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Abstract
Pathology plays a very important role in cancer diagnosis. The rapid develop-
ment of digital pathology (DP) based onwhole slide image (WSI) has led tomany
improvements in computer-assisted diagnosis by artificial intelligence. The com-
mon digitization strategy is to scan the pathology slice with 20× or 40× objective,
and the 40× objective requires excessive storage space and transmission time,
which are significant negative factors in the popularization of DP. In this article,
we present a novel reconstructed high-resolution (HR) process based on deep
learning to switch 20 ×WSI to 40 ×without the loss of whole and local features.
Furthermore, we collected the WSI data of 100 uterine leiomyosarcomas and
100 adult granulosa cell tumors to test our reconstructed HR process. We tested
the reconstructed HR WSI by the peak signal-to-noise ratio, structural similar-
ity, and the blind/reject image spatial quality evaluator, which were 42.03, 0.99,
and 49.22, respectively. Subsequently, we confirmed the consistency between the
actual and our reconstructed HR images. The testing results indicate that the
reconstructed HR imaging is a reliable method for the digital slides of a variety

Abbreviations: AGCT, adult granulosa cell tumor; AI, artificial intelligence; CNNs, convolutional neural networks; DP, digital pathology; EDSR,
enhanced deep super-resolution network; HR, high-resolution; LR, low-resolution; PSNR, peak signal-to-noise ratio; RHR, reconstructed
high-resolution; SISR, single image super-resolution; SRCNN, super-resolution convolutional neural network; SSIM, structural similarity; WSI, whole
slide image
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of tumors and can be available on a large scale in clinical pathology as an inno-
vative technique.

KEYWORDS
adult granulosa cell tumor, artificial intelligence, reconstructed high-resolution, uterine
leiomyosarcoma, whole slide image

1 INTRODUCTION

Pathological analysis is an important approach to diag-
nose diseases, particularly malignant tumors. The whole
slide image (WSI), which meets the desired characteris-
tics of high-definition, high-speed, and high-throughput
screening, provides the possibility for the digitization of
traditional pathology slices, which lays a solid foundation
for the development and application of digital pathology
(DP).1–2 With the development ofDP, the storage and trans-
mission of pathological images is now easier, which has
led to many improvements in paleopathological consulta-
tion, digital management, and computer-assisted diagno-
sis by artificial intelligence (AI). There have been more
than 1 000 000 cases of paleopathological consultation in
China over the last 10 years.3
In DP, the common digitization strategy is to scan the

pathology slice with 20× or 40× objective. The data gen-
erated by the scan are called the WSI (or digital slide).
Usually, the WSI of 40× is four times larger than that of
20× from the same slice, and hence, the storage space
and transmission time of the data are four times. These
increased costs are a significant negative factor in the pop-
ularization of DP. Althoughmany lesions can be diagnosed
at low ormediummagnification, in some cases, even expe-
rienced pathologists need to observe cells and cell nuclear
morphology at high magnification to further confirm the
diagnosis. For example, dusty cytoplasms are often char-
acterized by small cell neuroendocrine carcinoma. The
longitudinal nucleus has a considerable role in the diag-
nosis of Langerhans histiocytosis and ovarian granulosa
cell tumor. The observable mitotic has a good predictive
effect on the diagnosis and differential diagnosis of uter-
ine leiomyosarcoma. To provide clear and identifiable evi-
dence for the diagnosis of tumors, whether it is an opti-
cal or a digital image at a high magnification ( 40×), it is
necessary to adhere to the stringent requirements of the
pathologist to observe the details in the nucleus. In this
article, we present a novel reconstructed high-resolution
(RHR) process that can be used for WSI through deep
learning.
For RHR imaging, deep learning techniques were

recently developed for CT and MRI with great success.4

A few preliminary attempts have been made with a 3D
convolutional neural network (CNN), generative adver-
sarial network, and densely connected network.5–7 Thus,
the RHR techniques have been used and have shown
superb performance in imaging,5 and we expect the same
in DP.

2 MATERIALS ANDMETHODS

2.1 The material of the pathological
slides

In the present study, we used adult granulosa cell tumor
(AGCT) of the ovary and uterine leiomyosarcoma as two
application scenarios to test our resolution process. AGCT
is a low-grade malignant neoplasm with a significant
propensity for late recurrence and metastasis.8 Histolog-
ically, GCTs are divided into adult and juvenile, with
the former accounting for 95% of all GCTs.8–9 Although
some clinical manifestations such as estrogen stimula-
tion and related hormone levels have an auxiliary role
in the diagnosis of this tumor, the final diagnosis still
depends on the traditional histopathological examination
under light microscopy. Microscopically, tumor cells are
arranged in trabecular, island-like, pseudo-adenoid, vesic-
ular, or solid lamellae. Frequently, variable histological
features and forms are mixed in the same tumor, which
undoubtedly causes difficulties in the diagnosis of AGCT.
A large number of studies have shown that the Call-
Exnar body and coffee bean-like nucleus or longitudinal
nucleus are the characteristic changes in typical AGCT,
which is an important suggestion for the diagnosis of
ovarian adult granulosa cells.9 Thus, for a more accurate
diagnosis, it is necessary for pathologists to observe the
details or features of the nucleus in × 40 magnification
images.
Uterine leiomyosarcoma is the most common uter-

ine sarcoma with a high malignancy and poor progno-
sis. According to the diagnostic criteria for histopathol-
ogy developed by Bell et al,10 these are classified as (a)
moderate diffuse atypia of tumor cells with observable
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necrosis; (b) moderate diffuse atypia of tumor cells with-
out observable necrosis, mitotic figures≥10/10 high-power
field (HPF); and (c) mild atypia of tumor cells with observ-
able necrosis, mitotic figures are ≥10/10 HPF. The histo-
logical diagnosis of uterine leiomyosarcoma requires care-
ful determination of three factors viz. coagulative necro-
sis, cell atypia, and the mitotic index. The mitotic index
requires the pathologist to count at least four groups of ten
HPFs in regions where mitotic activity is active. Therefore,
clear and HR 40× magnification images are a basic pre-
requisite for pathologists to distinguish the mitotic figures
from apoptotic cells, denatured cell nuclei, and nuclear
debris.
We selected 45 cases of ovarian AGCT and 32 cases of

uterine leiomyosarcoma diagnosed from the Department
of Pathology, West China Second University Hospital,
Sichuan University. All patients had no history of cancer
and did not receive radiotherapy before surgery. The
specimens were fixed with 4% neutral formaldehyde and
subjected to conventional paraffin-embedding, 4 μm thick
sections, Hematoxylin and Eosin (HE) staining, and light
microscopy examination. All HE slides were reviewed by
two senior pathologists. Finally, a total of 100 HE slides
from 45 cases of ovarian AGCT and 100 HE slides from 32
cases of uterine leiomyosarcoma were included. All 200
HE slides were converted to full digital scanning section
WSI by Hamamatsu Optics’ NanoZoomer 2.0HT digital
section scanner (the files were stored in their proprietary
nanozoomer digital pathology image (NDPI) format). The
scanning magnification was 20× objective (384-810 MB)
and 40× objective (1.24-2.86 GB).

2.2 Realization and evaluation method
of RHR images

With the development of AI, deep learning with deep con-
volutional neural networks (CNNs)11 has been shown to
be a powerful algorithm for advancing biomedical image
analysis.12–13 By studying the development and progress
in the field of single image super-resolution (SISR), we
have noted that in the past 2 years, deep learning meth-
ods were superior to the traditional methods in terms
of the peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM). Our aim is to zoom in to × 40 from
× 20, to adopt a single-scale model. To further compre-
hensively consider the effect and computation, we have
adopted the champion scheme named Enhanced Deep
Super-Resolution network (EDSR) in the New Trends in
Image Restoration and Enhancement 2017 Challenge on
SISR.
EDSR is a type of generative network based on sample

learning. The general process is to obtain a low-resolution

(LR) image downsampled by interpolation from an HR
image as the LR input of a CNN, and the original image
is the HR input of a CNN. Subsequently, a large number of
such paired samples are used to train the network to estab-
lish an end-to-end mapping relationship between the LR
image and its corresponding HR image. Finally, the map-
ping relationship is used to create an RHR image from the
LR image.
The authors of EDSR have constructed the model base-

line with residual blocks, whose structure is similar to
that of the SRResNet.14 However, the EDSR does not have
rectified linear unit activation layers outside the residual
blocks. Moreover, the baseline model does not have resid-
ual scaling layers and includes only 64 feature maps for
each convolution layer.
RHR involves upsampling of the image resolution.

The Super-Resolution Convolutional Neural Network
(SRCNN)15 applied convolution layers on the pre-upscaled
LR images. This is inefficient because all convolutional
layers need to compute in HR space, yielding signifi-
cantly more computation than in LR space. To accelerate
the processing speed without loss of accuracy, the Fast
SRCNN (FSRCNN)16 utilized a parametric deconvolution
layer at the end of the super-resolution (SR) network,
thereby enabling all convolution layers to be computed
in the LR feature space. Another non-parametric efficient
alternative is pixel shuffling17 (or sub-pixel convolu-
tion). Pixel shuffling is also believed to introduce fewer
checkerboard artifacts than the deconvolutional layer.18
We have also used pixel shuffling as the upsampling
operation.
We used the AGCT images and the leiomyosarcoma

images as our datasets (Figure 1A,B). We obtained a large
number of training patches with a size of 512 × 512 as the
HR images randomly split fromeach trainingWSI, and val-
idated and tested the patches from each validatingWSI and
testing WSI, respectively.
Owing to limited computational resources, we only used

the baseline model of EDSR. When training, we used RGB
input patches of size 256 × 256 from the LR images with
the corresponding HR patches. The 512 × 512 RGB input
patches from the HR images and their bilinear downsam-
pled images were used as the training output-input pairs.
We preprocessed all images by subtracting the mean RGB
value based on the default settings. We also trained our
networks using L1 loss instead of L2 because L1 loss can
provide better convergence than L2. We used both the
GCT and the leiomyosarcoma output-input pairs. After
a few training sessions, the final training loss curve is
shown in Figure 1C, and the PSNR curve in the validat-
ing dataset is shown in Figure 1D. The last training pro-
cess used the best model achieved before as the pre-trained
model.
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F IGURE 1 Examples of our datasets. (A), Adult granulosa cell tumor; (B), leiomyosarcoma; (C), training loss curve; (D), curves of PSNR
between the RHR and HR images in validating dataset.Abbreviations: HR, high-resolution; PSNR, peak signal-to-noise ratio; RHR, recon-
structed high-resolution. Scale2, twice the magnification

3 RESULTS

3.1 RHR images quality of the WSI

Weapplied our trainedmodel to the testing dataset, includ-
ing 2000 images with a benchmark. We tested two types
of LR inputs with a size of 256 × 256, one included bilinear
downsampled images from × 40 HR images (named
sr_bilinear_as_lr_input), and the other was directly from
the × 20 images in WSI (named sr_self_as_lr_input). The
mean PSNR values for RHR and HR images were 43.92
and 42.03, respectively. And the average SSIM values for
both RHR and HR images were 0.99. In general, for larger
PSNR or SSIM value, the quality of the image is better. The
PSNR value assumes infinite value, and the SSIM value
is 1.0 when the two compared images are the same. Some
image results are shown in Figure 2. We can conclude that
our RHR results are extremely similar to the HR images.
To a large extent, we have achieved RHR images.
We also applied our model to another dataset including

1000 images with an approximate benchmark in which LR
images with a size of 256 × 256 were from the true × 20
WSI, and HR images with a size of 512 × 512 were from
the other true × 40 WSI. Some image results are shown
in Figure 3. The LR images are not downsampled from
HR images, and they are from different WSIs. Although
we have obtained the similar-pair images based on the
manual registration method up to the maximum possi-

ble extent, they do not have one-to-one correspondence
in pixel-spatial position. We could not use the PSNR or
SSIMmetrics to evaluate the results.We used another eval-
uation method named Blind/Referenceless Image Spatial
Quality Evaluator (BRISQUE),19 which is a type of no-
reference image quality assessment. Hence, it only needs
one image as the input and the image quality score as the
output. In general, the score is between zero and 100, and
for smaller score, the quality of the image is better. The
mean BRISQUE scores of our HR and RHR images and
those related to Bicubic on this testing dataset are listed in
Table 1. The average calculation time of ourmodel for each
image is approximately 2.5 milliseconds on the Graphic
Process Unit (GPU). From the results, we can observe that
the quality of our results is better than that of the RHR
images upsampled by Bicubic, and even better than theHR
images. To a large extent, we have achieved RHR images,
and ourmodel can be applied to the true× 20WSI to recon-
struct × 40 WSI.

3.2 RHR images quality of the texture
details

To further observe the texture details of RHR images,
we created two new test datasets, including 192 nuclear
division images and 546 nuclear groove images with a size
of 32 × 32, which were annotated by doctors. Some image
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F IGURE 2 Result comparing between HR and RHR images. All Images are uterine leiomyosarcoma, and the first row and second row
are from different samples. (A) and (D) are HR images, (B) and (E) are our RHR images with sr_bilinear_as_lr_input, (C) and (F) are our
RHR images with sr_self_as_lr_input.Abbreviations: HR, high-resolution; RHR, reconstructed high-resolution; sr_bilinear_as_lr_input, bilin-
ear down-sampled images from 40 × HR images; sr_self_as_lr_input, images directly from the 20 × images in WSI

F IGURE 3 Result samples of AGCT and uterine leiomyosarcoma. The first row (A-C) and (M-O) are LR images, the second row (D-F) and
(P-R) areHR images, the third row (G-I) and (S-U) are the RHR images up-sampled by Bicubic, the last row (J-L) and (V-X) are our RHR images.
The images (A-L) on the left are AGCT, and the images (M-X) on the right are uterine leiomyosarcoma. The first column, second column, and
third column are from different samples.Abbreviations: AGCT, adult granulosa cell tumor; HR, high-resolution; LR, low-resolution; RHR,
reconstructed high-resolution
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TABLE 1 Mean BRISQUE scores of HR images, RHR images
up-sampled by Bicubic and ours

BRISQUE GT_40 ×
RHR_Bicubic_
40 ×

RHR_Ours_
40 ×

WSI 52.19 55.90 49.22
Nuclear division 40.97 45.66 39.90
Nuclear groove 49.66 53.61 49.29

Abbreviations: BRISQUE, Blind/Referenceless Image Spatial Quality Evalua-
tor; GT_40 ×, the high-resolution images; RHR_Bicubic_40 ×, reconstructed
high-resolution images related to Bicubic; RHR_Ours_40 ×, reconstructed
high-resolution images related to ours; WSI, whole slide image.

results are shown in Figure 4, and the mean BRISQUE
scores of our HR and RHR images and those achieved by
Bicubic are listed in Table 1. From these results as well, we
can observe that the quality of our results is better than that
of the RHR images upsampled by Bicubic, and even better
than the HR images. To a large extent, our results can be
used directly for subsequent tasks in these datasets.

3.3 Pathologist’s evaluation results of
the RHR images

We then tested the subjective evaluation of our RHR
images from the perspective of the pathologist.We selected

1000 images from each uterine leiomyosarcoma andAGCT
of the ovary, and providedHR images and ourRHR images,
respectively. Two pathologists (intermediate titles) evalu-
ated the authenticity of the RHR images subjectively, and
considered whether the qualities of the RHR images are
adequate for routine usage (diagnostic confidence). The
results are shown in Table 2. In addition, we extracted 200
images from each of the two tumors, provided HR images
and our RHR images, but without any tags or comments,
and allowed the pathologist to determine the true images
(HR images). The test results showed that the probabil-
ity of the two pathologists accurately selecting the actual
images was 51.75% and 54.25%, respectively (Table 3). This
objectively proves that the pathologists could not easily dis-
tinguish the difference between these two types of images
and further confirmed the consistency between our RHR
images and the actual HR images.

4 DISCUSSION

The testing results indicate that the quality of our RHR
images reconstructed from true LR images is better than
the RHR images upsampled by Bicubic, and even better
than the HR images. This is irrespective of the perspec-
tive of vision or evaluation values, and the × 40 WSI syn-

F IGURE 4 Result samples of nuclear division and nuclear groove. The images (A-D) are nuclear division images, the images (E-H) are
nuclear groove images; the first column (A and E) is LR images, the second column (B and F) is HR images, the third column (C and G) is the
RHR images up-sampled by Bicubic, and the last column (D andH) is our RHR images.Abbreviations: HR, high-resolution; LR, low-resolution;
RHR, reconstructed high-resolution
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TABLE 2 The subjective evaluations of the RHR images from
the pathologists

Pathologist A Pathologist B
Opinion UT AGCT UT AGCT
RHR images’
authenticity
rate

95.9% 98.8% 97.5% 91.4%

RHR images’
authenticity rate
(average)

97.35% 94.45%

Confidence rate 95.1% 98.8% 97.7% 92.5%
Confidence rate
(average)

96.95% 95.1%

In this table, “RHR images authenticity rate” is equal to the number of no
marked difference* pictures divided by the total number of pictures, and “Con-
fidence” means that the pathologist is confident to make a correct diagnosis
based on RHR images.
Abbreviations: AGCT, adult granulosa cell tumor; RHR: reconstructed high-
resolution; UL, uterine leiomyosarcoma.
*There is a marked difference, meaning the pathologists think the two kinds
of images are so different that they might have affected their diagnosis.

TABLE 3 The objective test of the RHR images from the
pathologists

Pathologist A Pathologist B
Results of test UT AGCT UT AGCT
Correct 97 110 105 112
Incorrect 103 90 95 88
Accuracy rate* 48.5% 55.0% 52.5% 56.0%
Accuracy rate (average) 51.75% 54.25%

In this table, “Correct” represents how many high-resolution images are
selected correctly, while “Incorrect” is the opposite, and “Accuracy rate” is
equal to the number of correct images divided by the total number of images.
Abbreviations: AGCT, adult granulosa cell tumor; RHR, reconstructed high-
resolution; UL, uterine leiomyosarcoma.
*The value of accuracy is not the higher the better. It represents the proba-
bility that the pathologist can accurately distinguish the two kinds of images.
The closer the value is to 50%, the more the pathologist cannot distinguish the
difference between the two images, and the more our expectation is met.

thesized by the RHR process matches the performance
of that generated from the × 40 objective in the diag-
nosis of both tumors. Based on this, we believe that the
RHR technology is a reliable method for paleopathological
consultation. This can help improve the diagnostic accu-
racy, reduce time and storage cost, and play an irreplace-
able role in treating diseases thatmust be diagnosed at high
magnification.
However, in this article, the RHR technology still has

some limitations. First, we only performed a double zoom.
If the magnification factor is larger, such as × 4 or × 8, the
restoration of the details is not as good. Second, we applied
the baseline model to our task because of limited com-
puting resources. Finally, the trained model only applies
to uterine leiomyosarcoma and AGCT of the ovary, and

we need more data for deep learning to apply this model
to other diseases, which might be hampered by a lackno
of adequate raw images. Transfer learning can solve this
problem well, but it still requires a certain amount of data,
hence this method may not be suitable for rare cases in
which it is difficult to obtain raw images.
Interestingly, the RHR algorithms are also improving.

The authors14 of the EDSR proved experimentally that
the processing effect can be improved if the network is
widened and deepened. Some research20 on fractional
magnification has been conducted, and it has performed
very well. We believe that methods based on deep learning
will be increasingly applicable to real tasks. These should
be reliable and could be used in the digital slides of a
variety of tumors, and can be available on a large scale in
clinical pathology as innovative techniques.
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