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Abstract

Neural oscillations may contain important information pertaining to stroke rehabilita-

tion. This study examined the predictive performance of electroencephalography-

derived neural oscillations following stroke using a data-driven approach. Individuals

with stroke admitted to an inpatient rehabilitation facility completed a resting-state

electroencephalography recording and structural neuroimaging around the time of

admission and motor testing at admission and discharge. Using a lasso regression

model with cross-validation, we determined the extent of motor recovery (admission

to discharge change in Functional Independence Measurement motor subscale score)

prediction from electroencephalography, baseline motor status, and corticospinal

tract injury. In 27 participants, coherence in a 1–30 Hz band between leads overlying

ipsilesional primary motor cortex and 16 leads over bilateral hemispheres predicted

61.8% of the variance in motor recovery. High beta (20–30 Hz) and alpha (8–12 Hz)

frequencies contributed most to the model demonstrating both positive and negative

associations with motor recovery, including high beta leads in supplementary motor

areas and ipsilesional ventral premotor and parietal regions and alpha leads overlying

contralesional temporal–parietal and ipsilesional parietal regions. Electroencephalogra-

phy power, baseline motor status, and corticospinal tract injury did not significantly

predict motor recovery during hospitalization (R2 = 0–6.2%). Findings underscore the

relevance of oscillatory synchronization in early stroke rehabilitation while highlighting

contributions from beta and alpha frequency bands and frontal, parietal, and temporal–

parietal regions overlooked by traditional hypothesis-driven prediction models.
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1 | INTRODUCTION

Stroke is the leading neurological cause of disability in the

United States (Feigin et al., 2021) with motor deficits constituting a

significant source of poststroke burden. A multitude of restorative

therapies such as noninvasive brain stimulation, stem cells, biologicals,

robotics, and activity- and cognitive-based therapies are emerging;

however, the heterogeneity of stroke complicates the assessment of

their efficacy. Biomarkers, particularly those developed from neuroim-

aging, can address this heterogeneity to improve understanding and
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enhance the accuracy of predicting clinical outcomes and treatment

responses. Measurements derived from structural neuroimaging are

well established in the literature and deemed ready for clinical

research implementation (Boyd et al., 2017). In contrast, the utility of

functional neuroimaging measurements from functional magnetic res-

onance imaging (fMRI), electroencephalography (EEG), and magneto-

encephalography (MEG) requires further investigation as a

developmental priority (Boyd et al., 2017). Application of these neuro-

imaging modalities in stroke to examine functional neuronal connec-

tions during rest align with the emerging view of stroke as a disease

of “circuitopathies (Meder & Siebner, 2018)”, whereby abnormal pat-

terns of connectivity contribute to behavioral deficits.

EEG is an appealing neuroimaging modality for biomarker devel-

opment given its portability, safety, accessibility across participants

and clinical sites, and low cost in comparison to fMRI and MEG. EEG

directly captures electrical potentials at the scalp surface that repre-

sents synchronized synaptic activity generated predominantly from

neural tissue comprised of hundreds of millions of neurons (Nunez,

Nunez, & Srinivasan, 2019) underlying the EEG electrode. The oscilla-

tions recorded from EEG reflect brain function including the control

and timing of neuronal firing and information transfer across brain

regions (da Silva, 1991) in addition to higher-order processes related

to cognitive and motor function (Günseli et al., 2019; Jensen, Kaiser, &

Lachaux, 2007; Knyazev, 2012; Pfurtscheller, Brunner, Schlögl, & Da

Silva, 2006; Tomassini, Ambrogioni, Medendorp, & Maris, 2017).

Resting-state EEG has provided valuable insights in stroke by

highlighting the relevance of connectivity-related measurements such

as coherence (Cassidy et al., 2020; Dubovik et al., 2012; Wu

et al., 2015). As a measure signifying the degree of consistency of

amplitude and phase differences between two signals in a specific fre-

quency band across time, many consider coherence as a surrogate

measure of communication or functional connectivity between spa-

tially distinct brain regions (Srinivasan, Winter, Ding, & Nunez, 2007).

Despite physiological differences between EEG and fMRI blood-oxy-

gen-level-dependent signals, there is a consistency of findings

between the two indicating disordered sensorimotor network func-

tional connectivity following stroke that may normalize over time in

proportion to motor recovery (Nicolo et al., 2015; Park et al., 2011).

Resting-state EEG coherence measurements may therefore serve as a

potential stroke biomarker to characterize and predict motor status

and outcomes (Saes, Meskers, Daffertshofer, van Wegen, &

Kwakkel, 2020; Wu et al., 2015) while illustrating interactions across

various neural networks beneficial to motor recovery.

Two competing lines of scientific inquiry influence the develop-

ment of stroke prediction models. Traditional hypothesis-driven

models, formulated from prior knowledge and experimentation, pro-

vide plausible biological explanation. Whereas data-driven

approaches, for example, machine learning, do not rely on these fac-

tors, and may be more suitable for large neuroimaging datasets typi-

fied by multiple regions of interest, network nodes, parcellations,

EEG/MEG leads, and frequency bands. While machine learning only

prioritizes prediction accuracy, there exist several statistical regression

approaches meant to enhance both prediction accuracy and

interpretation while remaining data-driven. Statistical regularized

regression approaches are particularly useful when there exist a high

number of predictors and the presence of multicollinearity. Regular-

ized regression approaches, including ridge (Hoerl & Kennard, 1970),

elastic net (Zou & Hastie, 2005), and least absolute shrinkage selector

operator (lasso) (Tibshirani, 1996) regression approaches, address

these shortcomings by penalizing regression coefficients to produce

simpler (more generalizable) models without overfitting the data.

Penalizations occurring in lasso regression may result in the elimina-

tion of variables from the model. In contrast, variables remain in ridge

regression models as their values may approach but never reach zero

following the application of an L2 penalty. Elastic net combines char-

acteristics of lasso and ridge regression and their respective L1 and L2

penalties (Zou & Hastie, 2005). Collectively, these regularization and

shrinkage methods for regression provide a more robust means of

estimating outcomes in stroke.

A thorough review of penalized least squares regression

approaches in neuroimaging is available elsewhere (Bunea

et al., 2011), but several pertinent examples of lasso application exist.

Work by Kohannim et al. (2012) employed lasso regression to assess

gene effects in genome-wide association studies of brain MRI images

from over 700 subjects participating in the Alzheimer's disease neuro-

imaging initiative (Kohannim et al., 2012). Recent work by Cole

implemented lasso regression when combining several neuroimaging

modalities including T1, T2-FLAIR, T2*-weighted and diffusion MRI

along with task and resting-state fMRI for brain-age prediction

(Cole, 2020). Quinlan et al. (2015) confirmed a prior multivariate

regression model using lasso regression that found CST injury and

resting-state fMRI connectivity between bilateral motor cortices best

predicted treatment gains from 3 weeks of robotic upper extremity

therapy (Quinlan et al., 2015). Notably, investigators inspected over

30 candidate predictors across subject demographics/medical history,

cognition and mood, impairment, genetics, brain injury, cortical func-

tion, and cortical connectivity categories (Quinlan et al., 2015). Finally,

Erani et al. (2020) identified a subset of electrode pairs that best diag-

nosed acute stroke in the emergency department using lasso regres-

sion (Erani et al., 2020).

Our prior EEG work in subacute stroke found (1) negative associ-

ations between beta power in leads overlying ipsilesional sensorimo-

tor and contralesional parietal cortices with motor impairment and

global stroke severity status (Wu et al., 2016), (2) positive associations

between delta power in ipsilesional sensorimotor and contralesional

frontoparietal cortices (Wu et al., 2016) with motor impairment and

global stroke severity status, and (3) reductions in delta coherence

between bilateral primary motor cortices paralleling motor recovery

(Cassidy et al., 2020). Informed by these findings, traditional

hypothesis-driven prediction models for early stroke motor recovery

would thus contain contributions from both high- and low-frequency

bands in leads overlying bilateral primary and secondary motor

regions in early stroke motor recovery.

This current study, however, took a more data-driven approach

for motor recovery prediction using lasso regression to determine the

predictive performance of neural oscillations acquired from a dense-
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array (256 leads) EEG system during early stroke rehabilitation.

Broadly, we hypothesized that applying lasso regression would iden-

tify a subset of leads and frequency bands that significantly predict

motor recovery during inpatient rehabilitation after stroke. Based on

past work underscoring the significance of resting-state oscillations in

alpha (Dubovik et al., 2013), delta (Cassidy et al., 2020), theta (Saes

et al., 2020), and beta (Wu et al., 2015) frequency bands along with

functional connections with ipsilesional primary motor cortex (iM1)

spanning both ipsi- and contralesional hemispheres, lasso regression is

an appropriate strategy for the prediction of motor recovery during

poststroke hospitalization that may reveal additional findings not oth-

erwise apparent through mainly traditional hypothesis-driven

approaches.

2 | METHODS

2.1 | Participants

Individuals with ischemic stroke or intracerebral hemorrhage aged

18 years or older were recruited from the inpatient rehabilitation facil-

ity at the University of California, Irvine Medical Center. Exclusion

criteria included substantial communication deficits, contraindication

to MRI, and a history of cranial surgery that might introduce a breach

rhythm in the EEG signal. Participants completed motor testing

around IRF admission and discharge that entailed the Upper Extremity

Fugl-Meyer (UEFM) and Functional Independence Measurement

motor subscale (FIM-motor). Participants also completed a 3-min rest-

ing state EEG recording and a structural magnetic resonance imaging

(MRI) scan around the time of IRF admission. This study received

approval from the University of California, Irvine Institutional Review

Board. All participants provided written informed consent.

2.2 | Procedures

2.2.1 | Electroencephalography acquisition and
preprocessing

A 3-min resting-state EEG recording was obtained from each awake

participant with a dense-array 256-lead Hydrocel net (Electrical Geo-

desics Inc., Eugene, OR). As in our prior studies (Cassidy et al., 2020;

Wu et al., 2015), EEG data were sampled at 1,000 Hz using a high

input impedance Net Amp 300 amplifier and Net Station 4.5.3 soft-

ware (Electrical Geodesics Inc.). Raw and unfiltered EEG data were

imported to Matlab (Mathworks, Natick, MA) for offline preprocessing

that involved the following steps: (1) re-referencing to the average

signal across all leads after the removal of 64 leads from cheek and

neck regions, (2) 50 Hz low-pass filtering, (3) segmenting the data into

1-s nonoverlapping epochs with detrending, and (4) muscle artifact

removal during visual inspection. Ocular and cardiac artifacts were

removed using an Infomax independent components analysis (ICA) in

EEGLAB (Delorme & Makeig, 2004) prior to an additional round of

visual inspection with data transformed to electrode space to assess

ICA accuracy.

2.2.2 | Electroencephalography measurements

Spectral analysis of the data using a discrete Fast Fourier transform

allowed for the computation of power and coherence at all 192 leads

from 1 to 30 Hz. Measures of relative power for each electrode were

obtained by dividing power in a specific frequency band (delta, 1–

3 Hz; theta, 3–7 Hz; alpha, 8–12 Hz; low beta, 13–19 Hz; high beta,

20–30 Hz) by the total power summed over the entire 1–30 Hz range.

Stroke lesions located in the right hemisphere were flipped to the left

hemisphere so that the left hemisphere constituted the ipsilesional

hemisphere for analysis of all participants. The primary seed region for

coherence measurements encompassed a set of predefined electrodes

(C3 and the surrounding six leads) overlying iM1. Coherence measure-

ments in subsequent analyses were calculated as the squared correla-

tion coefficient with values ranging from 0 to 1. Values approaching

1 represent consistency in phase and amplitude ratios.

2.2.3 | Magnetic resonance imaging

Structural imaging including a high resolution T1-weighted scan that

included a three-dimensional magnetization-prepared rapid gradient

echo sequence (repetition time (TR) = 8.1 ms, echo time

(TE) = 3.7 ms, 150 slices, voxel size 1 � 1 � 1 mm3) and a

T2-weighted fluid-attenuated inversion recovery (FLAIR) scan

(TR = 9,000 ms, TE = 120 ms, 33 slices, voxel size 0.58 x 0.58 x

5 mm3) were acquired on a Philips Achieva 3-Tesla scanner (Best,

the Netherlands).

2.2.4 | Lesion masks and corticospinal tract injury

Lesion masks for each participant were hand-drawn on T1-weighted

MRI scans as further informed by the T2-FLAIR scan using methods

with established reliability and validity as previously described (Burke

et al., 2014). Masks were binarized and transformed to Montreal Neu-

rological Institute (MNI) space. CST injury was assessed as the per-

centage overlap between lesion masks and a CST template generated

from 28 healthy individuals as part of the Johns Hopkins University

tractography atlas (Hua et al., 2008).

2.3 | Statistical analysis

Statistical tests were performed using Matlab and JMP Pro 14.0.0

(SAS Inc., Cary, NC). Prediction of motor recovery (admission to dis-

charge FIM-motor change) using EEG measurements was done using

the Matlab function lassoglm which includes hyperparameter optimi-

zation using leave-one-out cross-validation.
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We adjusted the degree to which the lasso penalization term (L1

parameter) was weighted relative to the ridge penalization term (L2

parameter). Adjusting the L1 parameter from 1 to 0.80, indicating a

weight of 0.2/2 for the L2 parameter, implemented both lasso and

ridge regression properties otherwise known as elastic net regulariza-

tion. We performed elastic net regression for the purpose of interpre-

tation rather than prediction given the likelihood of the identification

of additional leads. Because of issues of multicollinearity with EEG,

elastic net regression allows for the inclusion of correlated predictors

while continuing to negate uninformative leads. Since elastic net regu-

larization includes the L1 parameter, it is a more appropriate strategy

to employ for the purpose of meaningful interpretation as compared

to ridge regression where coefficients are only minimized and not set

to zero.

Motor recovery prediction using CST injury and baseline motor

impairment status were assessed with general linear regression

models. Normal distribution of the dependent variable and resulting

model errors was confirmed with the Shapiro–Wilk test.

3 | RESULTS

3.1 | Participants

A cohort of 27 individuals with predominantly mild–moderate motor

impairment (UEFM average score = 43.7 ± 19.8 points, 66 point max-

imum, higher is better) receiving inpatient rehabilitation participated.

Two participants sustained stroke-related damage to bilateral hemi-

spheres. In these cases, the ipsilesional hemisphere was classified as

the hemisphere opposite to the upper-extremity depicting more

profound motor deficit. Median time from IRF admission to study

enrollment was 5 days [IQR = 2-9]. Over the course of their hospital-

ization (average IRF length of stay = 20.9 ± 21 days), participants

made substantial motor recovery as evidenced by FIM-motor change

from IRF admission to discharge (33.8 ± 14.1 points, score ranges

from 13 to 91, with higher values representing better motor function).

Table 1 reports additional study cohort characteristics. Figure 1 illus-

trates stroke-related injury across participants.

3.2 | EEG measurements and motor recovery

Across a 1–30 Hz band, EEG coherence between leads overlying

iM1 and 16 leads located in both ipsi- and contralesional hemi-

spheres explained 61.8% of the variance in motor recovery

(Figure 2a). To further examine the spatial distribution of leads and

corresponding frequencies for the purposes of interpretation out-

side of predictive ability, we adjusted the degree to which the lasso

penalization term was weighted relative to the ridge penalization

term to reflect elastic net regularization. The elastic net model

resulted in an expanded collection of 49 leads coherent with leads

overlying iM1, explaining 46.9% of the variance in motor recovery

(Figure 2b). Model predictor (EEG leads) information from both lasso

and elastic net models are summarized in Table 2. Interpreting

parameter values across frequency bands, we find that in the low

beta band, all regression coefficients are negative indicating that

reduced coherence in low beta implied increased motor recovery,

given all other variables remain constant. In contrast, in the delta

band, the majority of regression coefficients are positive, suggesting

that increases in delta coherence with iM1 result in increased motor

recovery scores. In alpha, theta, and high beta bands, however, there

is a range of parameter weights spanning positive and negative

values suggesting that there is area specificity to how changes in

coherence are related to motor recovery in these bands. No linear

combination of the relative power values provided useful predictive

power for motor recovery (R2 = 0).

3.3 | Corticospinal tract injury and baseline motor
status

CST overlap injury (R2 = 6.2%, p = .21) did not predict a significant

percentage of variance in motor recovery. Despite collinearity likely

existing between baseline motor status (UEFM) and motor recovery

(change in FIM-motor), we also examined the amount of variance in

motor recovery explained by baseline motor status and found it to be

nonsignificant (R2 = 1.1%, p = .54).

As an additional secondary analysis, we examined if EEG coher-

ence contains distinct information about motor recovery apart from

CST injury and baseline motor status. We repeated lasso regression

procedures using iM1 EEG coherence to predict the raw residuals

acquired from the linear regression models of motor recovery involv-

ing CST injury and baseline motor status. EEG coherence with iM1

across a 1–30 Hz band predicted 54.5% and 58.6% of the variance in

error from motor recovery predictive models with CST overlap injury

and baseline motor status predictors, respectively, suggesting that

TABLE 1 Participant characteristics (N = 27)

Measures Value

Age (years) 58.3 ± 14.6

Sex (male/female) 20/7

Time poststroke (days) 12 [8–17]

Stroke type (ischemic/hemorrhagic) 21/6

Lesion side (right/left) 16/11

Lesion volume (cc) 18.7 ± 25.1

Percent CST injury 45.2 ± 35.9

NIH stroke scale (0–42 points) 3 [2–6]

Admission FIM-motor score (13–91 points) 37.9 ± 11.9

Discharge FIM-motor score (13–91 points) 71.7 ± 13.1

FIM-motor change 33.8 ± 14.1

Admission UEFM (0–66 points) 43.7 ± 19.8

Note: Values presented as mean ± SD or median [interquartile range].

Abbreviations: FIM-motor, Functional Independence Measurement motor

subscale; UEFM, Upper Extremity Fugl-Meyer.
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EEG coherence, CST injury, and a clinical assessment of baseline

motor status contain distinct information about motor recovery.

3.4 | Evolution of coherence measurements during
IRF stay

A subset of individuals completed additional EEG recordings during

their IRF stay at 1 week (visit 2, n = 18) and 2 weeks (visit 3, n = 8)

following their initial EEG recording. To better understand how key

findings identified by lasso and elastic net models evolved over time

since the initial visit at IRF admission (baseline), we examined these

serial recordings. We focused on the findings from the EEG predictor

model (Figure 2), that is, high beta iM1 coherence with leads overlying

SMA and ipsilesional parietal (iPAR) and ventral premotor (iPMv)

regions.

High beta iM1 coherence with SMA demonstrated slight

increases from baseline to visit 2 in 11 of the 18 participants

(median = 0.03, range = �0.12 to 0.15) and also from baseline to visit

3 in 6 of 8 participants (median = 0.06, range = �0.03 to 0.21).

F IGURE 1 Participant stroke masks on T1-weighted images. Lighter colors indicate greater frequency of injury across participants. C,
contralesional hemisphere; I, ipsilesional hemisphere. Two participants sustained bilateral injury

F IGURE 2 Across a 1–30 Hz frequency band, 16 electrodes identified through lasso regression explained 61.8% of FIM-motor change from
inpatient rehabilitation facility admission to discharge (a). An elastic net model identified 49 electrodes that explained 46.9% of the variance in
FIM-motor change (b). + symbol corresponds to a positive beta coefficient value in the model, otherwise the coefficient was negative. In
instances where the model identified multiple frequency bands for a given electrode, the figure displays the frequency with the greatest absolute
value of the beta coefficient for that electrode

TABLE 2 Model characteristics

Delta (1–3 Hz) Theta (4–7 Hz) Alpha (8–12 Hz) Low beta (13–19 Hz) High beta (20–30 Hz)

Lasso regression model

Number of significant leads 1 1 5 3 6

Regression coefficients (min, max) 34.3 �15.0 �8.1, 22.4 �42.8, �2.2 �20.9, 57.7

Elastic net model

Number of significant leads 4 5 11 9 20

Regression coefficients (min, max) �1.0, 18.6 �30.9, 8.2 �3.5, 8.6 �17.5, �0.8 �11.0, 35.4
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Similar findings were observed for high beta iM1 coherence with

iPAR. From baseline to visit 2, 8 of the 18 participants showed

increases in coherence (median = �0.01, range = �0.27 to 0.17), and

from baseline to visit 3 with 4 of the 8 participants demonstrating

increases (median = �0.008, range = �0.16 to 0.12). Lastly, 9 of

18 participants demonstrated slight to moderate increases in high

beta iM1 coherence with iPMv from baseline to visit

2 (median = �0.004, range = �0.44 to 0.50) and 4 of the 8 partici-

pants from baseline to visit 3 (median = 0.003, range = �0.33 to

0.16). Table 3 provides additional information from serial EEG record-

ings. Reductions in beta iM1 coherence with iPMv from baseline to

visit 3 trended toward greater motor recovery (increased FIM-motor

scores) during this time (r = 0.64, p = .06).

4 | DISCUSSION

Applying regularization techniques to feature-rich dense-array EEG

strongly predicted motor recovery during early stroke inpatient hospitali-

zation. A cross-validated lasso regression approach found that EEG

coherence between iM1 and 16 leads across a 1–30 Hz frequency band

explained over 60% of the variance in motor recovery in our cohort of

individuals residing in an IRF. Adjusting the regression penalty consistent

with an elastic net regression approach revealed the broader set of leads

responsible for predictive generalizability at the small cost of predictive

power. Together, these findings emphasize the relevance of functional

neural connections in poststroke motor recovery prediction.

Hypothesis-driven predictive models, conceptualized from our prior

work (Cassidy et al., 2020; Wu et al., 2016), emphasize delta and beta

oscillatory contributions from leads overlying bilateral primary and sec-

ondary motor regions. Our data-driven model of motor recovery predic-

tion also emphasizes beta oscillations but now also acknowledges alpha

oscillations. In contrast to our hypothesis-driven model, leads overlying

nonmotor regions were acknowledged and lower frequency bands (delta

and theta) provided only minor influence on motor recovery. We discuss

these findings and others in greater detail below.

4.1 | Coherence of oscillations predicts motor
recovery

An important finding was that EEG signal coherence, not power,

predicted short-term motor recovery in early stroke rehabilitation.

There are limited data published to date using brain mapping studies

to identify response to rehabilitation therapy received in an IRF set-

ting after stroke despite the fact that billions of dollars are spent each

year in the United States and that IRFs are an intense rehabilitation

environment (Winstein et al., 2016) provided to approximately 25% of

patients with stroke (Benjamin et al., 2017).

Pascal Fries's “communication-through-coherence” hypothesis

(Fries, 2005) asserts that effective neuronal communication between

two neuronal groups depends on the coherence of neural oscillations

between them. Initially intended to account for potential mechanisms

underlying cognitive dynamics and flexibility, this notion of coherence

driving communication extrapolates to several clinical disease states,

including stroke, whereby disordered neural connectivity and, hence,

communication, contribute to the pathology and functional behavioral

deficits of the disease. Resting-state fMRI work in stroke has shown

disruptions in neural connectivity and cross-sectional associations

with motor status (Carter et al., 2010) and longitudinal

associations with motor recovery (Park et al., 2011). The current work

joins a growing body of EEG literature in stroke depicting similar asso-

ciations between connectivity and motor behavior (Dubovik

et al., 2013; Hoshino, Oguchi, Inoue, Hoshino, & Hoshiyama, 2020;

Nicolo et al., 2015; Wu et al., 2015) that emphasize the relevance of

oscillatory-mediated communication between cortical regions rather

than simply the magnitude of a frequency-specific signal. Two distinct

features of the current work are the study of individuals days after

their stroke, at the start of a period of extraordinary brain plasticity,

and that we predicted motor function, rather than impairment, using

coherence measures.

4.2 | Multiple regions and oscillation frequencies
contribute to motor recovery

The EEG leads identified through lasso and elastic net regression rep-

resent a mixture of frequency bands encompassing bilateral hemi-

spheres overlying motor and nonmotor regions. Overall, higher (beta

and alpha) frequency bands contributed most to the prediction model,

particularly high beta leads overlying SMA, iPAR, and iPMv. The model

also revealed a few sparse leads expressing lower (delta and theta)

frequencies (Table 2). Elastic net regression identified additional high

beta frequency band leads overlying contralesional frontal, parietal,

and temporal–parietal regions along with SMA along with additional

alpha leads overlying contralesional temporal–parietal and iPAR

TABLE 3 Serial coherence
measurements

High beta (20–30 Hz) coherence measure Baseline (n = 27) Visit 2 (n = 18) Visit 3 (n = 8)

iM1-SMA 0.19 ± 0.11 0.21 ± 0.09 0.23 ± 0.10*

iM1-iPAR 0.18 ± 0.08 0.17 ± 0.09 0.14 ± 0.06

iM1-iPMv 0.50 ± 0.23 0.52 ± 0.23 0.52 ± 0.17

Note: Values presented as mean ± SD.

Abbreviations: iM1, ipsilesional primary motor cortex; iPAR, ipsilesional parietal cortex; iPMv, ipsilesional

ventral premotor cortex.

*Significant increase from baseline (t = 2.11, p = .04).
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regions. Contributions from these particular frequency bands are dis-

cussed in greater detail below.

The inclusion of leads overlying nonmotor regions may reflect

more generalized brain activity characteristic of a resting brain state

as compared to brain activity in task or event-related EEG paradigms

probing specific functional domains (Quandt et al., 2019). However,

one of the first studies to predict long-term poststroke recovery using

fMRI activity (task-based) acquired early following stroke refutes this

argument by reporting a spatially diffuse pattern of brain activity asso-

ciated with recovery (Marshall et al., 2009). These findings parallel

earlier task-oriented fMRI studies depicting brain activation in areas

other than primary motor cortex involving cingulate, temporal, and

striate cortices, for example (Ward, Brown, Thompson, &

Frackowiak, 2003b). Further supporting these findings and ours is an

increased appreciation that input from nonmotor brain regions and

networks influence motor system function in healthy participants

and plasticity after stroke (Egger et al., 2021; Lin et al., 2021). Our

finding of EEG leads overlying nonmotor regions in bilateral hemi-

spheres may reflect one of many ongoing injury- or recovery-related

processes, such as compensatory neuroplasticity mechanisms (Park

et al., 2011; Ward, Brown, Thompson, & Frackowiak, 2003a),

diaschisis (Fornito, Zalesky, & Breakspear, 2015), and contributions

from widespread network modulation. Indeed, recent work has shown

an upregulation of frontoparietal network connectivity following

stroke (Bönstrup et al., 2018; Hordacre et al., 2021) and attentional-

control network influence on motor performance in stroke (Rinne

et al., 2018).

Another notable finding of this work was the absence of univer-

sally positive or negative associations between coherence in a

frequency-specific band with motor recovery. Low beta iM1 coher-

ence was the exception that demonstrated negative associations with

motor recovery across all three leads identified by lasso and across all

nine leads identified by elastic net (Table 2). The distribution of low

beta leads overlying iPAR and contralesional temporal and SMA

regions closely aligns with the distribution of many of the high beta

leads negatively associated with motor recovery. These findings imply

that beta coherence between iM1 and these regions in early stroke

recovery is maladaptive.

Given the consistency of findings showing the attenuation of beta

oscillations following neural injury (Dubovik et al., 2012; Foreman &

Claassen, 2012; Wu et al., 2016) and treatment-induced improvement

in motor status associated with heightened beta activity (Pellegrino

et al., 2012; Wu et al., 2015), one may conclude positive associations

between enhanced M1 beta coherence and motor recovery. Nicolo

et al. (2015) observed positive associations between motor function

improvement at 3 months poststroke and baseline (2–3 weeks post-

stroke) beta coherence between ipsilesional motor areas with the rest

of the cortex (Nicolo et al., 2015). Similarly, we identified positive

associations between motor recovery and high beta iM1 connectivity

with leads overlying iPAR (lasso model, Figure 2a) and contralesional

frontal (elastic net model, Figure 2b) regions. However, negative asso-

ciations with motor recovery also existed in this frequency band

entailing leads overlying SMA (Figure 2). The coexistence of positive

and negative correlations with motor recovery within the high beta

frequency band recognizes that some forms of connectivity represent

behaviorally favorable changes while others do not. The positive asso-

ciations that we observed may support the expanding role of beta

oscillations beyond sensorimotor function (Pfurtscheller & Da

Silva, 1999) and a cortical idling state (Pfurtscheller, Stancak Jr., &

Neuper, 1996). Beta frequency oscillations are now thought to medi-

ate widespread cortical network communication (Bastos et al., 2015),

top-down information processing (Engel & Fries, 2010), and feedback

communication (Bastos et al., 2015). Hence, beta coherence involving

frontal and parietal regions may further highlight beta activity contri-

butions to visual processing (Piantoni, Kline, & Eagleman, 2010), work-

ing memory (Siegel, Warden, & Miller, 2009), and response inhibition

(Jha et al., 2015) which may prove relevant even in a resting-state

condition whereby participants receive instruction to minimize move-

ment and fixate on a visual target.

Two possibilities, underscoring the conflicting role of SMA in

motor recovery in the literature, may explain the negative association

between motor recovery and high beta iM1 with leads overlying

SMA. First, several neuroimaging studies in stroke have shown behav-

iorally relevant contributions from secondary motor regions, including

SMA, to motor recovery (Cramer et al., 1997; Grefkes et al., 2008;

Rehme, Eickhoff, Wang, Fink, & Grefkes, 2011) via cortico-cortical

connections with M1 (Luppino, Matelli, Camarda, & Rizzolatti, 1993).

Akin with functional connectivity studies demonstrating reduced or

abnormal connectivity patterns following stroke (Carter et al., 2010),

effective connectivity work involving dynamic causal modeling of

task-induced fMRI signals have shown diminished coupling between

ipsilesional SMA and M1 early after stroke that gradually increases

over time with recovery (Grefkes et al., 2008; Rehme et al., 2011).

Applied to our findings, the negative association between baseline

coherence between leads overlying these regions with motor recov-

ery might indicate a greater capacity for change in the form of

enhanced coherence between these regions over time that parallels

motor recovery. However, the inspection of serial EEG recordings rev-

ealed only slight increases in iM1-SMA coherence over time that were

not related to behavioral recovery. The second possible explanation

follows work by Thibaut et al. (2017) that observed an “excess” of

high beta activity in the ipsilesional hemisphere that negatively corre-

lated with motor function (Thibaut et al., 2017) corresponding with

seminal fMRI work showing negative associations between BOLD sig-

nal activity in SMA and other secondary motor regions with motor

recovery (Ward et al., 2003a). Therefore, this finding may also reflect

maladaptive forms of plasticity or an inefficient adaptive response to

weakness following stroke. In our case, greater beta iM1 coherence

with SMA corresponds to a poorer outlook.

Past work has also shown interactions between functional con-

nectivity after stroke and white matter (CST injury) status (Carter

et al., 2012; Guggisberg, Nicolo, Cohen, Schnider, & Buch, 2017;

Quandt et al., 2019). For instance, Quandt et al. (2019) found that the

magnitude of beta desynchronization in SMA during reaching and

grasping activities was dependent on CST integrity after stroke

(Quandt et al., 2019). The size of our current cohort limited additional

5642 CASSIDY ET AL.



examination of CST injury sub-cohorts using lasso and elastic net

models. Hence, future larger-scale work should examine the role of

ipsilesional beta coherence across various patterns of motor system

injury, to refine our understanding of how such coherence is related

to white matter injury and early poststroke motor recovery.

Over a span of 2 weeks following IRF admission, group averages

from serial EEG recordings (Table 3) showed a significant increase in

high beta iM1 coherence with leads overlying SMA and trends of

decreasing and increasing high beta iM1 coherence with leads overly-

ing iPAR and iPMV, respectively. The lack of significant associations

between these coherence changes with motor recovery reinforces

our statistical approach and resulting lasso model (Figure 2a) that illus-

trates contributions to motor recovery from leads representing multi-

ple frequency bands encompassing a 1–30 Hz spectrum. Therefore,

we surmise that changes in coherence occurring across a variety of

frequencies concurrently best encapsulate motor recovery.

Relatedly, lasso and elastic net models also indicated the involvement

of alpha coherence in early poststroke motor recovery (Figure 2), most

apparent in leads overlying the contralesional temporal–parietal region

that positively related to motor recovery. Our findings both align and

contrast with previous work in patients with stroke (Dubovik et al., 2012;

Westlake et al., 2012) that also demonstrated correlations between

resting-state alpha coherence and motor status (Dubovik et al., 2012)

and recovery (Westlake et al., 2012). In these studies, however, alpha

coherence involving contralesional motor regions demonstrated negative

associations with motor status and recovery. Dubovik et al. (2012) com-

pared the presence of contralesional alpha “hyper-synchrony” to inter-

hemispheric inhibition imbalances favoring the contralesional hemisphere

(Murase, Duque, Mazzocchio, & Cohen, 2004). A key distinction between

our work and these studies is the timeframe poststroke entailing a time-

scale of days, versus months to years poststroke (Dubovik et al., 2012;

Westlake et al., 2012). Applied to our findings, the generation of alpha

activity mediated by cortico-cortical connections (da Silva, Vos,

Mooibroek, & Van Rotterdam, 1980) in combination with alpha oscillation

involvement in cognition and memory function (Klimesch, 1999) suggest

that early poststroke utilization of these neural substrates or networks is

advantageous to motor recovery. In support, Wu et al. (2011) found that

individuals depicting higher interhemispheric synchrony of alpha activity

at 7 days poststroke demonstrated better motor recovery outcomes than

those with lower interhemispheric alpha frequency (Wu et al., 2011).

Serial EEG recordings over a 6–12-month timeframe may bring these var-

ious results together and thereby enhance our understanding of alpha

coherence in both short- and long-term motor recovery while clarifying

to what extent intra- and interhemipsheric connections in the alpha fre-

quency band modulate with time and recovery.

4.3 | Electroencephalography power, corticospinal
tract injury, and baseline motor status did not predict
early motor recovery

EEG power across a 1–30 Hz spectrum did not predict motor recov-

ery. This finding does not necessarily imply an absence of correlation

between relative power and motor recovery but, rather, it suggests

that there is no predictive combination of variables. A lack of predic-

tion from EEG relative power contrasts with findings from previous

studies depicting associations between poststroke outcomes and EEG

power measurements including brain symmetry indices and power

ratios of various frequencies (Chiarelli et al., 2020; Cuspineda

et al., 2007; Sheorajpanday, Nagels, Weeren, van Putten, & De

Deyn, 2011). A key feature between these studies, including a recent

study applying machine learning to predict functional status (Chiarelli

et al., 2020), and ours is that the former utilized global assessments of

poststroke severity and disability such as the NIH Stroke Scale and

modified Rankin Scale as a primary outcome measure. Combined with

our findings, this work suggests that EEG power measurements are

more useful in the prediction of global poststroke outcomes that cap-

ture a person's overall functional state, whereas connectivity mea-

surements best encapsulate domain-specific recovery such as motor

recovery. Stroke is a complex condition, and a single type of bio-

marker is unlikely to prove useful for addressing all clinical questions,

at all time points, across all types of behavioral outcome measures.

Future work discerning which biomarkers are optimal predictors

across various parameters, for example, time poststroke, impairment

level, primary outcome measure, time window to predict, and so on,

will mitigate these discrepancies while advancing the application of

functional neuroimaging-based biomarkers in stroke recovery.

Similarly, CST injury and baseline motor status also demonstrated

poor performance in the prediction of motor recovery. These findings

contrast past work that showed significant prediction of motor recovery

from initial UEFM scores (Zarahn et al., 2011) and identical measurement

of CST injury (Lin et al., 2019) acquired early poststroke. However, an

important distinction between these studies and ours was the focus on

motor recovery across the first 3 months poststroke. This study focused

on recovery during IRF hospitalization that spanned an average of

3 weeks following admittance. Our findings suggest that CST injury and

initial UEFM scores do not adequately predict relatively brief periods of

recovery occurring early after stroke. While the prediction of 3- and

6-month poststroke recovery outcomes has merit, the prediction of out-

comes during inpatient hospitalization poststroke is also invaluable and

necessitates further investigation given that this timeframe influences

hospital discharge planning and shapes patient and caregiver recovery

expectations. Our sample also demonstrated considerable variance in

CST injury and baseline motor status (Table 1), which may have also

affected prediction. Recent work demonstrating different motor recovery

trajectories among individuals (van der Vliet et al., 2020) combined with

previous work asserting that the predictive value of biomarkers varies

among motor impairment subgroups (Stewart et al., 2017) further sup-

port this reasoning.

4.4 | EEG coherence contains unique information
about motor recovery

When we repeated lasso regression procedures using EEG coherence

to predict the raw residuals from generalized linear regression models
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involving CST injury and baseline motor status as motor recovery pre-

dictors, we found that EEG coherence still explained over 50% of the

variance. This finding supports the overall conclusion that functional

neuroimaging contains distinct information about motor recovery

apart from structural neuroimaging and clinical assessments and is

concordant with past work demonstrating better predictive perfor-

mance from multivariate models containing both structural and func-

tional neuroimaging measurements (Quinlan et al., 2015; Stinear,

Barber, Petoe, Anwar, & Byblow, 2012) than models containing either

measure alone. Recent work has shown interactions between struc-

tural and functional connectivity measurements (Hordacre

et al., 2021; Quandt et al., 2019) and clinical recovery status

(Guggisberg et al., 2017) which encourages future work to examine

structure, function, and clinical status in concert with one another.

4.5 | Strengths and limitations

This study presents a number of important strengths and limitations.

The cohort featured in this study encompassed individuals residing in

a therapeutically rich environment early after their stroke when the

potential for motor (re)learning through neuroplasticity is most pro-

found. Mechanisms of plasticity in this setting have not been widely

examined. Utilization of dense-array EEG over multiple frequency

bands facilitated a data-driven approach to motor recovery prediction

during early stroke rehabilitation that highlighted several relevant

functional connections with iM1. Serial EEG recordings acquired dur-

ing inpatient rehabilitation hospitalization provided a preliminary

account of how some of these key functional connections evolve over

time. While prediction of long-term recovery outcomes has merit, this

study's focus on motor recovery during initial rehabilitation hospitali-

zation, specifically in an IRF setting where individuals spend an aver-

age of 2–3 weeks, specifically warrants additional investigation.

Admission to an IRF is determined by medical personnel based on

their clinical judgment of an individual's ability to successfully partici-

pate in several hours of therapy per day, and our findings support

bedside brain mapping over bedside clinical assessments at identifying

clinical assessment recovery potential. For a data-driven study

focused on motor recovery prediction poststroke, we acknowledge

the small sample size, which also limited further examination of spe-

cific CST injury and impairment in sub-cohorts. Therefore, further

studies are necessary to validate the present findings.

Our coherence analyses focused on whole brain connectivity with

iM1 since this region is a prime therapeutic target and key region for

the restitution of motor function after stroke. By limiting our seed

region to iM1, we acknowledge that several functional connections

potentially relevant to motor recovery were not considered in the

model. This work is an initial step in motor recovery prediction using

EEG coherence in a data-driven approach. Future work may therefore

examine multiple seed regions across various cohorts to advance our

initial findings and interpretation of findings. We emphasize caution

when interpreting the performance of both lasso and elastic net

models. It is important to mention that lasso poses inherent limitations

related to the selection of features and degenerate solution space.

Relatedly, the model derived from elastic net regression, utilized in

this study for the purpose of interpretation vs. prediction, may have

overfit the data with the inclusion of additional variables, that is, EEG

leads. Our non-nested cross-validation framework may have also

inflated the performance of our models. Lastly, spatial resolution and

volume conduction are obstacles frequently encountered in EEG stud-

ies. Dense-array EEG systems partially mitigate spatial resolution

issues; however, this work did not employ additional strategies such

as source localization or spatial filtering since these techniques may

further distort the data (Nunez et al., 2019).

5 | CONCLUSIONS

The heterogeneity of stroke propelled the development of

neuroimaging-based biomarkers to enhance the prediction of clinical

and treatment outcomes. Biomarkers that capture functional brain

activity, particularly neural oscillations, may provide valuable informa-

tion related to stroke rehabilitation and may further compliment infor-

mation provided by more established structural biomarkers such as

CST injury. Utilizing a data-driven approach with lasso regression, this

study investigated the predictive performance of EEG-derived neural

oscillations during early stroke rehabilitation. Our main finding was

that EEG coherence between leads overlying iM1 (seed region) and

16 leads overlying ipsi- and contralesional hemispheres explained

nearly 62% of the variance in motor recovery during IRF hospitaliza-

tion outperforming EEG power, baseline motor status, and CST injury.

The coherence of neural oscillations, based on the consistency of

phase and amplitude differences across time, reflects communication

between spatially distinct neural populations (Fries, 2005) and, thus, is

an important factor in early poststroke motor recovery.

The inclusion of leads representing frequencies across a 1–30 Hz

spectrum together with their spatial distribution spanning bilateral

hemispheres demonstrated no frequency or location-dependent direc-

tion of association with motor recovery. This finding illustrates the

complex nature of motor recovery and the mechanisms of neuro-

plasticity mediating this process. Furthermore, model contributions

from leads representing various frequency bands and scalp locations

support the concept of motor recovery as the product of multiple

interactions across various nonmotor neural networks. In comparison

to traditional hypothesis-based prediction models, data-driven models

may best capture these network interactions. This work identified

several functional connections in specific frequency bands that

encourage further investigation to establish a more complete under-

standing of circuit and network level activity in support of early post-

stroke motor recovery and the utility of EEG-acquired oscillations as

motor recovery biomarkers in stroke rehabilitation.
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