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Health care facilities are facing serious threats by the recently emerging human fungal
pathogen Candida auris owing to its pronounced antifungal multidrug resistance and poor
diagnostic tools. Distinct C. auris clades evolved seemingly simultaneously at independent
geographical locations and display both genetic and phenotypic diversity. Although
comparative genomics and phenotypic profiling studies are increasing, we still lack
mechanistic knowledge about the C. auris species diversification and clinical
heterogeneity. Since gene expression variability impacts phenotypic plasticity, we
aimed to characterize transcriptomic signatures of C. auris patient isolates with distinct
antifungal susceptibility profiles in this study. First, we employed an antifungal
susceptibility screening of clinical C. auris isolates to identify divergent intra-clade
responses to antifungal treatments. Interestingly, comparative transcriptional profiling
reveals large gene expression differences between clade I isolates and one clade II strain,
irrespective of their antifungal susceptibilities. However, comparisons at the clade levels
demonstrate that minor changes in gene expression suffice to drive divergent drug
responses. Finally, we functionally validate transcriptional signatures reflecting phenotypic
divergence of clinical isolates. Thus, our results suggest that large-scale transcriptional
profiling allows for predicting phenotypic diversities of patient isolates, which may help
choosing suitable antifungal therapies of multidrug-resistant C. auris.
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INTRODUCTION

Infectious diseases pose a major threat to human health, which is further driven by the ever-ongoing
emergence of new pathogens (Satoh et al., 2009; Cloeckaert and Kuchler, 2020; Wu et al., 2020). The
increasing prevalence of (multi)drug-resistant microbial pathogens (Blair et al., 2015; Berman and
Krysan, 2020) constitutes a worrisome global trend, which requires immediate attention in basic
and applied research. SARS-Cov-2 is a horrific example of what can happen when treatment of a
pathogen with pandemic potential is unavailable or when health care is forced into the “reactive”
mode rather than the essential “preparedness” mode that would ensure eradication of pandemics
(Cloeckaert and Kuchler, 2020). Ever since the first reported case of the human fungal pathogen
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Candida auris (Satoh et al., 2009), it has caused hospital
outbreaks in more than 40 countries by today (Du et al., 2020).
The rapid and independent emergence of C. auris in different
geographical locations (Lockhart et al., 2017; Chow et al., 2020),
along with its pronounced pan-antifungal traits has sparked
serious concerns. Based on genomic analysis and the initial
occurrence, C. auris clusters into 4 major clades, with the most
recent emergence of a possible fifth clade from Iran (Chow et al.,
2019). Isolates from different clades are genetically diverse,
though intra-clade variability is limited at the genomic level,
suggesting a clonal expansion for each clade (Sharma et al., 2016;
Muñoz et al., 2018). In addition to global spreading of C. auris,
this pathogen constitutes an epic clinical challenge due to poor
diagnostics and because of its dramatic antifungal multidrug
resistance (MDR) (Chowdhary et al., 2017; Mizusawa et al., 2017;
Kordalewska and Perlin, 2019).

To date, four main classes of antifungals are in clinical use:
azoles, echinocandins, polyenes and nucleoside analogues (Berman
and Krysan, 2020). While the majority of identified C. auris isolates
display intrinsic resistance to azoles such as fluconazole,
susceptibilities to other antifungals strongly vary among clades.
Recent studies demonstrated that clade II isolates (East Asian clade)
show the highest degree of antifungal susceptibilities, while clade I
strains (South Asian clade) show the lowest susceptibility (Arendrup
et al., 2017; Szekely et al., 2019; Chen et al., 2020; Chow et al., 2020).
In line with this, resistance to the polyene amphotericin B (AmB)
was mainly detected in clade I and clade IV (South America clade)
isolates (Chow et al., 2020). Generally, about 15-30% of C. auris
isolates exhibit a high tolerance to AmB and 2-8% of isolates are
echinocandin-resistant (Chowdhary et al., 2017), making
echinocandins the choice of first-line treatment. However, isolates
resistant to more than 2 or all classes of antifungals and isolates
from India that show a severe increase in echinocandin-resistant
have been observed (Kathuria et al., 2015; Chowdhary et al., 2017;
Kordalewska et al., 2018; Chen et al., 2020).

In addition to pronounced MDR traits, C. auris shows strong
adhesion to biotic surfaces such as human skin (Schelenz et al.,
2016; Chow et al., 2018; Horton et al., 2020), which has become
the major route of person-to-person transmission in health care
settings (Forsberg et al., 2019). Therefore, the Centers of Disease
Control and Prevention (CDC) has recently recognized the
pandemic potential, and classified it as a global threat to
human health, thus requiring urgent attention in medicare for
the next decade (https://www.cdc.gov/fungal/candida-auris;
(Meis and Chowdhary, 2018). Recent studies provide first
glimpses about evolution, morphogenetic plasticity, host
interactions and skin colonization behavior of different C. auris
clades (Muñoz et al., 2018; Yue et al., 2018; Bruno et al., 2020;
Chow et al., 2020; Huang et al., 2020). However, basic knowledge
about C. auris cell biology or molecular mechanisms of its
phenotypic diversification are lagging behind.

Cell fate and adaptations to environmental cues are not only
determined by genomic variations, but are also fundamentally
affected by regulators of epigenetic and transcriptional signatures
(Burton and Torres-Padilla, 2014; Lappalainen and Greally, 2017).
Likewise, alterations in these programs drive divergent phenotypic
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
diversification that allows for niche adaptations, even under
immune surveillance in host settings (Gómez-Dıáz et al., 2012;
Huang et al., 2019). Therefore, we aimed to assess transcriptomic
profiles of different clade I isolates and the Japanese clade II type
strain (CBS10913 aka CDC B11220) to identify inter- but also
intra-clade-specific gene expression patterns linked to distinct
phenotypical properties. In this study, we present transcriptional
signatures of C. auris clade I isolates with distinct antifungal
susceptibility profiles. We demonstrate that a limited set of
regulated genes can drive divergent antifungal responses. In
addition, we provide experimental validation of top-regulated
genes mediating azole susceptibility and proteolysis-mediated
growth of C. auris isolates. Hence, we believe that comparative
transcriptional profiling of a variety of C. auris isolates will aid to
predict fungal biological properties as well as MDR phenotypes
based on gene expression signatures.
MATERIAL AND METHODS

Media and Fungal Growth Conditions
All strains used in this study are listed in Supplementary Table 1.
Clinical isolates of C. auris were a generous gift of Rajendra
Prasad and Arunoloke Chakraborti. Candida strains were
routinely grown on YPD medium (1% yeast extract, 2%
peptone and 2% glucose [all BD Biosciences]) at 30°C with 200
rpm shaking. For solid medium, 2% Bacto agar (BD Biosciences)
was added. Synthetic complete (SC; 1.7 g/L yeast nitrogen base
without amino acids and ammonium sulfate [BD Biosciences],
5 g/L ammonium sulfate [Sigma-Aldrich], amino acid mix and
2% glucose [all BD Biosciences]) medium was prepared as
previously described (Kaiser et al., 1994). YCB-BSA medium
was composed of 23.4 g/L yeast carbon base (Sigma-Aldrich)
pH-adjusted with HCl to 4.0 and 5 g/L BSA (Sigma-Aldrich).
Antifungal Susceptibility Screening
on Solid Agar Medium
For antifungal susceptibility testing on solid medium, fungal
strains were printed on solid YPD medium from cryo-cultures
arranged on a 96-well plate using a robot instrument (RoToR
HDA, Singer Ltd., Roadwater, UK). YPD plates were then
incubated at 30°C for 3 days and material form fungal colony
spots were inoculated in 200 µl liquid YPD medium in a 96-well
plate using the robot instrument. Cultures were grown overnight
at 30°C with constant agitation (150 rpm) and spotted on solid
SC medium with or without antifungal drugs using the robot
instrument. Plates were imaged after 3 days at 30°C. Plate
spotting was performed in duplicates. The colony size was
calculated using the R “gitter” package (https://github.com/
omarwagih/gitter) and the relative colony size represents the
colony size ratio on SC supplemented with antifungals relative to
the colony size on SC medium alone. The lower the ratio of
colony size with drug vs no drug, the more susceptible is the
isolate. The following antifungals were used: fluconazole (FCZ;
Discovery Fine Chemicals Ltd; 64, 32, 16, 8 and 4 µg/ml in
April 2021 | Volume 11 | Article 662563
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DMSO [Sigma-Aldrich]), itraconazole (ICZ; Discovery Fine
Chemicals Ltd; 0.15, 0.075 µg/ml in DMSO), voriconazole
(VCZ; Discovery Fine Chemicals Ltd; 0.15, 0.075 µg/ml in
DMSO), amphotericin B (AmB; Santa Cruz Biotechnology; 3.0
and 1.5 µg/ml in DMSO), caspofungin (Casp; Merck; 0.40, 0.20,
0.12 µg/ml in dH2O), 5-fluorocytosine (5-FC; Sigma-Aldrich; 10
and 5 µg/ml in dH2O).

Growth Inhibition Assays
Antifungal susceptibility of selected C. auris isolates was confirmed
using a minimal inhibitory concentration (MIC) assay in liquid
YPD medium as described previously (Schwarzmüller et al., 2014)
withminormodifications. Briefly, fungal cells were grown overnight
in YPD at 30°C with constant agitation (200 rpm) and regrown the
next day in fresh YPD medium at 30°C, 200 rpm to an OD600 of
approximately 1. Cells were then further diluted in YPDmedium to
an inoculum of 2.5 x 104 cells per ml. Antifungal stocks were serially
diluted 1:2 in YPD and 100 µl of each dilution were suspended into
a well of a 96-well plate. Control wells with YPD medium only or
supplemented with the corresponding DMSO (Sigma-Aldrich)
concentration (2% final) were included, if the tested antifungal
was prepared in DMSO. Hundred µl of inoculum were then added
and plates were incubated at 30°C for 24 hours followed by OD600

readings using a Victor Nivo plate reader (PerkinElmer). Wells
without cells served as blank control. Values for the 50% inhibitory
concentration (IC50) were calculated with a 4-parameter log-logistic
model using the R “drc” package (Ritz et al., 2016).

Generation of CDR1 Gene
Deletion Mutants
The C. auris homologue of C. albicans CDR1 was deleted using a
fusion PCR strategy exactly as published previously (Schwarzmüller
et al., 2014). Briefly, roughly 500 bp flanking regions upstream and
downstream of C. auris CDR1 were amplified from genomic DNA
(gDNA) extracted from the CBS10913 strain as described previously
(Jenull et al., 2020). The NAT1 selection marker was amplified from
the plasmid pTS50 (Schwarzmüller et al., 2014). PCR products were
gel purified and approximately 1 ng of each fragment was used for
the fusion PCR reaction yielding in the final deletion construct,
which was purified via ethanol precipitation. Transformation of C.
auris with the CDR1 deletion cassette was carried out as reported
earlier (Reuß et al., 2004). Correct genomic integration of the
deletion construct and the loss of the CDR1 gene was verified by
colony PCR (Tscherner et al., 2015). Oligos used in CDR1 gene
deletion are listed in Supplementary Table 2.

Transcriptional Profiling Using
RNA-Sequencing
For RNA-seq analysis, overnight-grown Candida cultures were
inoculated into YPD (initial OD600 of 0.1) and grown at 37°C for
4h. Total RNA was purified using Genejet RNA purification kit
(Thermo Scientific). Quality of RNA was assessed on a
Bioanalyzer using the RNA6000 Nanochip (Agilent), mRNA
was enriched using oligo(dT) beads (NEB) and subsequently,
double-stranded cDNA libraries were generated by using the
NEBNext Ultra Directional RNA Library Prep Kit for Illumina
(NEB) according to the manufacturer’s instructions. The qualified
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
libraries were subjected to Illumina sequencing with a 75 bp
paired-read length at the Novogene (Novogene, USA)
sequencing facility. Three biological replicates for each strain
were sequenced.

Quality control of raw sequencing reads was done using fastQC
v0.11.8 (Andrews, 2010). TrueSeq (Illumina) adapters were
trimmed using cutadapt v1.18 (https://cutadapt.readthedocs.io/en/
stable/; settings: -q 30) followed by read mapping onto the C. auris
B11221 genome assembly (V1, NCBI RefSeq GCF_002775015.1)
using NextGenMap v0.5.5 (Sedlazeck et al., 2013) (settings: -b).
Optical read duplicates were removed using Picard tools (Broad
Institute, https://broadinstitute.github.io/picard/, settings:
MarkDuplicates REMOVE_SEQUENCING_DUPLICATES=true).
Read counting was done using HTseq (Anders et al., 2014) in the
union mode and the genomic annotation from C. auris B11221
(settings: -f bam -t gene -i ID). Differential gene expression analysis
was done using pair-wise comparisons in edgeR (Robinson et al.,
2009). The false discovery rate (FDR) represents p-values adjusted
for multiple testing using the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995). Normalized read counts were
extracted using the edgeR ‘cpm’ function and were used for
principal component analysis (PCA) using the ‘prcomp’ function
in R.

For further downstream analysis, C. auris genes detected in the
RNA-seq analysis were aligned to C. albicans homologues using
the BLAST+ tools (NCBI) using standard parameters. Protein
sequences for C. albicans were retrieved from the Candida
Genome Database (CGD) and for C. auris from NCBI. C.
albicans protein sequences were used to create a BLAST
database using the makeblastdb tool. Subsequently, all C. auris
proteins were queried against this database using the blastp tool
and standard parameters. Only hits with an E-value of < 0.001 and
a query protein cover of > 50% were allowed to identify a BLAST
hit as C. auris homologue. GO term enrichment analysis based on
the C. albicans homologues was performed using the ‘enrichGO’
function from the clusterProfiler package (Yu et al., 2012). Only
GO categories with a q-value < 0.05 were considered significant.
The RNA-seq analysis results are presented in Supplementary
Table 3, Supplementary Table 5.

Fluorescein Diacetate Uptake Assay
The kinetics of FDA uptake was carried out essentially as described
earlier (Shivarathri et al., 2020) with minor modifications. Briefly, C.
auris strains were grown to the logarithmic growth phase at 37°C,
washed twice in 1ml of FDA buffer (50mM HEPES, pH 7.0 and
0.5mM 2-deoxy-D-glucose [all Sigma-Aldrich]), followed by the
addition of 50 nM FDA (ThermoFisher). The kinetics of FDA
uptake were recorded every 5min with continuous shaking at
37°C using a H1 Synergy plate reader (Biotek) with excitation
and emission wavelengths set to 485 and 535 nm, respectively. Data
represent the arbitrary units (AU) of mean fluorescence intensity
over time. The slope was calculated in GraphPad v6.01 (Prism).

Assessment of Proteolytic Growth
Proteolytic growth of fungal strains was analyzed on solid YCB-
BSA medium. Strains were grown overnight in YPD at 30°C with
constant agitation (200 rpm), washed 2x with dH2O and finally
April 2021 | Volume 11 | Article 662563
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resuspended in dH2O prior cell-counting on a CASY cell counter
(Roche). Cells were diluted to 2.0 x 105 cells/ml and 5 µl of this
dilution were spotted onto a YCB-BSA plate. Colony growth and
proteolytic halo formation was recorded after 3 days at 30°C.
RESULTS

Intra-Clade Variation Among C. auris
Clade I Isolates in Antifungal Susceptibility
Recent large-scale profiling of C. auris isolates from different
clades demonstrated extensive genomic variations (Muñoz et al.,
2018). However, even within one clade, antifungal susceptibilities
can vary (Chowdhary et al., 2018; Chow et al., 2020). Thus, we
further explored the intra-clade variation of clade I C. auris
clinical isolates using a solid-medium screening approach. We
tested fungal susceptibilities representative from all antifungal
classes (azoles, echinocandins, polyenes and nucleoside
analogues) and additionally included reference control strains
such as C. albicans (SC5314), C. glabrata (ATCC2001) and the
initial C. auris isolate from Japan (CBS10913, clade II; (Satoh
et al., 2009)). As expected, C. auris isolates differed in their
antifungal susceptibility profiles (Figure 1A, Supplementary
Figure 1). For instance, isolate 470140 showed pronounced
growth inhibition by AmB, itraconazole (ICZ) and a moderate
growth inhibition by fluconazole (FCZ) or voriconazole (VCZ),
while growth was unaffected by the presence of caspofungin
(colony A7 in Figure 1A). By contrast, isolates 470147 and
470154 (colony A8 and B4, respectively in Figure 1A) were
much less susceptible to all tested azoles, but showed reduced
colony sizes upon caspofungin treatment when compared to
isolate 470140 (Figure 1A). In line with this observation,
clustering based on colony sizes upon antifungal treatment
confirmed that isolates 470147 and 470154 clustered apart
from isolate 470140 based on their susceptibility profiles
(Figure 1B). This further highlights the seemingly opposing
antifungal sensitivities between isolates 470140 and 470147 or
470154. We further validated the plate-based screening results
for 470140, 470147 and 470154 using a liquid microbroth
dilution assay. Again, we observed a striking difference in azole
and caspofungin susceptibility between the shortlisted isolates,
thus fully confirming the solid-media screening data (Figure
1C). Notably, the azole-resistant and caspofungin-sensitive
isolates 470147 and 470154 displayed a divergent VCZ
phenotype in the liquid microbroth dilution assay and the
solid medium screening, with 470154 showing greater VCZ
susceptibility than 470147 in the latter assay and vice versa.
Given that most C. auris isolates are inherently FCZ-resistant,
but echinocandin-sensitive (Chowdhary et al. , 2018;
Kordalewska et al., 2018), we chose those isolates for further
characterization. Of note, the CBS10913 control isolate,
previously reported to be echinocandin-sensitive (Muñoz et al.,
2018), displayed only minor growth inhibition after caspofungin
treatment in the experimental conditions used here. This
discrepancy may come from different protocols employed for
antifungal susceptibility testing.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Transcriptional Profiles of C. auris With
Distinct Antifungal Susceptibility Profiles
Distinct transcriptional programs often link genomic and
epigenetic variations, and dictate phenotypic diversity (Halme
et al., 2004; Richards, 2006). To identify molecular mechanisms
conferring inter- and intra-clade variations in a broader sense,
we determined genome-wide transcriptional profiles of clade I
isolates 470147, 470154 (both azole-resistant), 470140 (azole-
sensitive), as well as the clade II CBS10913 strain during standard
growth in rich medium. First, we examined inter-clade variations
and compared the number of differentially expressed genes
(DEGs) between clade I isolates with CBS10913. We found a
large set of genes at least 1.5-fold differentially expressed
(roughly 600-1100 genes, depending on the comparison, Table
1), which may arise from vast inter-clade genomic variations
(Muñoz et al., 2018). Accordingly, 966 genes (FDR < 0.05 and >
1.5-fold change) were commonly deregulated between all clade I
isolates and CBS10913 (Figure 2A, Supplementary Table 4).
Strikingly, gene ontology analysis revealed that almost 60% of
genes associated with ergosterol biosynthetic processes (16 out of
27 annotated genes) were significantly enriched among the gene
set commonly differentially expressed between clade I isolates
and the CBS10913 strain (Figure 2B, Supplementary Table 4).
Remarkably, this gene set with enhanced expression in clade I
isolates contained 14 out of 21 ergosterol biosynthesis genes
(Figure 2C, Supplementary Figure 2). Interestingly, the key
transcriptional regulator of ergosterol biosynthesis genes UPC2
(Silver et al., 2004) was additionally upregulated in all clade I
strains with respect to the CBS10913 isolates (Table 2). To test
whether this altered transcriptional control of ergosterol
biosynthesis genes translates into altered cell membrane
properties, we performed a fluorescein diacetate (FDA) uptake
assay. FDA enters only via passive diffusion and thus, is solely a
function of non-protein membrane permeability (Breeuwer et al.,
1995). Indeed, we found that membrane permeability was 5 to
10-fold decreased in clade I isolates when compared to the clade
II CBS10913 strain (Figure 2D, E), which functionally validates
the detected transcriptional deregulation of ergosterol
biosynthesis. Moreover, FDA uptake by azole-resistant 470147
and 470154 was roughly 2-fold lower than in the azole-sensitive
470140 strain (Figure 2D, E), which could explain differential
antifungal susceptibilities profiles.

Minor Transcriptional Variations
Suffice to Establish Distinct
Antifungal Susceptibilities
Inter-clade genomic variation is approximately 17-fold higher
than among isolates from the same clade (Muñoz et al., 2018).
This may be accompanied by large transcriptional re-wiring,
which might make identification of key pathways mediating
phenotypic identities challenging. Therefore, we aimed to
pinpoint intra-clade transcriptional variations underlying
specific antifungal susceptibility profiles, which are not biased
by large inter-clade genomic variations. As shown above, the
isolates 470140 and 470154 show opposing sensitivities to azoles
and caspofungin, while isolate 470147 phenocopies 470154
April 2021 | Volume 11 | Article 662563
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(Figures 1B, C). Yet, isolates 470154 and 470140 share
exclusively 874 DEGs when compared to CBS10913, whereas
470154 and 470147 only shared a common DEGs set of 98 genes
(Figure 2A). This was further reflected in a principal component
analysis (PCA), where CBS10913 was separated from the other
isolates by the first PC, explaining roughly 54% of variance
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
among the samples (Figure 3A). In contrast, isolate 470154 and
470140 appeared highly similar in their transcriptional profile as
they clustered together, despite their opposing azole and
caspofungin susceptibilities. Therefore, we performed a
pairwise comparison of those two isolates and found a limited
set of 301 genes at least 1.5-fold differentially expressed (Table 1,
Figure 3B). The top downregulated genes encompassed several
cell wall-associated proteins such as homologues of the C.
albicans ALS4 and PGA7, encoding for an adhesin (Hoyer
et al., 1998) and a GPI-anchored cell wall protein (Sorgo et al.,
2013), respectively (Figure 3B). In addition, homologues of C.
albicans SAP2, encoding a secreted aspartic protease (Hube et al.,
1994), and MNN1, encoding for a mannosyltransferase (Bates
et al., 2013), were strikingly upregulated in isolate 470154 when
compared to 470140 (Figure 3B). As 470154 and 470140 diverge
A B

C

FIGURE 1 | C. auris clinical isolates show variations in antifungal susceptibility. (A) Plate-based drug susceptibilities of clade-I C. auris clinical isolates. Overnight
cultures in YPD medium were spotted on synthetic complete medium plates containing the indicated antifungals. Plates were imaged after 3 days incubation at
30°C. (B) Heatmap of screening results shown in A for the indicated strains. Colony sizes were quantified and normalized to control plates. Color codes indicate the
relative colony size for the corresponding condition and represents the mean of two screening plates. (C) Confirmation of plate-based screening results using liquid
growth inhibition assays. Cells were incubated in YPD medium with the indicated antifungal drugs at 30°C for 24 hours prior to OD600 measurement. Data represent
mean +/- SD from 3 biological replicates.
TABLE 1 | Number of differentially expressed genes (RNA-seq).

Comparison Up Down

470140 vs CBS10913 955 1135
470147 vs CBS10913 624 787
470154 vs CBS10913 998 1214
470154 vs 470140 106 195
Cut-off: log2 fold change 0.58 (~ 1.5-fold change) & false discovery rate (FDR) < 0.05.
April 2021 | Volume 11 | Article 662563
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greatly in their azole susceptibilities, we next aimed to identify
genes associated with azole responses among DEGs in 470154
vs 470140.

Fungal azole resistance is often mediated by an ectopic
expression of drug exporters such as ATP-Binding Cassette
(ABC) and Major Facilitator Superfamily (MFS) transporters
(Prasad et al., 2019). Indeed, we found the homologue of the C.
albicans ABC transporter CDR1 (Kim et al., 2019) upregulated in
the azole-resistant 470154 isolate when compared to 470140
(Figure 3B). Since overexpression of additional antifungal drug
targets has been observed in resistant isolates (Muñoz et al., 2018;
Zamith-Miranda et al., 2019), we performed gene ontology (GO)
analysis of genes upregulated (FDR < 0.05 and 1.5-fold change,
Supplementary Table 6) in the azole resistant isolate 470154
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
with respect to the azole sensitive isolate 470140. Indeed, processes
involving drug transport were significantly enriched with
upregulated genes in the azole-resistant 470154 isolate
(Supplementary Table 6). Those included homologues of the C.
albicans MFS transporters MDR1 (Pasrija et al., 2007) and FLU1
(Calabrese et al., 2000), as well as the ABC transporters CDR1
(Prasad et al., 1995) and CDR4 (Franz et al., 1998). Notably, despite
the general upregulation of ergosterol biosynthesis genes in clade I
isolates with respect to clade II CBS10913 (Figure 2C), expression of
the key azole target gene ERG11, encoding the lanosterol 14-a-
demethylase (Hitchcock et al., 1990), was additionally increased in
isolate 470154 when compared to 470140 (Figure 3C). These
transcriptional aberrations might cooperate to prime distinct
cellular properties such as cell permeability and azole uptake or
A B

D

E

C

FIGURE 2 | Transcriptome analysis of C. auris clinical isolates. (A) Genome-wide transcript levels were determined for C. auris clinical isolates using RNA-seq. The
number of differentially expressed genes (FDR < 0.05, fold change > 1.5 or < -1.5) and commonly regulated genes of pairwise comparisons are visualized. (B) GO-
term enrichment analysis of commonly differentially expressed genes in clade I isolates relative to the CBS10913 type strain (intersection of the Venn diagram in panel
(A). The GeneRatio denotes the number or genes enriched in the depicted GO-term relative to the total number of genes associated with this GO-term. (C) Heatmap
depicting genes enriched in the GO-term “ergosterol biosynthetic process” from panel (B) The color code indicates the fold-changes (log2) in gene expression. Gene
names on the left side refer to C. albicans homologues as determined by BLASTp and labels on the right side depict C auris gene IDs. (D, E) Kinetics (D) and the
slope (E) of FDA uptake by C. auris strains as indicated. Data represent mean + SD from 4 biological replicates. ****P < 0.0001 with one-way ANOVA and Tukey’s
multiple comparison test.
April 2021 | Volume 11 | Article 662563

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Jenull et al. Transcriptional Signatures of Candida auris
export (Figure 2D) and thus explain distinct antifungal
susceptibility profiles (Figure 1B).

Transcriptional Aberrations of Key Players
Determine Fungal Phenotypic Identities
To decipher true effectors mediating phenotypic and MDR
variation, we next validated differentially expressed genes
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
between isolates 470154 and 470140. We first focused on genes
modulating fungal azole sensitivity, such as drug exporters
(Prasad et al., 2019). As mentioned above, the ABC transporter
CDR1 was among the top upregulated genes in the azole-
resistant 470154 when compared to the azole sensitive 470140
isolate (Figure 3B). To confirm the relevance of CDR1
overexpression in this specific context, we deleted CDR1 in the
470154 background and assessed the susceptibilities to FCZ and
VCZ using a microbroth dilution assay in rich medium. As
already observed in earlier studies for other clinical isolates (Kim
et al., 2019; Rybak et al., 2019), genetic ablation of CDR1
essentially restored azole sensitivity of strain 470154 (Figures
4A, B). This was reflected in a more than 10-fold reduction of
IC50 values for both FCZ and VCZ (Figure 4C). These data
further highlight the global biological relevance of Cdr1 in C.
auris azole resistance and fully confirm our RNA-seq data.
TABLE 2 | Transcriptional regulation of UPC2 (RNA-seq).

UPC2 regulation

Comparison Fold change (log2) FDR

470140 vs CBS10913 0.49 7.56298E-07
470147 vs CBS10913 1.36 1.43291E-42
470154 vs CBS10913 0.54 6.86098E-08
A B

C

FIGURE 3 | Minor transcriptional variation drives divergent antifungal susceptibilities. (A) Principal component analysis result using normalized RNA-seq read counts
from three biological replicates per strain. The two clinical isolates 470140 and 470154 show high similarity in their gene expression profile and were used for further
pairwise comparison. (B) Pairwise differential expression analysis of 470154 vs 470140. Fold-change (log2) in 470154 vs 470140 is plotted against the FDR. Top
differentially expressed genes are labeled based on their homologues found in C. albicans. Blue lines indicate 1.5-fold change and the red line marks a FDR of 0.05.
Number inserts depict differentially expressed genes (FDR < 0.05 and log2 fold change > 0.58 [~ 1.5-fold change] or < -0.58 [~ -1.5-fold change]) (C) GO term
enrichment analysis of genes up-regulated (1.5-fold change with FDR < 0.05) in 470154 vs 470140. Grey dots represent significantly enriched GO terms and colored
dots with lines show genes belonging to the corresponding GO term. Dot size indicates the number of genes within a GO term and the color code reflects
expression changes in 470154 vs 470140.
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Furthermore, another top-upregulated gene between 470154
and 470140, SAP2 (Figure 3B), was also subjected to biological
validation. The C. albicans genome encodes for at least 10
different secreted aspartic proteases (SAPs) (Naglik et al.,
2003). Sap2 facilitates nitrogen assimilation when protein
serves as the major nitrogen source and its expression is
repressed in the presence of favorable nitrogen sources (Hube
et al., 1994; Martıńez and Ljungdahl, 2005). To test whether
elevated SAP2 expression in 470154 cells correlates with
increased fungal proteolytic activity, we assessed colony
behavior of C. auris isolates on YCB medium supplemented
with BSA as the major nitrogen source. Indeed, 470154 displayed
a greater halo around the colonies, indicating strongly increased
extracellular proteolytic BSA degradation (Bernardo et al., 2008),
when compared to the SAP2-low expressing isolate 470140
(Figure 5A). To correlate the increased proteolytic activity of
470154 solely with SAP2 overexpression, we further compared
expression levels of additional SAP family members in 470154
and 470140. We detected 9 putative SAPs expressed in the C.
auris RNA-seq data set, which were homologous of C. albicans
SAP2, SAP3, SAP4, SAP8 and SAP9. Interestingly enough, only
SAP2 was significantly upregulated in 470154 cells (Figure 5B),
thus functionally validating the RNA-seq data. Notably, isolate
470147, which phenocopies 470154 in terms of antifungal
susceptibility profiles, displayed increased proteolytic activity
when compared to isolate 470140 or the CBS10913 strain
(Figure 5A). This is in line with the specific upregulation of
SAP2 by isolates 470154 and 470147, but not 470140, when
compared to the CBS10913 type strain (Figure 5C). In summary,
transcriptional profiling during fungal steady state growth can
robustly uncover principle phenotypic variation of C. auris
clinical isolates at the inter- and intra-clade levels.
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DISCUSSION

C. auris shows vast intra-species genetic diversities, often
reflected in distinct phenotypic behaviors including antifungal
susceptibilities. While pioneering studies provided new insights
into the genomic variability (Sharma et al., 2016; Lockhart et al.,
2017; Muñoz et al., 2018), mechanistic studies on how those
genomic make-ups translate into intra-clade and inter-clade
transcriptional and phenotypic variability are required to better
understand the emergence, global spread and pathophysiology of
this pathogen. Here, we present transcriptional signatures of C.
auris isolates with distinct antifungal susceptibility profiles at
both the intra- and inter-clade levels. We found that clade I
isolates differ strikingly from the clade II type isolate CBS10913
in their gene expression profiles during steady state growth. This
may reflect the genetic diversity between clade I and clade II
isolates (Chow et al., 2020). Depending on genomic locations
of genetic polymorphisms, they may affect multiple steps of
transcriptional control, such as the recruitment of transcriptional
regulators or even mRNA stability. This may impact the degree
of transcriptional and phenotypic diversity driven by even minor
genetic variations (Williams et al., 2007; Brion et al., 2015). One
of the most striking transcriptional alterations affected genes of
the ergosterol biosynthesis pathway. We found that all ergosterol
biosynthesis genes acting downstream of mevalonate were
upregulated in azole-resistant isolates. This suggests a bias
towards late ergosterol precursors within the biosynthesis
pathway. The transcription factor Upc2 is a sterol-sensing
regulator (Yang et al., 2015) and critical for the regulation of
ergosterol biosynthesis (Silver et al., 2004). Indeed, UPC2 was
upregulated in clade I isolates when compared to CBS10913. This
may also explain the broad dysregulation of most genes in
A B

C

FIGURE 4 | Deletion of CDR1 abolishes azole resistance in C. auris. (A) The C. albicans CDR1 homologue was deleted in 470154 and fluconazole susceptibility
was quantified using a liquid growth inhibition assay. Cells were incubated with the indicated antifungal concentrations at 30°C for 24 hours prior to OD600

measurement. Fluconazole resistance is abolished upon deletion of CDR1. (B) Lack of CDR1 renders 470154 susceptible to voriconazole. Cells were treated as
described in (A). (C) 50% inhibitory concentrations (IC50) for antifungals tested in A-B are listed. (A, B) Data are shown as mean +/- SD from 4 biological replicates.
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facilitating ergosterol biosynthesis. The ergosterol content
determines fundamental membrane properties such as rigidity
and permeability that control non-protein-mediated drug uptake
by diffusion (Abe and Hiraki, 2009). In line with this, clade I
isolates display decreased FDA uptake, suggesting reduced
membrane permeability when compared to the CBS10913
strain. Notably, FDA uptake is impaired in azole-resistant
clade I isolates (470147 and 470154) when compared to the
azole-sensitive strain (470140). An altered membrane
permeability might thus partially explain divergent azole
susceptibilities of isolates, even if cellular azole uptake not only
relies on passive diffusion (Mansfield et al., 2010; Esquivel et al.,
2015). Nevertheless, the transcriptional signatures of ergosterol
biosynthesis reflect principle phenotypes related to fungal
membrane permeability.

The bulk transcriptional dysregulation of the ergosterol
biosynthesis pathway is most likely not the only driver for
divergent azole-susceptibilities. Instead, several additional
mechanisms such as ERG11 mutations (Chowdhary et al.,
2018), chromosomal aberrations (Bing et al., 2020) or
upregulation of drug efflux pumps and their key transcriptional
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
regulator TAC1B (Wasi et al., 2019; Rybak et al., 2020) have also
been implicated in C. auris azole resistance. For instance,
increased expression of the ABC transporter Cdr1 was detected
in azole resistance isolates (Kim et al., 2019; Rybak et al., 2019;
Zamith-Miranda et al., 2019) (Rybak et al., 2020), as originally
reported for the C. albicans orthologue (Sanglard et al., 1995). In
line with these reports, CDR1 transcript levels are increased in
the azole-resistant 470154 isolate when compared to the azole-
sensitive 470140 strain. Remarkably, genetic ablation of CDR1
strongly enhanced azole susceptibility of 470154. These data hint
that a selective reversal or pharmacological inhibition of CDR1 in
azole-resistant C. auris strains could offer therapeutic benefits in
clinical settings, although this has remained a highly
controversial topic in the MDR field (Holmes et al., 2016).
Besides divergent azole susceptibilities of isolate 470154 and
470140, those strains also displayed opposing caspofungin
sensitivities, with 470154 being more susceptible and 470140
showing increased tolerance. Despite the well-known link of
Cdr1 in azole resistance (Sanglard et al., 1995), Cdr1 seems to
play no significant role in echinocandin susceptibility (Niimi
et al., 2006). Of note, in C. albicans, ectopic overexpression of
A B

C

FIGURE 5 | Overexpression of C. auris SAP2 increases proteolytic growth. (A) The indicated strains were spotted on YCB medium supplemented with 0.5% BSA
and incubated at 30°C for 3 days. Turbid zones around the colony are indicative of proteolytic activity. C.gla., C. glabrata; C.alb., C. albicans, C.aur., C.auris.
(B) Heatmap depicting the log2-fold changes in expression of C. auris genes, homologous to C. albicans secreted aspartic proteases, in strain 470154 vs 470140.
Box labels on the left side show C. auris gene IDs (C. auris B11221), labels on the right side depict the corresponding C. albicans homologue based on BLASTp
search results. (C) Heatmap of the top 10 up- and downregulated genes of the indicated comparison. Notably, CJI97_002130, CJI97_001762 and CJI97_004977
showed the greatest homology to C. albicans SIT1 based on BLASTp. The color code represent the log2 fold changes in gene expression.
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Cdr2, but not Cdr1, promotes caspofungin resistance in clinical
isolates, although it has not been established if this is a direct or
indirect effect of Cdr2 gene dosage (Schuetzer-Muehlbauer et al.,
2003). In general, the pairwise comparison of transcriptional
profiles at the clade level revealed that minor transcriptional
changes suffice to drive divergent antifungal susceptibilities.
Similarly, a previous study found limited differences in the
metabolic, lipidomic and proteomic profiles between two
independent C. auris isolates displaying distinct antifungal
sensitives (Zamith-Miranda et al., 2019). From a mechanistic
point of view, a limited set of differentially expressed genes
facilitates the identification of true effector pathways driving
phenotypic variability. For instance, based on transcriptional
profiles, we decipher divergent proteolytic growth traits and
functionally verify the C. auris homologue SAP2, which is one
of the most highly regulated genes in resistant isolates. Given that
SAPs are implicated in fungal adhesion and tissue invasion
(Naglik et al., 2003), we speculate that SAP2 deregulation may
also contribute to or is even critically determining attachment to
biotic surfaces such as human skin. This can now be tested with
appropriate skin models of fungal colonization (Huang et al.,
2020; Rakita et al., 2020). Importantly, the pronounced adhesion
to skin not only is a key trait of C. auris pathophysiology, it has
been recognized as the most important route of person-to-
person transmission in hospital settings, thus contributing to
the global spreading and pandemic potential of C. auris
(Forsberg et al., 2019).

Our data demonstrate that transcriptional signatures facilitate
the prediction of intra-clade phenotypic variability and
associated virulence traits. Of note, as we subjected a limited
set of C. auris isolates to transcriptional profiling, the resulting
predictions may not cover the entire diversity of intra- or
interclade susceptibility phenotypes, as distinct genomic make-
ups, even when only minute, may cause massive transcriptional
alterations. To what extent those transcriptional profiles
correlate with genomic diversity or genome dynamics remains
to be investigated. Pathogen phenotypes are not solely driven by
DNA sequence, but are a result of complex genetic and
epigenetic interactions (Richards, 2006; Skelly et al., 2013),
with the latter one facilitating fast and also heritable
phenotypic adaptations (De Fine Licht, 2018). Indeed, the
ability for rapid adaptations become essential for pathogen
survival upon host immune defense encounters (Alves et al.,
2020). Hence, it would be further interesting to analyze in more
detail the link between epigenetic changes and intra-clade
diversification in C. auris. This may be further driven by
repeated host exposure as C. auris is readily transmitted
between patients of distinct immunological backgrounds
(Forsberg et al., 2019). Moreover, adaptive phenotypic
alterations have been observed for re-isolated C. albicans
(Pande et al., 2013; Forche et al., 2018) and C. auris (Yue et al.,
2018) from infected mice.

In summary, we show here in principle that comparative
transcriptional profiling of C. auris clinical isolates enables the
prediction and diagnosis of phenotypic variation such as MDR
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
traits. Transcriptional profiling of larger sets of clinical isolates,
and the integration with genomic and phenotypic data, are now
feasible owing to the stunning advances in deep-sequencing
technologies. This approach may facilitate the robust
prediction of fungal virulence and MDR phenotypes, which
will advance our understanding of C.auris biology and
species diversification.
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