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Durum wheat is an important crop for the human diet and its consumption is gaining
popularity. In order to ensure that durum wheat production maintains the pace with the
increase in demand, it is necessary to raise productivity by approximately 1.5% per year.
To deliver this level of annual genetic gain the incorporation of molecular strategies has
been proposed as a key solution. Here, four RILs populations were used to conduct QTL
discovery for grain yield (GY) and 1,000 kernel weight (TKW). A total of 576 individuals
were sown at three locations in Morocco and one in Lebanon. These individuals were
genotyped by sequencing with 3,202 high-confidence polymorphic markers, to derive
a consensus genetic map of 2,705.7 cM, which was used to impute any missing
data. Six QTLs were found to be associated with GY and independent from flowering
time on chromosomes 2B, 4A, 5B, 7A and 7B, explaining a phenotypic variation (PV)
ranging from 4.3 to 13.4%. The same populations were used to train genomic prediction
models incorporating the relationship matrix, the genotype by environment interaction,
and marker by environment interaction, to reveal significant advantages for models
incorporating the marker effect. Using training populations (TP) in full sibs relationships
with the validation population (VP) was shown to be the only effective strategy, with
accuracies reaching 0.35–0.47 for GY. Reducing the number of markers to 10% of the
whole set, and the TP size to 20% resulted in non-significant changes in accuracies. The
QTLs identified were also incorporated in the models as fixed effects, showing significant
accuracy gain for all four populations. Our results confirm that the prediction accuracy
depends considerably on the relatedness between TP and VP, but not on the number
of markers and size of TP used. Furthermore, feeding the model with information on
markers associated with QTLs increased the overall accuracy.

Keywords: genomic selection, consensus map, drought, imputation, QTL analysis, fixed effect, consensus map,
genotyping by sequencing (GBS)
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INTRODUCTION

Durum wheat (Triticum durum Desf., 2n = 4x = 28, AABB)
is grown annually on over 17 million hectares worldwide, and
it represents one of the bases of the Mediterranean diet. This
region is the largest consumer of durum wheat products and
the most significant durum import market (Soriano et al., 2017).
The Mediterranean basin is subject to frequent droughts and
their occurrence is expected to raise in the near future, with a
significant negative effect on crop development and production
(Xiao et al., 2018). Breeding for durum genotypes that have
an improved yield and tolerance to drought remains one of
the most strategic methods to protect the harvest of this crop
(Habash et al., 2009; Tadesse et al., 2016; Kuzmanoviæ et al.,
2018). The use of genomic models to analyze the main drought
adaptation traits can be deployed to significantly accelerate the
breeding effort. Genetic linkage map and QTL mapping are
useful tools for discovering genomic regions associated with
traits of interest (Zhang et al., 2018). However, the significance
of the identified QTLs is often linked to the specific parents
used and it rarely proved useful for deployment in large scale
breeding. One method to control for this error is to perform
QTL discovery in multiple populations at the same time. The
first step to achieve this is the development of genetic consensus
maps that allow to bridge the discovery across populations. In
fact, the development of consensus maps has already been shown
to not only bridge the information between populations, but also
to increase marker density, improve genome coverage, provide a
validation of the marker ordering, and reduce markers gaps due
to the absence of polymorphism between two parents (Marone
et al., 2012; Maccaferri et al., 2014). Multiple genetic linkage maps
have already been developed for wheat, and consensus genetic
maps have been constructed for hexaploid wheat (Somers et al.,
2004; Wang et al., 2014) and durum wheat (Maccaferri et al.,
2014, 2015). Furthermore, high-throughput DNA sequencing
technologies have now enabled the deployment of reliable and
affordable marker coverage via genotype-by-sequencing (GBS),
a methodology that relies on restriction enzymes to reduce
the amount of genome to be sequenced (Poland et al., 2012;
Edae et al., 2017). Numerous recent studies have used this
marker system to identify quantitative trait loci (QTL) associated
with yield, agronomic traits, and physiologic traits in drought
and heat-stressed environments (Acuña-Galindo et al., 2015;
Sukumaran et al., 2016; Edae et al., 2017; Hussain et al., 2017;
Mwadzingeni et al., 2017; Asif et al., 2018; Bhatta et al., 2018;
Roselló et al., 2019), in order to pyramid these QTLs via marker-
assisted breeding (Edae et al., 2014).

Genomic selection (GS) builds on the concept of QTL analysis,
but it explores the whole genome seeking large and small allelic
effects (Bassi et al., 2016). Because of its capacity to better handle
complex traits with several small effect alleles such as grain
yield (GY), GS is now becoming the methodology of choice for
incorporation into breeding strategies (Dekkers and Hospital,
2002; Crosbie et al., 2003; Bassi et al., 2016). GS analyzes jointly
all markers to explain the total phenotypic variance through
the sum of the markers effects (Meuwissen et al., 2001). Once
a model is trained, an effect is assigned to each marker-allele,

and the ‘genomic estimated breeding value’ (GEBVs; Meuwissen
et al., 2001) can then be calculated for each individual as the
sum of its allelic marker effects. The set of individuals used to
train the model has both phenotypic and genotypic available
and it is defined as the ‘training population’ (TP). The set of
individuals from which the selection is made is defined as the
‘breeding population’ (BP), and only genotypic data are collected
for it. The ‘accuracy’ of the predicted GEBV is determined
by the correlation between GEBV and the true breeding value
(TBV) calculated phenotypically for a ‘validation population’
(VP), which is genotyped and phenotyped, but not used to train
the model. The value for accuracy is used to determine the
overall success of the GS approach. Therefore, it is important
to maintain a high degree of accuracy, and hence to use a TP
that best fits the BP. The degree of relatedness between the two
populations is often a good predictor of the accuracy that will
be achieved. Cross-validation is used to train and develop the
prediction models using different sampling techniques in the TP
data sets ahead of estimating the GEBVs in the VP. The idea
behind this approach is that breeders can derive predictions of
the breeding value of an experimental line even before the line
has been tested in the field. In turn, this would allow to make
decisions on the use of the lines for yield testing or crossing
already during the earlier generations (Crossa et al., 2010; Heffner
et al., 2011; Bassi et al., 2016).

However, the integration of QTL analysis and GS remains
severely understudied. In the present study, four recombinant
inbreed lines (RILs) of durum wheat with different level of
relatedness were field tested across environments. QTL analysis
was performed for GY and TKW and the same populations were
then used to assess different GS models for the two traits. The two
methods were then combined by fixing the effect of the marker
underlying the QTLs into GS models, to reveal a steep increase in
the overall accuracy.

MATERIALS AND METHODS

Mapping Populations
Four F9-derived RILs mapping populations were obtained by
random selection of 200 individual durum spikes from each
population at the F4 generation, followed by single seed descent
to F9. At this generation, the individual plants were sampled
for DNA extraction, and the seeds of each individual plant
bulked. A different number of individuals for each population
was then multiplied and used for yield trial to resemble the typical
unbalanced dataset used by breeders. The four durum wheat
crosses combining ICARDA’s elite lines were: Icamor/Gidara2
(IC; 115 RILs) developed by combining the Hessian fly resistance
of Icamor (F413J.S/3/Arthur71/Lahn//Blk2/Lahn/4/Quarmal)
with the high yield potential of Gidara2 (Stojocri/Omrabi3)
(see Bassi et al., 2019 for more details); the second population
was Jennah Khetifa/Cham1//T.dicoccoides600545/2∗Omrabi5
(DRO; 197 RILs) designed for pyramiding the drought tolerance
of the Tunisian landrace Jennah Khetifa, wild emmer, and
the ICARDA most successful variety Omrabi; the third
population was SW Algia//Gidara1/Cham1 (SW; 93 RILs)
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aimed at incorporating the Septoria tritici resistance of the
Tunisian landrace SW Algia with Gidara1; the fourth population
was Omrabi3/Omsnima1//Gidara2 (YG; 145 RILs) aimed at
combining drought tolerance and yield potential. As indicated,
these populations all have sibling relationships with Omrabi,
Cham 1, and Gidara used as parental lines. Additional details are
reported in Table 1.

Field Trials
Field trials were conducted during the 2014–2015 growing
season. The experimental design used at all stations was an
augmented complete block design with four common repeated
checks, and a block size of 24 entries. The trials were conducted
at three drought prone stations in Morocco (Supplementary
Figure S1): Jemaat Shaim (JSH; 32◦21′0′′ N and 8◦51′0′′ W),
Marchouch (MCH; 33◦34′3.1′′ N and 6◦38′0.1′′ W) and Sidi
el Aidi (SAD; 33◦9′36′′ N and 7◦24′0′′ W); and one irrigated
station in Lebanon: Terbol (TER; 33◦48′29′′ N and 35◦59′22′′W)
(Table 2 and Supplementary Figure S1). All RILs and their
parents were planted in plots of 4.2 m2 at a seeding rate of
280 plants per m2. The YG population was planted in MCH,
JSH, SAD and TER; the DRO population was also planted in all
stations except TER; the IC population was sown in two stations
MCH and TER; the SW population in just MCH. Agronomic
practices were done following standard procedures, with 80 units
of nitrogen provided in 2 equal splits, and 40 units of potassium
and phosphorous before planting. Weeds were control by tank
mixtures of Derby and Pallas. Days to heading (DTH), days to
maturity (DTM), plant height (PLH), and spike density per m2

(SPK) were recorded in MCH and TER. At maturity, 3 m2 of
the plot were combine harvested and the weight was converted to
grain yield as Kg ha−1. At all stations except SAD, 1,000 kernels
were weighted on a precision balance to derive 1,000-kernels
weight (TKW) and express it in grams (g).

DNA Extraction and Genotyping
Leaf samples obtained from F9 plants were freeze-dried and used
for C-TAB DNA extraction. DNA quality was assessed on agarose
gel and it was then equilibrated to 100 ng. The DNA was shipped
to the Poland lab at Kansas State University for genotyping by
sequencing following the protocol of Poland et al. (2012). Briefly,
two restriction enzymes (PstI and MspI) were used for genome
complexity reduction, followed by 96-multiplex sequencing by
bar coding. Low-quality data filtering was carried out according
to the following rules: heterozygous calls not superior to 2%,
maximum of 30% missing data, and a minor allele frequency
superior to 10%.

Consensus Map Procedure
Individual linkage maps for each population were constructed
using the statistical software Carthagene v. 1.2.3 (De Givry et al.,
2005) and QTL IciMapping V4.1 (Meng et al., 2015). First, all
marker sequences were aligned to the available bread wheat
genome assembly (Winfield et al., 2016; The International Wheat
Genome Sequencing Consortium [IWGSC], 2018) by BLAST
with an identity cut-off of 98% (1 SNP variant) and E-value of
5e−25. The squeeze function of Carthagene was used to eliminate
markers that were wrongly ordered at LOD of 5 based on the
genome alignment, followed by flip with window size of seven,
LOD of 3, and zero iterations to determine the most plausible
order of markers within each window. This framework map
contained correctly aligned markers along the map and several
unassigned markers. In QTL IciMapping, the framework markers
were anchored while the unassigned markers were not. The by
anchor order algorithm was used to assign to the different linkage
groups the unassigned markers at a set LOD of 5, and then
order them based on the position of the framework markers.
This operation was then repeated using the newly developed
framework map and reducing the LOD to 3. This methodology
defined four individual genetic maps for each population.

The construction of the consensus map was performed
chromosome by chromosome using the consensus map from
multiple linkage maps sharing common markers (CMP) function
of QTL IciMapping. First, by re-grouping markers at a distance
of less than 20 cM to obtain one group for each chromosome,
followed by the by anchor order option to measure the genetic
distances between markers along the consensus map based on
their relative positions on each individual map. Markers were
then ordered based on their consensus map position in an Excel
file. In several cases, a marker polymorphic in one population
might be monomorphic in another. To avoid linkage distortions,
the monomorphic scores were set to missing. At this point,
imputation was done using AlphaIMpute option HMM (Hickey
et al., 2012; Antolin et al., 2017) and confirmed with the BIP
function of QTL IciMapping (Zhang et al., 2010).

Data Analysis and QTL Mapping
Statistical analysis of the phenotypic data was performed using
the R software version 3.4.3 and Genstat program version 18.
Best linear unbiased estimates (BLUEs) were estimated across
all environments, assuming fixed effects for the genotype from
a linear mixed-effects model using R package lme4 (Bates et al.,
2015; R Core Team, 2017).

The discriminant analysis of principal components (DAPC),
was performed using the ‘adegenet’ package 1.4-1 (Jombart et al.,

TABLE 1 | Cluster analysis of the genetic diversity among four mapping populations using discriminant analysis of principal components (DAPC) with k = 4, their
pedigrees, and maps features.

Pedigree Individuals Markers Total length (cM) Marker density (cM/Marker)

IC: Icamor/Gidara2 115 646 1720.1 5.3

DRO: Jennah Khetifa/Cham1// T.dicoccoides600545/2*Omrabi5 197 2291 1922.5 1.2

SW: SW Algia//Gidara1/Cham1 93 1212 1795.3 1.8

YG: Omrabi3/Omsnima1//Gidara2 145 521 1683.8 6.1
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2010) in R studio V 3.4.3 (R Core Team, 2017). With DAPC,
the hierarchical clustering among populations was determined by
applying the R based package “hclust.”

QTLs were searched for each individual population in each
individual environment via composite interval mapping (CIM)
analysis using R/qtl (Broman et al., 2003). The cim function
was set to five markers covariates and a window size of 10 cM.
LOD thresholds were calculated from QTL IciMapping by BIP
functionality using 1,000 permutations with a maximum type 1
error probability of 0.05. Only QTLs that appeared at least in two
environments and two populations were considered as valid. The
distribution of QTLs and the marker density of the consensus and
individual population maps were graphically presented on the
fourteen chromosomes of durum wheat by a “Circos plot” using
R/shiny application (Yu et al., 2018).

Genomic Prediction Modeling
A total of four genomic models were tested as a first step in
this study:

(i) a baseline additive model without interactions of genotypic
effect (G), environmental (E) effect, and error (ε) (G+E + ε).

(ii) a baseline multi-environment model (G+E + GxE + ε),
which assumed interactions between the G and the E.

In both these models, all the effects were assumed to be
random with a normal distribution N(0, σ) where σ is the
term variance

(iii) the third model was a marker (M) effect model
(G+E + GxE + M + ε), where the genotype effect is
substituted by an approximation of the genotype’s genomic
value expressed as a regression on marker covariates.

In this case the model assumes that the genotype’s genomic
value follows a normal distribution N(0, G σg) where σg is
the genetic variance and G is genomic relationship matrix.

(iv) the last model is the marker × environment model
(G+E + GxE + M + MxE + ε) where the marker effect is
composed by an effect common to all environment (main
effect) plus a random deviation specific to a particular
environment (Lopez-Cruz et al., 2015).

Testing of the different models’ accuracies was done using
DRO, IG and YG populations independently, and setting as
cross-validation 80% of the individuals as TP and 20% as
VP. The accuracies within and across environments were then
calculated as a measure of good fit. The BGLR package (Pérez
and de Los Campos, 2014) was used to run all models above
from (i) to (vii) by Bayesian ridge regression (BRR) using
10,000 iterations and 5,000 burn in, and 50 replications (de los
Campos et al., 2009, 2013). This model induces homogeneous
shrinkage of all marker effects toward zero and yields a Gaussian
distribution of marker effects. The 50 replications were used to
define statistical differences between model accuracies following
a one factor ANOVA.
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The GxE + MxE model (iv) was selected and used to test
additional hypothesis:

(v) the effect of markers number was investigated by
comparing predictions using 100, 80, 60, 40, 20, and 10%
of the total marker set in combination with reducing
the TP population size to 20, 50, and 75% for GY and
TKW. The TP individuals were selected randomly in
50 replications, and one factor ANOVA was used to
determine significant differences.

(vi) the prediction accuracy of using half sibs vs. full sibs as
TP was compared. Each population was set as TP for all
others and itself using the whole population as TP and
the whole other population as VP.

(vii) to compare the value of MAS and GS, the prediction
accuracy was calculated using 50% as TP and 50% as
VP for all markers, only markers associated with major
effect QTLs, with 44 and 27 markers for GY and TKW,
respectively, and by removing these markers linked to
QTLs from the set. The TP individuals were selected
randomly in 50 replications, and one factor ANOVA was
used to determine significant differences.

(viii) the rr-BLUP package v4.6 (Endelman, 2011) was used to
run a mixed model estimating the accuracy gain when
using markers underlying the QTLs as fixed effects,
and the remaining markers as random effects. For this
analysis ten random subsets of 50% TP and 50% VP
were selected in each population separately (DRO, IG,
SW, and YG). QTL analysis was conducted again for
each TP subset following the method described above.
Those markers that resulted as underlying QTLs in each
TP subset were fixed in the model. One factor ANOVA
was run for the ten replicates of each population to
determine significant differences.

RESULTS

Phenotypic Evaluation
Analysis of variance (ANOVA) showed significant differences
for genetic (G) effect (p < 0.05) for all the traits across
environments, indicating good levels of phenotypic within each
population (Table 3 and Figure 1). The genotype by environment
interaction (GxE) effect was also significant (p < 0.05). The

combined BLUE of TKW and GY differed greatly between the
two parental lines of the four populations, displaying a normal
distribution within RILs populations (Figure 1). Gidara 2 and
Jk/Ch1 parents in populations IC, DRO and YG had smaller
values of TKW than the average, whereas the Icamor parent
in population IC had the maximum value (44 g). Similarly,
for GY, Gidara 2 had a smaller value than the average GY,
same for the parents Icamor and Younes. Cham1 parent of
population DRO and SW had the highest recorded GY of this
experiment. The population YG had the highest average TKW
and GY. Among the four RILs populations, 50.2 g was the highest
value recorded for TKW found in IC, and 3,304 kg ha−1 the
highest GY for YG.

Individual and Consensus Linkage Maps
The GBS process resulted in 22,117 marker calls. Among these,
4,909 matched the curation criteria and were tentatively ordered
via genetic mapping. The individual genetic maps contained 646
polymorphic markers covering 1,720.1 cM for the IC population,
2,291 markers spanned 1,922.5 cM for DRO, 1,212 markers
were mapped along 1,795.2 cM in SW, and 521 markers over
1,683.7 cM for YG (Table 4 and Supplementary Table S1).
The final consensus map incorporated 3,202 markers assigned
to 14 linkage groups corresponding to 1,883 unique loci, and
spanned a total genetic distance of 2,705.7 cM, with a density of
one marker each 0.85 cM (Table 4). The A genome, harbored
1,104 markers, covering a linkage distance of 1,133.8 cM, and
the B genome 2,098 markers spanning a linkage distance of
1,572 cM. The largest chromosome was 2B, consisting of 540
markers and covering a genetic length of 243.5 cM, while the
smallest chromosome in the map was 4A, covering a genetic
length of 101.7 cM and consisting of 209 markers. The average
size of markers gaps in the consensus map was 22.1 cM. The
consensus map across four populations includes 550 RILS lines.
Genetic diversity analysis revealed close kinship between IC
and DRO, a lower relatedness with SW, and limited kinship to
YG (Table 1).

QTL Analysis
The identified genetic and phenotypic variations were combined
via QTL analysis across the 550 RILs for all measured traits.
Significant QTLs were detected for all traits as summarized in
Figure 2 (Supplementary Tables S2, S3). A total of 31 QTLs

TABLE 3 | Rate of genetic effect across environments of four populations (IC, DRO, SW, and YG) for DTH, DTM, PLH, SPK, TKW, and GY and genotype by environment
interactions (GxE) effects.

Pop GY across env. DTH DTM PLH SPK TKW

GxE G MCH SAD TER MCH SAD TER MCH SAD TER MCH MCH TER JSH

IC – 0.93* 0.44* – 0.74* 0.94* – 0.85 0.93* – 0.89* 0.95 0.85* 0.99* –

DRO 0.45* 0.53* 0.90* 1.00* – 1.00* 0.86* – 0.99* 0.98* – 0.97* 0.95* – 0.97*

SW – 0.81* 0.94* – – 0.74 – – 0.96* – – 0.89 0.97* – –

YG 0.63* 0.36* 0.90* – 0.93* 0.92* – 0.76* 1.00* – 0.89* 0.99* 0.95* 0.93* 0.98*

*Significant at 0.05 probability level; −, not available data, GxE, genotype by environment interaction effect; G genetic effect; DTH, days to heading; DTM, days to maturity;
PLH, plant height; SPK, spike density; TKW, 1000 kernel weight; MCH, Marchouch; SAD, Sidi el Aidi; TER, Terbol; JSH, JemaatShaim.
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FIGURE 1 | Frequency distribution of 1,000 kernel weight (TKW) and grain yield (GY) in the parents and the four RIL populations. (A) IC, (B) DRO, (C) SW,
and (D) YG.

were detected across the four populations, explaining from 3.9
to 81.3% of the PV and LOD diverging from 3.7 to 43.5. Six
QTLs were found to be associated with GY and independent

from the flowering time. In particular, on chromosomes 2B, 4A,
and 5B the four independent populations identified consistently
the same GY QTL. Six QTLs were detected for TKW on
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TABLE 4 | Characteristics of the consensus map.

Chr. Markers Loci Length
(cM)

Marker
density

(cM/Marker)

Size of
largest

gap (cM)

1A 118 72 138.8 1.2 26.7

1B 257 106 228.5 0.9 24.9

2A 220 164 135.6 0.6 17.9

2B 540 361 243.5 0.5 16.6

3A 146 74 199.5 1.4 21.1

3B 302 189 238.1 0.8 32.6

4A 209 130 101.7 0.5 6.3

4B 197 125 208.3 1.1 29.9

5A 105 38 217.5 2.1 29.7

5B 302 162 245.0 0.8 16.6

6A 162 75 171.8 1.1 17.5

6B 246 155 181.9 0.7 16.6

7A 144 80 168.9 1.2 20.8

7B 254 152 226.6 0.9 31.7

A genome 1104 633 1133.8 1.0 29.7

B genome 2098 1250 1572.0 0.7 32.6

chromosomes 1B, 4B, 6A, 6B, and 7A, explaining 4.7–15.9 of PV
and with maximum LOD of 6.1. Interestingly, loci controlling
TKW were found to be also associated to GY on chromosome
2B, explaining 8.6 and 4.8% of PV, and LOD of 4.7 and
4.3 respectively.

Genomic Prediction: Identification of the
Best Fitting Model (i, ii, iii, iv)
Four statistical models (i, ii, iii, iv) were tested to determine
the best model to be used for each population (Figure 3). Non-
significant differences could be identified for the IG population
with average accuracies that ranged from 0.42 to 0.41. For DRO,
the incorporation of the M effect resulted in a significant increase
in accuracy from 0.47 to 0.49. The YG population was the most
sensitive to the change of model ranging from 0.27 for models
without M (i and ii), to 0.30 for model iii, to 0.33 for model iv
incorporating GxE + MxE. Following these results, the model
incorporating GxE + MxE was chosen to be the best suited for
all three populations. For the SW population phenotypic data
were available only for one environment, therefore a model using
only markers effect (iii) was used to run genomic predictions for
this population.

Genomic Prediction: Effect of Reducing
TP and Marker Size (v)
The effect of marker number and TP size on prediction accuracies
was tested for GY and TKW (v). Figure 4 shows that when
decreasing the number of markers from 3,202 to 320, a slight
decrease in prediction accuracies was observed for the different
set of TP. For GY, the reduction of markers caused a shift from
0.44 to 0.41 accuracy using 20% of TP, from 0.47 to 0.43 and
from 0.49 to 0.44 for 50 and 75% of TP, respectively. For TKW,
it dropped from 0.75 to 0.73 and from 0.76 to 0.74 for 20 and
50% of the TP, respectively, while no difference was observed

for the 75% of TP between the total number of marker and 10%
of it. Statistical analysis revealed no significant differences could
be observed when reducing marker number and TP size for any
of the two traits.

Genomic Prediction: Importance of
Relatedness Between TP and VP (vi)
The four populations share common parents and have hence
kinship relationships (Table 1). It was therefore evaluated if it
would be possible to use one population as TP for the others
(VP) which have half-sibs relationships. Using TP that were full
sibs to the VP resulted in good accuracy values that ranged from
0.35 to 0.47, and from 0.92 to 0.30 for GY and TKW, respectively
(Table 5). When the TP was not derived from the same cross of
the BP (half sibs), the accuracies drop to values close to zero or
even negative (Table 5). The only acceptable case for GY with
an accuracy of 0.29 was obtained when SW was used as TP
for IG, but this was not true when IG was used as TP for SW
(accuracy of 0.08). The same was observed for TKW, with SW
as TP ensuring an accuracy of 0.22, while YG as TP dropped
to 0.09 accuracy. Interestingly, the two most genetically related
populations, IG and DRO (Table 1) also resulted in very poor
prediction accuracies when used as TP for each other.

Genomic Prediction: Effect of QTL
Analysis on Model Accuracy (vi, viii)
Since QTL analysis and GS have been rarely combined, the last
objective of this study was to determine if a step of QTL analysis
could help improve the GS model’s accuracy. A total of 44 and
27 markers were associated via QTL analysis to GY and TKW,
respectively (Figure 2). To test their value alone, these were
used as the only marker to perform genomic predictions and
resulted in non-significant accuracies for GY for DRO (0.18),
and IG (−0.02), while significant accuracies could be identified
for YG (0.29), while an increased was observed for SW (0.54).
Similarly, for TKW there was a loss significance for DRO (0.20),
IG (0.11) and YG (0.09), while it again increased for SW (0.54)
(Figure 5). The opposite attempt was also conducted by removing
from the whole set all the markers associated with QTLs. In this
case the GY and TKW accuracies became non-significant for
all populations, except for SW for which it matched what was
obtained when using the full marker dataset (Figure 5). With the
exception of SW, for which the use of only markers associated
to QTLs had a positive effect on the prediction accuracies,
in all other populations the use of all markers combined was
significantly superior.

As it can be expected, the sum of the accuracies of using
markers associated to large and small effects does not equal to
the accuracy of these combined. It then becomes interesting to
assess a model that better incorporates these two by fixing the
effect of markers associated to QTLs, while including the random
effect of the small impact alleles (viii). To test the suitability
to do so in a context that better resembles an actual breeding
pipeline, QTL discovery was re-run for each random group of
entries composing the TP, and only QTL that could be identified
by the specific TP where fixed in the model. Supplementary
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FIGURE 2 | Circos representation of the consensus map with aligned the marker density within each population, and the identified QTL for all traits. From outer to
inner layer: (1) the consensus map with 14 chromosomes of durum wheat; (2–5) the genetic maps of the four populations: IC, DRO, SW and YG; (6–11) distribution
of significant markers identified via QTL analysis for DTH, DTM, PLH, SPK, TKW, and GY. In the center, labels for QTLs of PLH, SPK, TKW, and GY independent from
flowering time.

Table S4 reports how frequently the QTL associated with GY
could be re-identified for each TP sub-set. The results of fixing the
marker underlying the QTLs in the model is reported in Figure 6.
For all four populations the accuracies increased significantly
(p < 0.05) when the QTL-underlying markers were fixed in the
model. The average accuracies shifted from 0.35 to 0.47, 0.38 to
0.44, 0.29 to 0.35, and 0.35 to 0.41, for the YG, DRO, IG, and
SW populations, respectively. This represents a clear gain of 0.06–
0.12 points of accuracy, superior than the 0.01–0.03 obtained by
testing different statistical models (i, ii, iii, iv).

DISCUSSION

Rapid genetic gain for complex traits via traditional breeding
selection is hampered by the difficulty of effectively controlling
GxE in the field. Diverting the selection to the use of molecular
markers promises to overcome this issue, if adequate models
can be defined. Therefore, in our study we deployed four
RILs populations that represented well a typical durum wheat

breeding program to test the feasibility of replacing phenotypic
selection with molecular selection. The four populations showed
transgressive segregation when phenotyped for GY and TKW,
indicating additive effect loci are present from both parents as it
would be expected from a well-designed breeding cross.

A Reliable Consensus Map
To construct a high-density consensus genetic map, a
combination of four genetic backgrounds was used by anchoring
common markers, followed by imputation of the missing
haplotypes. The consensus map of IC, DRO, SW, YG included 14
linkage groups and spanned 2,705 cM, similar to what defined in
the four way cross NCCR population map (2,664 cM) of Milner
et al. (2016), and the six elite × elite populations durum wheat
consensus map (2,631 cM) presented by Maccaferri et al. (2015)
and in agreement with other reports ranging from 1,352 cM to
3,598 cM (Blanco et al., 1998; Nachit et al., 2001; Elouafi and
Nachit, 2004; Mantovani et al., 2008; Peleg et al., 2008; Patil
et al., 2013). The consensus map length was higher by 34% of the
average length of the four individual maps. In agreement with
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previous studies (Nachit et al., 2001; Elouafi and Nachit, 2004;
Peleg et al., 2008; Patil et al., 2013) and contrary to Maccaferri
et al. (2015), the A and B genomes had different map lengths,
with the B genome (1,572 cM) being longer than A genome
(1,133.8 cM). However, similarly to Maccaferri et al. (2015), a
smaller number of markers was mapped to the A genome (1,104)
compared to the B genome (2,098). The marker density in the
consensus map differed along the chromosomes. According to
previous studies (Erayman et al., 2004; Saintenac et al., 2011;
Maccaferri et al., 2015), this is probably due to the variation
of recombination frequency and the potential to accumulate
genetic diversity. Markers gaps of 10–33 cM were identified in
all chromosomes, except chromosome 4A. Chromosome regions
with reduced marker density in 1A, 2A, 3A, and 7A have also
been reported in the consensus map of Maccaferri et al. (2014).
Overall, the consensus map developed was well in line with
previous reported examples and it was hence deemed adequate
to perform the targeted study.

Identification of Major Effect Alleles by
QTL Analysis
A total of 31 QTLs were identified for DTH, DTM, PLH, TKW,
SPK, and GY, with most of them showing co-localization or
pleiotropic effect. Consistent QTLs for GY were detected on
chromosomes 2B (Qicd.TKW.DTH.GY.001, Qicd.GY.001,
Qicd.GY.002, and Qicd.TKW.GY.001), 4A (Qicd.PLH.GY.001
and Qicd.PLH.GY.002), 4B (Qicd.PLH.GY.003), 5B
(Qicd.GY.003 and Qicd.PLH.GY.004), 7A (Qicd.GY.004)
and 7B (Qicd.GY.005). Chromosome 2B carries 10 individual
QTLs, eight of which were found associated with GY, TKW, and
SPK, explaining up to 33.4% of the phenotypic variance. This
is in agreement with previous reports on QTLs identified on
chromosome 2B associated with GY and its components (Huang
et al., 2003; McCartney et al., 2005; Quarrie et al., 2005; Suenaga
et al., 2005; Huang et al., 2006; Marza et al., 2006; Maccaferri
et al., 2008; Golabadi et al., 2011). Six individual QTLs for TKW
were found on chromosomes 1B, 4B, 6A, 6B, and 7A. Except for
Qicd.TKW.006 on 7A, which we deem to have been reported
here for the first time, the five remaining QTLs have been
reported in previous studies by Blanco et al. (2011) and Patil et al.
(2013). As indicated by Soriano et al. (2017), QTL influencing
SPK were located on chromosomes 2B, 3B, and 5B. Assanga et al.
(2017) have also found in winter wheat regions in 1A and 6B that
are associated with the same trait.

Major genes associated with phenology were found to have a
pleiotropic influence on trait measurement and QTL detection
(Acuña-Galindo et al., 2015). Flowering time is a major trait in
plant breeding and it provides the basis for plant adaptation.
Chromosomes 2A, 2B, 4B, 5B, 6B, and 7B harbored QTLs
linked to phenology traits. On 2A and 2B, two clusters of QTLs
(Qicd.DTM.PL H.TKW.DTH.001 and Qicd.TKW.DTH.GY.001)
were found in approximately the same position corresponding
with Ppd-A1 and Ppd-B1 genes defined by several authors
(Laurie, 1997; Maccaferri et al., 2008; Wilhelm et al., 2009;
Maccaferri et al., 2011; Arjona et al., 2018). In our study, GY
was associated to PLH in four QTLs located on chromosomes

FIGURE 3 | Prediction accuracy for grain yield (GY) in YG, IG, and DRO
populations using four different statistical models. G+E,
genotype + environment effect; GxE, genotype by environment interaction;
GxE + M, genotype by environment interaction + markers effect; GxE + MxE,
genotype by environment interaction + markers by environment interaction.
The horizontal line represents the average, the square indicates the 2nd and
3rd quartiles, the whiskers represent the 1st and 4th quartiles, the cross the
median, and the dots are outliers. The letters indicated classes determined via
LSD.

4A, 4B, and 5B. Previous studies have also found that PLH genes
are strongly associated with QTL for GY and its components
(Quarrie et al., 2005; Crossa et al., 2007; Rebetzke et al., 2008;
Acuña-Galindo et al., 2015). Borner et al. (2002), Huang et al.
(2003, 2006), Blanco et al. (2012), and Patil et al. (2013) found
that the short arm of chromosome 2A and its homologous
harbor QTL influencing TKW, that was the case for clusters
Qicd.DTM.PLH.TKW.DTH.001 and Qicd.TKW.DTH.GY.001.
The cluster Qicd.DTM.PLH.TKW.DTH.001 for DTM, DTH,
PLH (Soriano et al., 2017) and TKW on chromosome 2A
confirms its agronomically important traits contribution as
reported in Maccaferri et al. (2011) and Patil et al. (2013). On the
homologous region on 2B, the cluster Qicd.TKW.DTH.GY.001
influences DTH, TKW and GY. On chromosome 5B cluster
Qicd.DTH.PLH.001 could be related to Vrn-B1 as reported
by Hanocq et al. (2004). On the long arm of chromosomes
2B, 4B, 6B, and 7B, the identified QTLs suggest important
new regions controlling earliness. Soriano et al. (2017) have
also identified a novel QTL on chr. 4B and 7B. In summary,
the QTL analysis of these four populations has identified and
validated several previously known loci and supports their use for
molecular selection.

Selection of the Best Fitting Statistical
Models for Genomic Predictions
(i, ii, iii, iv)
The prediction analysis was conducted on the RILs population
using models that account for the relationship matrix (G),
environment effect (E), genotype by environment interaction
(GxE), markers (M), and marker by environment interaction
(MxE). The accuracy of breeding selection using only phenotypic
data was computed (Figure 3) as G+E and GxE models (i and
ii), to confirm that accuracies of 0.47-0.28 could be obtained via
traditional breeding selection for GY. These results confirm what
was reported by Crossa et al. (2014): that pedigree (population

Frontiers in Genetics | www.frontiersin.org 9 May 2020 | Volume 11 | Article 316

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00316 May 4, 2020 Time: 17:38 # 10

Zaïm et al. Fixed and Random Effects for Genomic Prediction

FIGURE 4 | Prediction accuracy for grain yield (A) and 1,000 kernel weight (B) using different randomly selected sub-sets of markers in decreasing order: 320
(10%), 640 (20%), 1,281 (40%), 921 (60%), 2,562 (80%), and 3,202 (100%) tested on DRO population using 20, 50, and 75% of the whole population as training set
(TP) to predict the rest of the population (VP). The whiskers represent the standard errors.

TABLE 5 | Comparison of the prediction accuracies using full sibs and half sibs as training populations for grain yield and 1,000 kernel weight.

DRO IG YG SW DRO IG YG SW

Grain yield 1,000-kernels weight

DRO 0.47 −0.08 −0.11 0.07 0.76 −0.1 0.03 −0.26

IG −0.09 0.41 0 0.08 −0.08 0.92 −0.02 0.09

YG −0.07 −0.02 0.35 −0.08 0.12 0 0.83 0.14

SW 0.06 0.29 −0.13 0.37 −0.26 0.22 0.11 0.3

The columns represent the TP and the rows are the BP, the diagonal represents the full sibs relationships.

structure) accounts for a sizeable proportion of the prediction
accuracy. These values were set as competitors to determine
the success of replacing phenotypic selection with molecular
selection. Interestingly, the GS models that incorporated marker
effect (iii, iv) generated non-significantly different or superior
accuracies than traditional breeding selection, indicating a strong
role for GS in future breeding (Figure 3).

Size and Relatedness of the Training
Population (v, vi)
Beside academical studies, breeders often have limited resources
and tend to reduce costs whenever possible. A decrease in the
size of the TP that needs to be both genotyped and phenotyped,
and in the number of markers to be used for genotyping can
represent important savings (Heffner et al., 2011; Crossa et al.,
2014; Bassi et al., 2016). This possibility was tested by varying
the proportion of individuals included in TP and VP from
75% TP and 25% VP, which is a very conservative and costly
approach, to 50% TP and 50% VP, and even 25% TP and 75%
VP. Interestingly, non-significant differences in accuracies could

be observed for any of the reductions, for both high and low
heritability traits (GY and TKW).

The relatedness between the TP and VP has been identified
as a key consideration for predicting complex trait with
low heritability. In an ideal scenario, breeders would like to
accumulate information for a TP over time, using their normal
yield trials as the source for this activity. By logic, the relatedness
between such a TP and a BP under selection should be that
of half-sibs. To test the feasibility of this approach, the four
RIL populations that share half sib relationships were used to
predict each other (Table 5). This resulted in severe losses
of accuracy, reaching values close to zero for both high and
low heritable traits (GY and TKW). This is in agreement with
Windhausen et al. (2012), who also encountered accuracies
close to zero when predicting far-related populations. The
relatedness of a TP to the population to be predicted is
hence one of the most critical aspect of GS in durum wheat.
Therefore, small TP can be effectively deployed to accurately
select BP only if these have full sibs relationships with the
population to be selected. This is in good agreement with
Bassi et al. (2016), who described several breeding schemes
to deploy GS in a manner that would allow the TP to
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FIGURE 5 | Prediction accuracy for grain yield (A) and 1,000 kernel weight (B)
using all markers, only markers linked to QTLs, and all markers except those
identified as linked to QTLs. Whiskers represents the experiment wise LSD.

be full-sib of the BP under selection, without excessive loss
of genetic gain.

Does Markers Number Affect the
Predictions? (v)
The possibility of deploying GS in breeding is still heavily
hindered by the cost associated with genotyping huge
populations. A way to reduce the cost of genotyping would
be to reduce the number of markers used for the analysis. Here
we tested the effect of the markers number to reveal that there
was no significant difference in the prediction accuracies between
using 3,202 or 320 SNPs as far as the TP and VP are full sibs
(Figure 4). Hickey et al. (2014) also reported that when using
information from related maize bi-parental populations high
accuracies can be achieved using a small number of markers.
Similarly, Haile et al. (2018) indicated that among advanced
durum wheat breeding lines, the reduction from 9,000 to 500
markers did not cause a significant reduction in accuracies.
However, it has to be noted that combining a decrease of TP
size to 20% of the BP, and 10% of markers number caused the
accuracy for GY to drop from 0.48 to 0.41 and for TKW from
0.77 to 0.74. This is a significant reduction of 0.07 and 0.03 points.
Still, in the optic of practical application, the values of accuracies
remain very close to what achieved using only phenotypic models
(G+E and GxE) and hence it could be advisable to deploy small
TP and small markers set in breeding if this makes GS a more
affordable approach.

Is There an Advantage to Conduct QTL
Analysis Before Genomic Predictions?
(vii, viii)
QTL analysis and GS models rely on the same type of
dataset. Therefore, it is of interest to define if there is additive

FIGURE 6 | Comparison of the prediction accuracies of grain yield (GY) for
the four population YG, DRO, IG, and SW, using a model with all markers
considered as random effect against a models that fixed markers underlying
QTLs. The horizontal line represents the average, the square indicates the 2nd
and 3rd quartiles, the whiskers represent the 1st and 4th quartiles, the cross
the median, and the dots are outliers. The letters indicated classes
determined via LSD.

contribution in combining both type of studies. Initially it was
tested the effect of using only markers underlying QTLs to make
prediction, as a way to simulate a MAS approach (Figure 5). The
obtained accuracies reached between −0.02 and 0.54, depending
on traits and populations. This would suggest that running
prediction models using only few markers linked to known genes
(44 and 27 for GY and TKW, respectively) could provide some
degree of success. For confirmation, the opposite situation was
also tested by removing any markers associated to QTL from the
whole dataset. Once again, the accuracies dropped significantly
for all traits and populations, except for SW. This result suggests
that the marker number is not the only factor to ensure high
accuracies, but that the ability to define the haplotype of major
effect loci is also of critical importance.

The final test was designed to combine the extra information
obtained via the definition of major allele effects by QTL analysis
with the minor allele effects assessed via GS. Since the initial QTL
discovery was conducted using the whole population, while GS
models would instead use only sub-set of each population as TP
and VP, QTL discovery was re-conducted for each TP subset.
All initially identified QTLs were re-identified in 10–50% of the
TP subsets (Supplementary Table S4) depending on the levels
of allelic and phenotypic variation of each random subset. The
marker underlying the re-identified QTLs were fixed for each TP
subset and used to improve the prediction model. The results are
extremely promising, since for all populations the combination
of minor allele effects as GS random factor and major allele
effects as QTL fixed factor resulted in a significant increase in
prediction accuracies. Furthermore, the accuracies value were
increased by 0.06–0.12 points, a major increase compared to the
0.02 points of reducing the TP size or changing statistical models.
Our results are in partial agreement with Sarinelli et al. (2019)
who demonstrated that major genes added as fixed effects always
improved model predictive ability, with the greatest gains coming
from combinations of multiple genes for days to heading and
plant height in a winter wheat panel. Bian and Holland (2017)
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also concluded that adding SNPs associated with a given trait as
fixed effects resulted in higher predictive abilities when compared
to models that only treated SNPs as random effects. Bernardo
(2014) pointed out that the prediction accuracy of GS models
can be increased by adding major genes as fixed effects when
they represent a large proportion of the total variance associated
with the trait under consideration (≥10%). Considering that
GY remains often the main targeted trait, and also one of
the most complex to predict, overall our results support the
principle of incorporating fixed effect alleles into a prediction
model, especially for markers accounting for a large part of
the phenotypic variation. The idea of combining MAS using
marker associated to known loci as fixed effects, and all other
loci as random effect, becomes interesting for practical breeding
applications. Furthermore, there appears to be an additive value
in conducting a discovery step via QTL analysis before running
genomic predictions, since the additional information can be
strategically exploited to increase accuracies.

CONCLUSION

The results of this study provide a framework for better
understanding and deploying molecular selection in durum
wheat. The use of four populations to define a consensus linkage
map allowed the precise identification of significant QTL for
agronomic traits. Furthermore, these were incorporated into
prediction models to reveal significant gains of accuracy for GY
when integrated as fixed effects. Several critical considerations
were also tested for their deployment in durum wheat breeding.
The results presented here are in good agreement with previous
literature and what suggested previously by us for breeding
application of GS in wheat (Bassi et al., 2016). In practice, the
use of half sibs or distantly related TP does not appear to be
an exploitable methodology for GS in durum wheat. Instead,
small size full sibs TP needs to be deployed and genotyping costs
can be reduced by using just 200–300 SNPs. In addition, known
loci linked to traits of interest should be also included in the
marker set and used as fixed effects to increase prediction. Most
importantly, all genomic prediction models were compared to the
accuracy attainable by classical phenotypic selection to confirm
that the same results could be achieved via molecular approaches.
Altogether, our result provides strong support for the deployment
of genomic prediction in durum wheat breeding.
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