing of the Thermal Image

All pavement distress data were obtained in Liverpool, UK. Nine pavement distress
types were considered, i.e., transverse cracks, longitudinal cracks, alligator cracks, joints
or patches, potholes, manholes, shadows, road markings, and oil markings. The FLIR
ONE camera connected to a phone is used for data acquisition, where the FLIR ONE’s
built-in application displays real-time thermal infrared images and acquires both RGB
and thermal images. The images were subsequently extracted through the MATLAB API
interface provided by FLIR. Figure 1 shows RGB, thermal, and its fusion image samples
of the pavement defects and detectable markers. Each image is captured separately to the
RGB (red, green, blue) image and the thermal image. The fusion image has four layers
(Red, green, and blue) and is obtained by overlaying the RGB and thermal image and
used in the subsequently proposed network. Usually, the RGB image shows the texture
and color characteristics of the pavement defects and markers, while the thermal image
shows the temperature differences, which also reflect the material and depth differences.
Infrared acquisition data are easily affected by ambient temperature, and this experiment
uses a passive heat source for acquisition, so the collected temperature data are changed
by the seasonal influence. To eliminate the effect of ambient temperature, the thermal
image preprocessing in Section 3.2 is described in detail. Since the RGB images and thermal
images were acquired simultaneously by FLIR ONE, both images have been subjected to
an in-instrument-based alignment. After completing the data collection, the images were
manually classified and labeled.

As shown in Figure 1, the characteristics of the thermal and optical images can be
found, and the red color in the thermal image has a higher temperature. It is obvious from
Figure 1 that the crack area in thermal images is more obvious than in RGB images. On
the contrary, the texture images of the cracks are not obvious in the RGB images. Areas
with asphalt or oil stains are more visible in the thermal image, which applies to joints and
oil marks, because asphalt and oil materials have better heat absorption properties with a
heterogeneous temperature difference. On the other hand, the manhole areas have lower
temperatures than the normal pavement areas because of the general separation between
them. In addition, the potholed areas seem to have higher roughness and slower heat
absorption properties, which leads to a lower temperature distribution. Pavement markings
(usually white or yellow markings) show lower temperatures (than normal pavement) due
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to their low heat absorption properties. Finally, they show a lower temperature distribution
than normal pavement due to the shadows blocking the sunlight. The data are tagged with
the category at the time of collection, and the tagged data are collected in different folders.
The number of each distress type in the dataset is shown in Table 1.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 20 
 

 

eas have lower temperatures than the normal pavement areas because of the general 

separation between them. In addition, the potholed areas seem to have higher roughness 

and slower heat absorption properties, which leads to a lower temperature distribution. 

Pavement markings (usually white or yellow markings) show lower temperatures (than 

normal pavement) due to their low heat absorption properties. Finally, they show a lower 

temperature distribution than normal pavement due to the shadows blocking the sun-

light. The data are tagged with the category at the time of collection, and the tagged data 

are collected in different folders. The number of each distress type in the dataset is shown 

in Table 1. 

 

Figure 1. RGB, thermal, and fusion image samples of the pavement defects and detectable markers. 

Table 1. Description of dataset. 

Distress 

Types 

Transverse 

Cracks 

Longitudinal 

Cracks 

Alligator 

Cracks 

Joints or 

Patches 
Potholes Manholes Shadows 

Road 

Markings 

Oil Mark-

ings 

amount 2745 2800 2705 2700 2695 2730 2690 2700 2755 

3. Methodology 

3.1. Overview of the Proposed Model 

A hierarchical residual network with an attention mechanism was built to complete 

the pavement defect classification. The overall architecture of our proposed network is 

shown in Figure 2. To fully highlight the spatial information of images and to also better 

extract information from the RGB images and thermal images, a hierarchical residual 

architecture was used in the proposed model. Specifically, the front-end structure with 

the hierarchical residual block took the image as input to extract features, which include 

the R, G, B, and thermal channels of the pavement image. Since the value of the thermal 

image is the extracted temperature information, it is not applicable to the convolution 

operation. The temperature information was mapped to the pixel grayscale value of [0, 

255]. The convolution operation in the network and the hierarchical residual block were 

used to extract the features. The attention module recalibrated the spatial features at dif-

ferent scales, and also assigned different weights to the features of the images from dif-

ferent sensor inputs. The fused adaptive weighted channels and spatial features were 

input into the classification module, which can identify the pavement defect more finely 

and filter the feature information of non-defect parts to improve the accuracy of model 

recognition. Finally, the SoftMax layer was used to calculate the classification probability 

for each defect type. The different components of the proposed approach are described in 

Figure 1. RGB, thermal, and fusion image samples of the pavement defects and detectable markers.

Table 1. Description of dataset.

Distress
Types

Transverse
Cracks

Longitudinal
Cracks

Alligator
Cracks

Joints or
Patches Potholes Manholes Shadows Road

Markings
Oil

Markings

amount 2745 2800 2705 2700 2695 2730 2690 2700 2755

3. Methodology
3.1. Overview of the Proposed Model

A hierarchical residual network with an attention mechanism was built to complete
the pavement defect classification. The overall architecture of our proposed network is
shown in Figure 2. To fully highlight the spatial information of images and to also better
extract information from the RGB images and thermal images, a hierarchical residual
architecture was used in the proposed model. Specifically, the front-end structure with the
hierarchical residual block took the image as input to extract features, which include the R,
G, B, and thermal channels of the pavement image. Since the value of the thermal image is
the extracted temperature information, it is not applicable to the convolution operation.
The temperature information was mapped to the pixel grayscale value of [0, 255]. The
convolution operation in the network and the hierarchical residual block were used to
extract the features. The attention module recalibrated the spatial features at different
scales, and also assigned different weights to the features of the images from different
sensor inputs. The fused adaptive weighted channels and spatial features were input into
the classification module, which can identify the pavement defect more finely and filter
the feature information of non-defect parts to improve the accuracy of model recognition.
Finally, the SoftMax layer was used to calculate the classification probability for each defect
type. The different components of the proposed approach are described in detail in the
following section. Table 2 shows the relevant parameters of the proposed model.
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Table 2. Proposed model parameters.

Layer Kernel Stride Output Shape

Input (None,4,256,256)

Conv2d 1 3 × 3 2 (None,64,128,128)

BN 1 and ReLU (None,64,128,128)

Max pool 1 2 × 2 (None,64,64,64)

Conv2d 2 3 × 3 1 (None,128,64,64)

BN 2 and ReLU (None,128,64,64)

Max pool 2 2 × 2 (None,128,32,32)

attention 1 (None,128,32,32)

HR-Block 1 (None,128,32,32)

Max pool 3 2 × 2 (None,128,16,16)

attention 2 (None,128,16,16)

HR-Block 2 (None,128,16,16)

Max pool 4 2 × 2 (None,128,8,8)

attention 3 (None,128,8,8)

HR-Block 3 (None,128,8,8)

average pool 2 × 2 (None,128)

SoftMax (None,9)

3.2. Thermal Transfer to Grayscale Image

In order to facilitate the convolution of the thermal image in the model, the temperature
of the thermal image was mapped to the pixel grayscale value of [0, 255]. As shown in
Equation (1), the temperature interval is max(T)− min(T), after scaling the temperature
mapping to [0, 1]. Then, it was multiplied by 255 to obtain the thermal grayscale image.
The result is shown in Figure 3. The grayscale map reflects the same information details as
the original thermal image, which is more convenient for the operation of convolution.

grayscale =
T − min(T)

max(T)− min(T)
× 255 (1)
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3.3. Hierarchical Residual Block

For traditional deep learning networks, we generally believe that the deeper the
network (more parameters), the better the nonlinear representation that the network can
learn. When increasing the number of network layers, the network can perform more
complex feature pattern extraction, so better results can be achieved, in theory, when the
model is deeper. However, as the depth of the network increases, the accuracy reaches
saturation and then decreases rapidly [38]. This network degradation problem makes it
difficult to train deep learning models because more layers lead to larger training errors,
causing gradients to disappear. The key idea of residual learning is to introduce constant
mapping into the backbone path of the network structure [39]. In other words, if the
number of layers is deepened, instead of simply stacking more layers, one layer is stacked
so that the output after stacking is the same as the output before stacking to ensure identity
mapping. In the training process of the deep residual network, the underlying error can
be propagated through a shortcut, which can effectively solve the gradient disappearance
problem. Residual learning does not require additional parameters, so it neither adds
additional parameters nor increases the computational complexity compared with the
original network [40].

Based on the residual learning network, extracting multi-scale features is crucial for
the image classification task, and can also effectively add multiple available receptive fields
to expand the feature extraction under different fields of view. Thus, it will increase the
diversity of features to improve the prediction accuracy of the network. Figure 4 illustrates
the general structure of the residual and hierarchical residual blocks. The hierarchical
residual block is updated from the residual block. The hierarchical residual block divides
the input feature maps into several groups, and the feature maps of each subgroup are
executed by different layers of the convolution operator. In the layered residual block,
different subgroups of the feature maps have different perceptual fields, so the combined
feature maps can represent multi-scale features and therefore increase the perceptual field
of the network. Figure 4b shows a hierarchical residual cell with 4 scales, where ⊕ denotes
the connection operation.
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3.4. Attentional Mechanisms

In cognitive science, due to bottlenecks in information processing, humans selectively
attend to a portion of all information while ignoring the rest of the visible information.
Inspired by these, attention mechanisms can recalibrate input features by explicitly estab-
lishing input weight assignment relationships. Traditional classification models using a
single sensor as the input assign equivalent weights to all pixels and RGB image channels
separately. In fact, different spatial pixels contribute unequally to the discrimination of
the classification results, while the inputs from different sensors contribute unequally to
the discrimination of the classification results. For example, these interfering pixels can
weaken the discriminative power of spatial-channel features and thus affect the classifica-
tion accuracy. If the weights of these pixels or channels that are detrimental to classification
can be suppressed, the discriminability of spatial-channel features will increase. Therefore,
it is feasible and beneficial to introduce an attention mechanism into the classification
of multi-sensor data as input, which can focus more on discriminative valid spatial and
channel features and weaken the unfavorable information for classification. Therefore,
we employ both the channel attention module and spatial attention module to recalibrate
channel and spatial features at multiple scales. The attention module used in this paper is
derived from CBAM (Convolutional Block Attention Module) [37], as shown in Figure 5.
Attention can be performed in both channel and spatial dimensions. The two attention
modules are described in detail below.
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The features input into the attention module are generally C × H × W, where C is
the number of channels and W and H are the width and height of the reduced image
obtained after convolution, respectively. The application of channel attention is to assign
different weights to the channels of the image to improve the representation capability of
the model, and in this paper, channel attention weights indicate whether to focus on or
ignore RGB-thermal channels. The structure of the channel attention module is shown in
Figure 6. Channel attention emphasizes reducing channel redundancy and constructing
channel attention graphs by capturing the inter-channel relationships of the features. Given
a feature map in the input layer, feature squeezing and aggregation are handled by average
and max pooling, which are executed simultaneously to produce two different feature
maps. Then, they are fed into a shared network consisting of two dense layers for training.
In summary, the channel attention is calculated as follows:

MC = σ
(

FC
(

Maxpool(X)

)
+ FC

(
Avgpool(X)

))
(2)

where σ denotes the sigmoid function and Maxpool is the maximum pooling operation,
while Avgpool is the average pooling operation.

The spatial layer is used to extract the relationships in the internal space and calculate
which small piece should be focused on. The process is shown in Figure 7, where the
feature map is convolved through a 7 × 7 2-dimensional convolutions, after which it is fed
into the sigmoid layer to compute the spatial attention map.



Sensors 2022, 22, 5781 8 of 16
Sensors 2022, 22, x FOR PEER REVIEW 9 of 20 
 

 

 

 

Figure 6. Illustration of channel attention operation. 

The spatial layer is used to extract the relationships in the internal space and calcu-

late which small piece should be focused on. The process is shown in Figure 7, where the 

feature map is convolved through a 7 × 7 2-dimensional convolutions, after which it is 

fed into the sigmoid layer to compute the spatial attention map. 

  

Figure 6. Illustration of channel attention operation.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 20 
 

 

 

 

Figure 7. Illustration of the spatial attention operation. 

3.5. Visualization of Pavement Defective Regions 

The use of classification models enables one to obtain enough classification accura-

cy, but the use of evaluation criteria alone does not allow one to judge the results intui-

tively. It tries to visualize the defect region and use it to judge the advantage of 

RGB-thermal as input to the results. We use the gradient-weighted class activation map-

ping (Grad-CAM) visualization method, which can be used to visualize defects without 

changing the structure. Grad-CAM solves the back-propagation vanishing gradient 

problem by partial differentiation. Grad-CAM is summarized in Equations (3)–(5), where 

𝑎𝑘
𝑐  is the weight of layer A at channel k. This is calculated by using backpropagation with 

the prediction fraction 𝑦𝑐  of category c at layer A. The gradient information 

back-propagated to layer A is then used to calculate the importance of each channel k of 

feature layer A. The data from each channel of feature layer A are weighted and summed. 

Finally, the Grad-CAM is obtained by the ReLU activation function. 

𝑎𝑘
𝑐 =

1

𝑧
∑ ∑

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘

𝑗𝑖
 (3) 

ReLU = max(0, 𝑥) (4) 

𝐿Grad−CAM
𝑐 = ReLU(∑𝑎𝑘

𝑐

𝑘

𝐴𝑘) (5) 

4. Experiments Sitting 

4.1. Implementation Details of the Experiments 

The training software environment is based on the pytorch platform. The operating 

system is Windows 10. All the experiments were conducted at a workstation equipped 

with an Intel 10400 6-Core CPU, 32 GB memory, and Nvidia v100 32 GB CPU card. De-

pending on the convergence of the accuracy curves of the training and validation sets, the 

early stopping method is used to prevent overfitting. After each iteration, the relevant 

parameters are automatically saved. An adaptive learning rate algorithm is used to au-

tomatically adjust the learning rate according to the convergence of the accuracy curve. 

The main objective of this study is to investigate the classification performance of a deep 

learning network based on a hierarchical residual network and attention mechanism for 

multiple pavement defects and compare it with VGG 19, ResNet50 and Inception V3. The 

dataset was divided into a training set, test set, and validation set at a ratio of 6:2:2. 

To maximize the performance of the experimental setup and overcome the problem 

of the large data volume, we set the batch size value to 64. In training, the training data 

are iteratively fitted with suitable network parameters. As the number of epochs in-

creases, the number of iterations to update the weights in the neural network increases, 

and the curve gradually moves from the initial unfitted state to the optimized fit, and the 

training automatically saves the optimal model. Our dataset has nine pavement defect 

types, which is a multi-classification problem. We use the cross-entropy loss function. For 

Figure 7. Illustration of the spatial attention operation.

3.5. Visualization of Pavement Defective Regions

The use of classification models enables one to obtain enough classification accuracy,
but the use of evaluation criteria alone does not allow one to judge the results intuitively.
It tries to visualize the defect region and use it to judge the advantage of RGB-thermal
as input to the results. We use the gradient-weighted class activation mapping (Grad-
CAM) visualization method, which can be used to visualize defects without changing the
structure. Grad-CAM solves the back-propagation vanishing gradient problem by partial
differentiation. Grad-CAM is summarized in Equations (3)–(5), where ac

k is the weight
of layer A at channel k. This is calculated by using backpropagation with the prediction
fraction yc of category c at layer A. The gradient information back-propagated to layer
A is then used to calculate the importance of each channel k of feature layer A. The data
from each channel of feature layer A are weighted and summed. Finally, the Grad-CAM is
obtained by the ReLU activation function.

ac
k =

1
z ∑i ∑j

∂yc

∂Ak
ij

(3)

ReLU = max(0, x) (4)

Lc
Grad−CAM = ReLU

(
∑
k

ac
k Ak

)
(5)

4. Experiments Sitting
4.1. Implementation Details of the Experiments

The training software environment is based on the pytorch platform. The operating
system is Windows 10. All the experiments were conducted at a workstation equipped with
an Intel 10400 6-Core CPU, 32 GB memory, and Nvidia v100 32 GB CPU card. Depending on
the convergence of the accuracy curves of the training and validation sets, the early stopping
method is used to prevent overfitting. After each iteration, the relevant parameters are
automatically saved. An adaptive learning rate algorithm is used to automatically adjust
the learning rate according to the convergence of the accuracy curve. The main objective of
this study is to investigate the classification performance of a deep learning network based
on a hierarchical residual network and attention mechanism for multiple pavement defects
and compare it with VGG 19, ResNet50 and Inception V3. The dataset was divided into a
training set, test set, and validation set at a ratio of 6:2:2.
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To maximize the performance of the experimental setup and overcome the problem
of the large data volume, we set the batch size value to 64. In training, the training data
are iteratively fitted with suitable network parameters. As the number of epochs increases,
the number of iterations to update the weights in the neural network increases, and the
curve gradually moves from the initial unfitted state to the optimized fit, and the training
automatically saves the optimal model. Our dataset has nine pavement defect types,
which is a multi-classification problem. We use the cross-entropy loss function. For the
multiclassification problem, the derivation is simple and is only related to the probability
of the correct category. Since the Adam optimizer is good at handling sparse gradients and
non-smooth targets, has small memory requirements, and is suitable for large datasets, we
use the Adam optimizer for model training with the learning rate set to 0.001 to accelerate
the network convergence.

4.2. Evaluation Metrics

To assess the accuracy of the results produced by the models considered, the following
set of evaluation criteria are considered in our investigation. True Positive (TP) and True
Negative (TN) represent the number of correctly predicted pavement defect types, respec-
tively. False Positives (FP) and False Negatives (FN) represent the number of incorrectly
predicted pavement defect types. More specifically, we use the Accuracy, Precision, Recall,
and F1score to evaluate the model.

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

Recall =
TP

TP + FN
(7)

Precision =
TN

TN + FP
(8)

F1score = 2 × Precision × Recall
Precision + Recall

(9)

5. Results and Analysis
5.1. Performance Comparison of the Proposed Model

To investigate the classification performance of the proposed RGB-thermal fusion
classification model, and also evaluate the effectiveness of the different input images
(RGB or RGB-Thermal images) compared to the proposed model, the comparison of the
performance is listed in Table 3. To achieve these comparisons, for model comparison, it
includes a comparison with existing mainstream classification networks based on RGB
images as input. For the comparison of the effectiveness of the attention mechanism, this
part attempts to analyze the effect of using, as well as not using, attention in the proposed
network on the classification rate of pavement defects. The effectiveness of the different
input images was also compared by using different input images in the proposed model.

The experimental results show that the testing accuracy of the proposed RGB-thermal
fusion classification model with the attention mechanism using RGB-thermal images is
98.88% for the classification of multiple types of pavement distresses, which achieved the
best accuracy of all comparison models. When the attention module is not embedded in the
proposed model, likely due to the specificity of different sensor images, the classification
accuracy of the test set is reduced to 94.74%. This shows that the attention mechanism can
effectively extract effective features by adjusting the weights of channels as well as spatial.
Weight-adjustment-based fusion for combinations between multiple sensors contributes to
the final classification accuracy.

In addition, we trained and compared other image classification networks. Among
them, the test set accuracies of VGG 19, ResNet50, and Inception V3 were 95.33%, 96.63%,
and 96.94%, respectively. It is worth noting that since these networks are proposed based
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on RGB images, only RGB images are used here as input. The final testing accuracy of
all models using RGB as inputs is approximately 96%. This also shows that the existing
models using RGB as input are able to achieve relatively good prediction results. The
final accuracy obtained is not very different. Meanwhile, the proposed network with the
attention mechanism using RGB images does not effectively improve the accuracy, as it
improved the testing accuracy from 95.94% to 96.26%.

Table 3. Data results of different models’ training and testing.

Model Training
Accuracy %

Training
Loss

Testing
Accuracy % Testing Loss Precision % Recall % F1-Score %

Vgg 19 98.23 0.0488 95.33 0.023 94.37 95.12 94.74
ResNet50 98.46 0.0496 96.63 0.045 96.47 97.01 96.74

InceptionV3 98.17 0.0469 96.94 0.32 96.01 96.21 96.11
Proposed model

(RGB without AM) 98.26 0.0453 96.26 0.0512 96.32 96.27 96.29

Proposed model
(RGB with AM) 98.86 0.0473 96.99 0.0573 97.01 96.46 96.73

Proposed model
(RGBT without AM) 96.32 0.083 95.24 0.1123 95.54 94.20 94.87

Proposed model
(RGBT with AM) 99.12 0.0451 98.88 0.0452 99.12 98.21 98.66

Comparing the training loss curves (shown in Figure 8) of all models, it is found
that the proposed RGB-thermal fusion classification model with the attention mechanism
(proposed_rgbt-at in Figure 8) has a poor network fitting ability in the first five epoch
periods. With the continuous training of the network, the fitting ability of the model
gradually improved. The network converges and is stable. Compared to the proposed
model without the attention mechanism (proposed_rgbt shown in Figure 8), it converges
at the same rate, but the final validation accuracy is lower than the proposed_rgbt-at. In
contrast, proposed_rgb and proposed_rgb-at, which only use RGB as the input, converge
faster during training but achieve lower validation accuracy than proposed_rgbt-at during
validation. This indicates that when using rgb-thermal images as input, more useful
features for classification can be input, and the attention mechanism can cull these input
features from both RGB and thermal images to achieve better prediction accuracy.

Since there is a lack of existing classification models using rgb-thermal as the input, we
compare models that also use RGB as input. As we can see from the training convergence
speed, both proposed_rgbt and proposed_rgb-at are faster than inception V3, ResNet V3,
and Vgg19. Even the proposed_rgbt-at, which uses rgbt as the input, converges faster than
inception V3, ResNet V3, and Vgg19 in the training stage. It shows that the proposed model
is able to guarantee better prediction accuracy with faster training convergence.

The running efficiency of the model is also a criterion for the goodness of the model.
Table 4 shows the model size and training time. We compare all models in terms of model
size and training time. The total training time is the time it takes for the model to start
training and finish, while the time per calendar time is the total training time divided by the
total calendar time. The experimental results show that the proposed model (RGB without
AM) performs best in terms of the model size and training time, with a model size of
53.66 MB and a training time of 41.76 min. When RGB-thermal is used as the input, the
model size, training time, and inference time increase, with a model size of 55.24 MB.
It should be mentioned here that rgb-thermal has a longer read time for a 4-channel tif
file format. Referring to Table 4, it can be seen that our model outperforms InceptionV3,
ResNet50, and vgg19 in terms of model size, training time, and inference time. The study
shows that our model has a smaller size, shorter training time, and higher accuracy.
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Table 4. Model size and training time.

Model Size (MB) Time per Epoch (min) Total Training Time (min)

Vgg 19 845.05 5.78 578

ResNet50 432.21 3.84 384

InceptionV3 300.54 3.11 311

Proposed model
(RGB without AM) 53.66 1.044 41.76

Proposed model
(RGB with AM) 55.24 1.032 41.28

Proposed model
(RGB-Thermal without AM) 53.91 1.89 75.6

Proposed model
(RGB-Thermal with AM) 55.24 1.9 76

5.2. Classification Results of the Proposed Model

We used the classification results of the proposed model to compare the results of the
comparison model to verify the effectiveness of the model in classifying single pavement
defects. Figure 9 shows the use of the proposed rgbt-at model to identify various pavement
damage images. The experimental results show that the overall testing accuracy of the
rgbt-at model for pavement defects is 98.88%. The model performs best in classifying
manholes, with an accuracy of 100%. The model was less accurate in classifying alligator
cracks, with an accuracy of 98.17%. It would incorrectly predict these as a longitudinal
crack, oil marks, or transverse crack. The chances of confusing oil marks, shadows, and
potholes were high. The reason for this may be that oil marks, shadows, and pothole
features do not differ much and have relatively similar texture, color, and temperature
characteristics, so the accuracy is low.
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Figure 10 compares the specific accuracies of different networks for different pave-
ment defects and identifiable markers. The networks using RGB images as input have
good recognition performance, except for vgg19, which performs slightly below average.
However, the network using rgbt as input without the attention mechanism instead leads
to lower recognition accuracy. The prediction accuracy of each of the compared networks
showed the same trend as the average accuracy). In conclusion, the rgbt-at network with
feature and channel selection based on the attention mechanism was able to achieve better
prediction accuracy when using rgbt as a redundant information source as input.
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5.3. Visualization and Interpretation for the Multi-Sensor Fusion Classification Model

Figures 11–13 show the Grad-CAM outputs of the networks using RGB images, ther-
mal images, and RGB-thermal images as input, respectively. As shown in the figures, the
input sample images, the output map of Grad-CAM, and the superimposed images of
Grad-CAM with the input samples are shown, respectively. In the Grad-CAM heat map,
the brighter colors indicate the regions that contribute more to the classification results in
the heat map. Correspondingly, in the Grad-CAM output image, the yellow area indicates
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a higher score for that class. As can be seen in Figure 11, Grad-CAM is able to capture
the approximate area where the classification is needed. The best results are obtained for
potholes and oil marks. On the contrary, the cracks (including alligator, longitudinal cracks,
and transverse cracks) presented in the RGB images are relatively small and cannot be
captured well in the grad-cam maps. They express color as well as texture information,
while thermal mainly expresses temperature information. As can be seen in Figure 12,
there is a clear difference in the crack region (the temperature difference is expressed as a
grayscale difference in the pixel values), and the features in the crack region have a clearer
Grad-CAM image. However, using the thermal image as input compared to the Grad-
CAM image results in poorer performance in capturing oil marks and the pothole. The
Grad-CMA image of the fused image is shown in Figure 13, and the boundary of the area
to be classified becomes more detailed and clearer. In a way, it explains why fused image
classification can achieve better classification accuracy. Overall, from the interpretation of
the results, we can find that the final trained network will focus more on the relevant parts
of the image. The more relevant parts are extracted, and the more explicit they are, the
better the prediction performance will be.
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6. Discussion

In this paper, we propose a new model for pavement defect classification using
RGB-thermal images. Furthermore, we explore the effect of the attention mechanism and
different input data (rgb and rgn-thermal) on the classification performance of the model.
The experimental results show that the model using rgb-thermal images as input improves
the classification performance of plant diseases, especially when the improved attention
mechanism is embedded in the model.

In this study, although the dataset was collected with a large number of pavement
damage images, the images were taken under controlled conditions, and only one pavement
defect or object to be detected was present in each image. This is the ideal image acquisition
condition, which has more limitations in practice, such as the infrared camera’s imaging
being affected by the outside temperature. This is reflected in the fact that the applicability
of the proposed method is unknown for complex weather conditions. We are unable to
collect data in the short term for a wide range of weather and temperature conditions. Even
due to these limitations, our proposed method presents a new idea for the classification
monitoring of pavement defects, which can be further explored in future developments for
applicability in complex weather conditions. Although our proposed model has drawbacks
in the acquisition of experimental data, our model has many advantages; specifically, our
model has higher recognition accuracy compared to existing techniques, and our model is
more lightweight with fewer parameters and shorter training time.

7. Conclusions

In this paper, a convolutional neural network for the classification of thermal im-
ages using RGB images is proposed. The classification network based on the improved
hierarchical residual module with a simplified network structure can reduce the training
parameters, shorten the training time, and improve the training stability. The hierarchi-
cal residual module, which can extract multi-scale feature information by concatenating
multiple convolutional layers with different combinations, as well as the residual block,
can also solve the degradation problem of deep networks. To verify the performance of
the model and the effect of different input images on the prediction results, our model
has higher operational efficiency and recognition accuracy with 96.99% accuracy, when
RGB images are used as input, compared to InceptionV3, ResNet50, and Vgg19. Using
the proposed model with RGB-thermal and RGB as input, RGB-thermal can achieve better
model prediction performance with 98.88% accuracy. It is also verified that after using the
attention mechanism, it is possible to adjust the trade-off of redundant input information
when multiple sensors are used as inputs. Accuracies of 95.24% and 98.88% were obtained
without and with the attention mechanism, respectively.
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