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Abstract: Plasma and tissue zinc ion levels are associated with the development of obesity. Previous
studies have suggested that zinc ions may regulate adipocyte metabolism and that nitric oxide (NO)
plays a pivotal role in the regulation of adipocyte physiology. Our previous study showed that chronic
NO deficiency causes a significant decrease in adipose tissue mass in rats. Studies also suggested
that zinc ions play an important modulatory role in regulating NO function. This study aims to
explore the role of zinc ions in NO-regulated adipocyte differentiation. We hypothesized that NO
could increase intracellular Zn2+ level and then stimulate adipocyte differentiation. ZnCl2 and the
NO donor, NONOate, were used to explore the effects of Zn2+ and NO on adipocyte differentiation.
Regulatory mechanisms of NO on intracellular Zn2+ mobilization were determined by detection.
Then, Zn2+-selective chelator TPEN was used to clarify the role of intracellular Zn2+ on NO-regulated
adipocyte differentiation. Furthermore, the relationship between adipocyte size, Zn2+ level, and NOS
expression in human subcutaneous fat tissue was elucidated. Results showed that both ZnCl2 and NO
stimulated adipocyte differentiation in a dose-dependent manner. NO stimulated intracellular Zn2+

mobilization in adipocytes through the guanylate cyclase (GC)/cyclic guanosine monophosphate
(cGMP)/protein kinase G (PKG) pathway, and NO-stimulated adipocyte differentiation was Zn2+-
dependent. In human subcutaneous adipose tissue, adipocyte size was negatively correlated with
expression of eNOS. In conclusion, NO treatment stimulates intracellular Zn2+ mobilization through
the GC/cGMP/PKG pathway, subsequently stimulating adipocyte differentiation.
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1. Introduction

Obesity is a global public health problem that no country has perfectly resolved. An
epidemiological study reported that more than 650 million adults are estimated to be
obese, a figure that, alarmingly, has nearly tripled since 1975 [1]. Obesity adversely affects
almost every physiological system of the body, and can significantly complicate conditions
including hypertension [2], cardiovascular disease, systemic inflammation, and type II
diabetes [3,4]. Clinicians and scientists have voiced concerns that complex health complica-
tions are caused by excessive body weight. It is well known that obesity is caused by the
hypertrophy or hyperplasia of adipocytes, and these events are regulated by adipocyte dif-
ferentiation [5]. As such, there is a pressing need to identify the mechanisms and regulators
of adipocyte differentiation to discover novel therapies effective at preventing obesity.

Zinc is a major trace element essential for the regulation of various biological processes.
As early as 1961, nutritional zinc deficiency was reported to be associated with increased
risk of developing multiple diseases including growth retardation, hypogonadism, and
anemia; these suggest that zinc may exert its beneficial effects by modulating physiological
function [6]. After this seminal finding, zinc was demonstrated to regulate adipocyte
metabolism, and serum zinc levels were highly associated with metabolism in obesity.
Decreased serum-zinc concentrations were found in subjects with higher body mass index
(BMI) values compared to controls [7]. Since this initial report, much interest has been
focused on investigating the causal relationship between zinc levels and obesity, but the
results remain controversial. There is a growing body of evidence showing the negative
association between blood zinc levels and obese status [8–12]. In other words, the higher
serum zinc levels, the lower the BMI of subjects in previous studies [9–11]. One hypothesis
is that adipocytes in obese people may absorb more zinc due to inflammation-induced
expression of genes encoding zinc transporters [13,14], leading to altered homeostasis of
zinc levels in serum or plasma. However, this hypothesis was not supported by other
studies that showed that the level of zinc in the blood may not be correlated with weight,
BMI, or waist circumference [15–17]. Moreover, intracellular Zn2+ concentration may be
more important than serum Zn2+ in regulating adipocyte development. For example, it was
demonstrated that the zinc transporter ZIP14 participates in the uptake of Zn2+ during the
early stages of adipocyte differentiation [18] and that ZIP14 deficiency causes hypertrophic
adipose tissues in mice [19,20]. However, the relationship between intracellular Zn2+ levels
and adipocyte differentiation are still not clear.

Nitric oxide (NO) is a ubiquitous signaling molecule that is known to directly regu-
late adipocyte function. The expression of endothelial nitric oxide synthase (eNOS) and
inducible nitric oxide synthase (iNOS) genes in adipocytes is significantly increased in obe-
sity [20], which is a chronic inflammatory state. Consequently, clinical observations showed
that increases in circulating NO levels strongly correlated with body fat in obesity, an
insulin-resistant state [21]. In addition, previous studies showed that biochemical markers
of differentiation in primary preadipocytes in response to stimulation with NO promoted
lipoprotein lipase- and glycerol-3-phosphate dehydrogenase-specific activities and aug-
mented triglycerides (TG) accumulation [22]. Our previous study found that chronic NO
deficiency causes a significant decrease in adipose tissue mass in rats [23]. These findings
suggest that decreased NO production could decrease lipid storage in adipose tissues or
inhibit adipocyte differentiation. On the other hand, increased NO production may increase
lipid storage in adipose tissue or stimulate adipocyte differentiation.

Nitric oxide may regulate intracellular zinc homeostasis in multiple tissues and cell
types. Animal studies revealed that NO generators result in the accumulation of zinc in
hippocampal neuronal perikarya [24]. Similar results have been found showing that NO
strongly increases the amount of labile Zn2+ in endothelial cells [25,26], splenocytes [26],
and neuroendocrine pheochromocytoma [27]. Collectively, these observations suggest the
possibility that in addition to Zn2+, NO may act as another stimulus that induces adipocyte
differentiation. Yet, in vitro evidence to support this hypothesis is still lacking.
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Therefore, we hypothesized that NO stimulates increases in intracellular Zn2+, ulti-
mately regulating adipocyte differentiation. The present study tested this hypothesis by
studying the effects of Zn2+ on NO-mediated adipocyte differentiation and its underlying
regulatory mechanisms in 3T3-L1 fibroblasts.

2. Results
2.1. Effect of ZnCl2 on Cell Viability and Adipocyte Differentiation

The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assays are
commonly used to evaluate cytotoxicity in various cell models. Different dosages of ZnCl2
(0, 5, 10, and 20 µM) were added into 3T3-L1 cell culture media for 72 h, and cellular
viability was determined with MTT assays. ZnCl2 at concentrations of ≤20 µM showed
no significant cytotoxicity in 3T3-L1 cells (Figure 1A). Therefore, 0–20 µM of ZnCl2 was
used in subsequent experiments. To evaluate the effect of ZnCl2 on 3T3-L1 fibroblast
differentiation, the TG content of adipocytes was measured. Treatment with 5, 10, or 20 µM
of Zn2+ increased TG content by 185%, 220%, and 168%, respectively, relative to the vehicle
control (Figure 1B). The strongest stimulatory effect of Zn2+ on adipocyte differentiation
was observed with 10 µM of ZnCl2. Lipid accumulation was further measured by BODIPY
493/503 staining; its results showed that ZnCl2 increased the accumulation of lipid droplets
in a dose-dependent manner (Figure 1C).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 15 
 

 

Therefore, we hypothesized that NO stimulates increases in intracellular Zn2+, ulti-
mately regulating adipocyte differentiation. The present study tested this hypothesis by 
studying the effects of Zn2+ on NO-mediated adipocyte differentiation and its underlying 
regulatory mechanisms in 3T3-L1 fibroblasts. 

2. Results 
2.1. Effect of ZnCl2 on Cell Viability and Adipocyte Differentiation 

The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assays are 
commonly used to evaluate cytotoxicity in various cell models. Different dosages of ZnCl2 
(0, 5, 10, and 20 μM) were added into 3T3-L1 cell culture media for 72 h, and cellular 
viability was determined with MTT assays. ZnCl2 at concentrations of ≤20 μM showed no 
significant cytotoxicity in 3T3-L1 cells (Figure 1A). Therefore, 0–20 μM of ZnCl2 was used 
in subsequent experiments. To evaluate the effect of ZnCl2 on 3T3-L1 fibroblast differen-
tiation, the TG content of adipocytes was measured. Treatment with 5, 10, or 20 μM of 
Zn2+ increased TG content by 185%, 220%, and 168%, respectively, relative to the vehicle 
control (Figure 1B). The strongest stimulatory effect of Zn2+ on adipocyte differentiation 
was observed with 10 μM of ZnCl2. Lipid accumulation was further measured by BODIPY 
493/503 staining; its results showed that ZnCl2 increased the accumulation of lipid drop-
lets in a dose-dependent manner (Figure 1C). 

 
Figure 1. Zinc promotes adipocyte differentiation in 3T3-L1 adipocytes. Adipocytes were cultured 
in the presence or absence of ZnCl2 (0, 5, 10, and 20 μM) to determine its cytotoxicity (A), and adi-
pocyte differentiation was induced in the continued presence of the same concentrations of ZnCl2 
in later experiments. After differentiation, intracellular lipid content was determined by measuring 
fluorescent staining (Bar: 100 μm) (B) and triglycerides (TG) (C). Results are shown as the mean ± 
SD for three independent experiments. * p < 0.05 compared to the untreated group. 

There are two families of transcription factors involved in the regulation of adipocyte 
differentiation, including CCAAT enhancer binding proteins (C/EBPs) and peroxisome-
proliferator-activated receptor (PPARs). Preadipocytes exposed to inducers of differenti-
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Figure 1. Zinc promotes adipocyte differentiation in 3T3-L1 adipocytes. Adipocytes were cultured
in the presence or absence of ZnCl2 (0, 5, 10, and 20 µM) to determine its cytotoxicity (A), and
adipocyte differentiation was induced in the continued presence of the same concentrations of ZnCl2
in later experiments. After differentiation, intracellular lipid content was determined by measuring
fluorescent staining (Bar: 100 µm) (B) and triglycerides (TG) (C). Results are shown as the mean ± SD
for three independent experiments. * p < 0.05 compared to the untreated group.

There are two families of transcription factors involved in the regulation of adipocyte
differentiation, including CCAAT enhancer binding proteins (C/EBPs) and peroxisome-
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proliferator-activated receptor (PPARs). Preadipocytes exposed to inducers of differenti-
ation manifest an early and transient increase in the expression of C/EBPβ and C/EBPδ,
which in turn appear to contribute to cell proliferation and a subsequent increase in the
expression of C/EBPα and peroxisome-proliferator-activated receptor γ (PPARγ) [28]. We
further evaluated the effect of ZnCl2 on the expression of adipogenic transcription factors,
such as C/EBPα and PPARγ. ZnCl2 stimulated the expression of C/EBPα and PPARγ in
a dose-dependent manner (Figure 2A,B). We further measured the effect of ZnCl2 on the
expression of the adipocyte-specific protein, adipocyte protein 2 (aP2), and found that the
protein levels of aP2 were significantly increased compared to untreated cells (Figure 2C).
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Figure 2. Zinc alters the expression of adipogenic proteins during adipocyte differentiation. 3T3-
L1 adipocytes were incubated in the medium in the presence or absence of ZnCl2. Adipocyte
differentiation was induced, and the expression of adipogenic proteins C/EBPα (A), PPARγ (B), and
aP2 (C) was measured by immunoblotting with β-actin as the loading control. Those immunoblots
are displayed as examples. Results are shown as mean ± SD for three independent experiments.
* p < 0.05 compared with the vehicle control.

2.2. Effect of NO on Cell Viability and Adipocyte Differentiation

Diethylenetriamine NONOate was used as a NO donor in our study because of its
prolonged release of NO due to its long half-life (20 h at pH 7.4, 37 ◦C) [29]. We first
examined the cell viability of 3T3-L1 cells treated with the NO donor, NONOate. The
results of the MTT assay showed that NONOate at concentrations ≤30 µM showed no
significant cytotoxicity in 3T3-L1 cells (Figure 3A). Therefore, 0–30 µM of NONOate was
employed in subsequent experiments.

To investigate the effect of NONOate on adipocyte differentiation, 3T3-L1 fibroblasts
were induced to differentiate in the medium in the presence or absence of NONOate,
and the lipid content was quantified. As shown in Figure 3B,C, treatment with 20 µM
NONOate resulted in a significant increase in triglyceride accumulation compared with the
vehicle control.

We further evaluated the effect of NONOate on the expression of the adipogenic
transcription factors, C/EBPα and PPARγ. NONOate stimulated the expression of C/EBPα
and PPARγ in a dose-dependent manner (Figure 4A,B). We further measured the effect of
NONOate on the expression of aP2 and found that aP2 protein was significantly increased
compared to untreated cells (Figure 4C).

2.3. Effects of ZnCl2 and NO on Intracellular Zn2+ Mobilization

We used the fluorescent zinc ion indicator FluoZin™-3 AM to study changes in in-
tracellular Zn2+ levels in response to extracellular ZnCl2 and NONOate. As shown in
Figure 5A, no change in Fluo-Zin3 fluorescence over time was seen in untreated cells. In
contrast, incubation with ZnCl2 for 1 min significantly increased FluoZin-3 fluorescence.
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Addition of the membrane-permeable Zn2+-selective chelator, TPEN, immediately and
significantly decreased FluoZin-3 fluorescence to baseline. Incubation with NONOate
for 1 min significantly increased FluoZin-3 fluorescence, and addition of TPEN immedi-
ately and significantly decreased FluoZin-3 fluorescence to baseline. NO is reported to
stimulate guanylate cyclase, which catalyzes the production of cyclic guanosine monophos-
phate (cGMP). Subsequently, this synthetic cGMP activates downstream protein kinase
G (PKG) [30]. LY83583, an inhibitor of guanylate cyclase (GC) and of cGMP production,
was used to investigate the mechanisms mediating NONOate-induced Zn2+ mobilization.
LY83583 prevented the NONOate-dependent increase in FluoZin-3 fluorescence (Figure 5B),
suggesting that GC/cGMP is responsible for the mobilization of Zn2+ by NO. In order to
further clarify the role of PKG in NONOate-induced Zn2+ mobilization, KT5823, a specific
membrane-permeable PKG inhibitor, was utilized. As shown in Figure 5B, pretreatment
with KT5823 significantly prevented the NONOate-induced increase in FluoZin-3 fluo-
rescence, indicating that activation of PKG may contribute to the Zn2+-releasing effect
of NO.
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Figure 3. NO promotes adipocyte differentiation in 3T3-L1 adipocytes. Adipocytes were cultured
in the presence or absence of NONOate (0, 10, 20, and 30 µM) to determine its cytotoxicity (A).
Adipocyte differentiation was induced in the continued presence of the same concentrations of
NONOate in later experiments. After differentiation, intracellular lipid content was determined by
measuring fluorescent staining (Bar: 100 µm) (B) and triglycerides (TG) (C). Results are shown as
mean ± SD for three independent experiments. * p < 0.05 compared to the untreated group.



Int. J. Mol. Sci. 2022, 23, 5488 6 of 15

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 15 
 

 

Adipocyte differentiation was induced in the continued presence of the same concentrations of 
NONOate in later experiments. After differentiation, intracellular lipid content was determined by 
measuring fluorescent staining (Bar: 100 μm) (B) and triglycerides (TG) (C). Results are shown as 
mean ± SD for three independent experiments. * p < 0.05 compared to the untreated group. 

To investigate the effect of NONOate on adipocyte differentiation, 3T3-L1 fibroblasts 
were induced to differentiate in the medium in the presence or absence of NONOate, and 
the lipid content was quantified. As shown in Figure 3B,C, treatment with 20 μM NON-
Oate resulted in a significant increase in triglyceride accumulation compared with the ve-
hicle control. 

We further evaluated the effect of NONOate on the expression of the adipogenic 
transcription factors, C/EBPα and PPARγ. NONOate stimulated the expression of C/EBPα 
and PPARγ in a dose-dependent manner (Figure 4A,B). We further measured the effect 
of NONOate on the expression of aP2 and found that aP2 protein was significantly in-
creased compared to untreated cells (Figure 4C). 

 
Figure 4. NO alters the expression of adipogenic proteins during adipocyte differentiation. 3T3-L1 
adipocytes were incubated in the medium in the presence or absence of NONOate (0, 10, 20, and 30 
μM), and adipocyte differentiation was induced in the continued presence or absence of NONOate. 
The expression of adipogenic proteins C/EBPα (A), PPARγ (B), and aP2 (C), was measured by im-
munoblotting with β-actin as the loading control. Those immunoblots are displayed as examples. 
Results are shown as mean ± SD for three independent experiments. * p < 0.05 compared with the 
vehicle control. 

2.3. Effects of ZnCl2 and NO on Intracellular Zn2+ Mobilization 
We used the fluorescent zinc ion indicator FluoZin™-3 AM to study changes in in-

tracellular Zn2+ levels in response to extracellular ZnCl2 and NONOate. As shown in Fig-
ure 5A, no change in Fluo-Zin3 fluorescence over time was seen in untreated cells. In con-
trast, incubation with ZnCl2 for 1 min significantly increased FluoZin-3 fluorescence. Ad-
dition of the membrane-permeable Zn2+-selective chelator, TPEN, immediately and signif-
icantly decreased FluoZin-3 fluorescence to baseline. Incubation with NONOate for 1 min 
significantly increased FluoZin-3 fluorescence, and addition of TPEN immediately and 
significantly decreased FluoZin-3 fluorescence to baseline. NO is reported to stimulate 
guanylate cyclase, which catalyzes the production of cyclic guanosine monophosphate 
(cGMP). Subsequently, this synthetic cGMP activates downstream protein kinase G (PKG) 
[30]. LY83583, an inhibitor of guanylate cyclase (GC) and of cGMP production, was used 
to investigate the mechanisms mediating NONOate-induced Zn2+ mobilization. LY83583 
prevented the NONOate-dependent increase in FluoZin-3 fluorescence (Figure 5B), sug-
gesting that GC/cGMP is responsible for the mobilization of Zn2+ by NO. In order to fur-
ther clarify the role of PKG in NONOate-induced Zn2+ mobilization, KT5823, a specific 
membrane-permeable PKG inhibitor, was utilized. As shown in Figure 5B, pretreatment 

Figure 4. NO alters the expression of adipogenic proteins during adipocyte differentiation. 3T3-L1
adipocytes were incubated in the medium in the presence or absence of NONOate (0, 10, 20, and
30 µM), and adipocyte differentiation was induced in the continued presence or absence of NONOate.
The expression of adipogenic proteins C/EBPα (A), PPARγ (B), and aP2 (C), was measured by
immunoblotting with β-actin as the loading control. Those immunoblots are displayed as examples.
Results are shown as mean ± SD for three independent experiments. * p < 0.05 compared with the
vehicle control.
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Figure 5. NO stimulates Zn2+ mobilization through the GC/cGMP/PKG pathway. Representative
traces in the presence or absence of ZnCl2 or NONOate (20 µM), which were immediately inhibited by
addition of TPEN (10 µM) (A). Fluorescence intensity traces were normalized to the signal obtained at
time zero and were presented as F/F0. Representative fluorescence images at baseline and 6 min after
exposure to 20 µM NONOate with or without GC inhibitor LY83583 (LY; 10 µM) or PKG inhibitor
KT5823 (KT; 10 µM) in 3T3-L1 fibroblasts (B). NONOate clearly enhanced fluorescence intensity and
was reversible with the addition of TPEN (10 µM). Both LY83583 and KT5823 blocked the action of
NONOate. Summary data of FluoZin™-3 fluorescence intensity after 6 min of exposure to NONOate
with or without LY83583 and KT5823 was expressed as a percentage of baseline. Results are shown
as the mean ± SD for three independent experiments. * p < 0.05 compared to the untreated group.
# p < 0.05 compared to the group treated with NONOate alone.
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2.4. Role of Zn2+ in NO-Stimulated Adipocyte Differentiation

We further explored the role of Zn2+ in NO-stimulated adipocyte differentiation. To
examine whether Zn2+ was involved in NO-stimulated adipocyte differentiation, pretreat-
ment with TPEN was used to block Zn2+ release in 3T3-L1 fibroblasts. As shown in Figure 6,
NONOate- and Zn2+-dependent increases in triglyceride accumulation were significantly
suppressed by TPEN treatment. The effect of TPEN on the expression of NONOate-
stimulated and Zn2+-stimulated adipogenic factors was measured by immunoblotting.
NONOate and Zn2+ treatments both increased the expression of aP2, PPARγ, and C/EBPα
compared with controls, and both NONOate-upregulated and Zn2+-upregulated C/EBPα,
PPARγ, and aP2 were significantly suppressed by TPEN treatment (Figure 7A–C). These
findings support the possibility that NONOate-stimulated adipocyte differentiation is Zn2+-
dependent. In addition, GC inhibitor LY83583 and PKG inhibitor KT 5823 prevented the
NONOate-dependent increase in intracellular Zn2+ mobilization (Figure 5); they also sup-
pressed NONOate-dependent increases in triglyceride accumulation in 3T3-L1 adipocytes
(Supplementary Figure S1).
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Figure 6. NO-stimulated adipocyte differentiation in 3T3-L1 adipocytes was Zn2+-dependent.
Adipocytes were incubated in medium in the presence or absence of TPEN (10 µM) with or without
NONOate (20 µM) or ZnCl2 (20 µM), and adipocyte differentiation was induced. After differentiation,
intracellular lipid content was determined by measuring fluorescent staining (A,B) and triglycerides
(TG) (C). Results shown as mean ± SD for three independent experiments. * p < 0.05 compared to the
untreated group. # p < 0.05 compared to matched sets of the TPEN-untreated group.
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Figure 7. NO alters the expressions of adipogenic proteins during adipocyte differentiation via a Zn2+-
dependent pathway. 3T3-L1 adipocytes were incubated in the presence or absence of TPEN (10 µM)
with or without NONOate (20 µM) or ZnCl2 (20 µM), and adipocyte differentiation was induced.
The expression of the adipogenic proteins C/EBPα (A), PPARγ (B), and aP2 (C) was measured by
immunoblotting with β-actin as the loading control. Those immunoblots are displayed as examples.
Results are shown as mean ± SD for three independent experiments. * p < 0.05 compared to the
untreated group.

2.5. Correlation between Adipocyte Size, Zn2+ Level, and NOS Expression in Human
Adipose Tissue

We further explored the relationship between adipocyte size, tissue Zn2+ levels, and ex-
pression of iNOS and eNOS in normal human subcutaneous tissue. As shown in Figure 8A,
adipocyte size was positively correlated with tissue Zn2+ levels. This correlation is in agree-
ment with the findings that Zn2+ could stimulate adipocyte differentiation. Additionally,
adipocyte size was negatively correlated with expression of eNOS (Figure 8B), but there
was no correlation between adipocyte size and iNOS expression (r = 0.05527, p = 0.77203).
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3. Discussion

In this study, we demonstrated that the addition of extracellular Zn2+ could increase
intracellular Zn2+ concentration and stimulate adipocyte differentiation. Furthermore, we
found that adipocyte size positively correlated with tissue Zn2+ levels in human subcuta-
neous fat tissue. Zinc is an essential trace element for all living organisms. Zn2+ is necessary
for the structure and function of Zn2+-binding protein, and it acts as an intracellular sig-
naling molecule, regulating various cellular functions. Two families of Zn2+ transporter
proteins regulate cellular zinc homeostasis, including the Zn2+ transporter (ZnT) family,
which controls Zn2+ efflux out of the cytosol, and the Zrt/Irt-related protein (ZIP) family,
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which controls Zn2+ influx into the cytosol. Dysregulated zinc signaling leads to patho-
physiological disturbances [31]. Additionally, intracellular Zn2+ deficiency significantly
reduces the DNA-binding activity of PPARγ and impairs PPARγ signaling [32]. It was
speculated that Zn2+ may regulate PPARγ function and affect adipocyte differentiation.
Furthermore, several zinc finger proteins were reported to regulate adipocyte differentia-
tion [33]. Nguyen’s study demonstrated that overcharging of Zn2+ in the structure of the
zinc finger protein Is needed for DNA binding stability [34]. Therefore, intracellular Zn2+

deficiency may affect the structure of the zinc finger protein and lead to DNA binding
instability. Collectively, intracellular Zn2+ levels are important for adipocyte differentiation;
our present study demonstrated that elevation of intracellular Zn2+ levels could stimulate
adipocyte differentiation in a dose-dependent manner.

To our knowledge, our study is the first to demonstrate that NO could regulate in-
tracellular Zn2+ mobilization in adipocytes. These results were comparable to a study
by Hung and coworkers in cultured rat embryonic cortical neurons [35]. In their study,
they demonstrated that an inhibitor of neuronal NO synthase (vinyl-L-NIO) significantly
suppresses the dopamine-induced elevation of intracellular Zn2+ concentration, and that
NO generators like NONOate increase intracellular Zn2+ concentrations in cultured neu-
rons [35]. Additionally, NO-induced mobilization of intracellular Zn2+ was demonstrated
in isolated cardiomyocytes [30]. NO-mediated zinc release was also observed in mouse
lung endothelial cells [36]. Taken together with our findings, NO may modulate intra-
cellular Zn2+ mobilization to regulate diverse biological functions. Moreover, we further
demonstrated that NO stimulated intracellular Zn2+ mobilization in adipocytes through
the GC/cGMP/PKG pathway (Figure 5). These results were also comparable to Jang’s
study in isolated rat cardiomyocytes [35].

Our observations in human subcutaneous fat tissue found that eNOS expression was
negatively correlated with adipocyte size. This finding was comparable to Razny’s and
Sansbury’s findings that genes associated with adipogenesis were upregulated in eNOS-
deficient mice [37] and that overexpression of eNOS could prevent high-fat diet-induced
obesity in eNOS transgenic mice [38]. Previous studies demonstrated that expression of
eNOS and iNOS in adipocytes is significantly increased in obesity [20] and that iNOS
expression is significantly increased during adipocyte differentiation [20,22]. Our previous
study found that chronic NO deficiency causes a significant decrease in adipose tissue mass
in rats [23]. In human mesenchymal stem cells, endothelial NO synthase knockdown blocks
adipogenesis [39]. On the other hand, Jang’s study demonstrated that macrophage-derived
NO could inhibit adipocyte differentiation [40]. Furthermore, overexpression of endothelial
NO synthase prevented diet-induced obesity [38]. Results of a stem cell differentiation
study showed that blocking endogenous NO synthase significantly stimulated adipogenic
differentiation, whereas treatment with a NO donor significantly reduced adipogenic
differentiation [41]. Collectively, the role of NO in regulating adipocyte differentiation is
controversial. In the present study, we demonstrated that NO could stimulate adipocyte
differentiation and that the underlying mechanism was Zn2+-dependent.

Zn2+ plays a critical role in the process of adipocyte differentiation. Zn2+ homeostasis is
perturbed in the pathogenesis of diabetes, and inadequate Zn2+ distribution may affect the
onset of diabetes and metabolic diseases by regulating various critical biological events [42].
A recent study demonstrated that a Zn2+ transporter deficient mouse (Zip13) had enhanced
beige adipocyte biogenesis and energy expenditure and displayed ameliorated diet-induced
obesity and insulin resistance [43]. Adipose tissue from Zip14 knockout mice had increased
levels of preadipocyte markers and lower expression of differentiation markers compared
with wild-type controls [19]. However, the association between the expression of zinc
transporters and NO synthase, NO production, and intracellular Zn2+ concentration in
obesity is still not clear.

In conclusion, our data demonstrated that NO treatment stimulated intracellular Zn2+

mobilization through the GC/cGMP/PKG pathway, caused upregulation of adipocyte
differentiation regulators such as PPARγ, C/EBPα, and aP2, and resulted in triglyceride
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accumulation in 3T3-L1 adipocytes (Figure 9). The impact of zinc on obesity and its
associated metabolic disorders has been shown in a study by Nasab and coworkers [44].
Their data showed that urinary Zn2+ concentrations are greater in obese adults and that
zinc levels are significantly associated with fasting blood sugar and lipid metabolites
including cholesterol, triglyceride, LDL, and HDL. Our findings suggest that abnormal NO
production may interfere with the homeostasis of intracellular Zn2+, stimulating adipocyte
differentiation and resulting in the development of obesity.
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Figure 9. Schematic summary. NO mobilizes intracellular zinc and stimulates adipocyte differen-
tiation. NO stimulates GC/cGMP/PKG signaling to mobilize intracellular zinc and promotes the
expression of differentiation signaling proteins (C/EBPα, PPARγ, and aP2), leading to adipocyte
differentiation.

4. Material and Methods
4.1. Materials

The 3T3-L1 fibroblast cell line was obtained from American Type Culture Collec-
tion (Rockville, MD, USA). Dulbecco’s modified Eagle medium (DMEM), penicillin, and
streptomycin were purchased from Gibco BRL (Gaithersburg, MD, USA). Fetal bovine
serum was obtained from Biowest (Nuaillé, France). Isobutylmethylxanthine (IBMX), dex-
amethasone, and all other chemicals were obtained from Sigma-Aldrich (St. Louis, MO,
USA). Antibodies targeting C/EBPα, PPARγ, and α-tubulin were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Antibodies against aP2 were purchased from
Chemicon International (Temecula, CA, USA). The triglyceride assay kit was purchased
from DiaSys Diagnostic Systems GmbH (Holzheim, Germany).

4.2. Experimental Design

We first checked cell viability in response to various dosages of ZnCl2 or the NO donor,
NONOate, to determine the optimal dosage ranges for follow-up experiments. To explore
the effects of Zn2+ and NO on adipocyte differentiation, post-confluent 3T3-L1 fibroblasts
were pretreated with ZnCl2 or NONOate, followed by incubation with differentiation
inducers. The accumulation of intracellular lipids, concentration of triglyceride, and expres-
sion of adipocyte-differentiation-related transcription factors and adipocyte-specific genes
was measured after differentiation. To explore the effects of Zn2+ and NO on intracellular
Zn2+ mobilization, 3T3-L1 fibroblasts were preloaded with FluoZin™-3 AM for 30 min,
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and ZnCl2- or NONOate-induced intracellular zinc signals were measured. To clarify the
involvement of GC/cGMP/PKG signal cascades in NO-induced Zn2+ mobilization, 3T3-L1
fibroblasts were pretreated with the GC inhibitor, LY83583, or PKG inhibitor, KT 5823,
for 30 min, and NONOate-induced intracellular zinc signals were measured. To further
elucidate the role of Zn2+ in NO-stimulated adipocyte differentiation and intracellular Zn2+

mobilization, cells were preincubated with a membrane-permeable Zn2+ chelator (TPEN)
for 1 h, followed by incubation with NONOate. The efficiency of adipocyte differentiation
and intracellular Zn2+ mobilization was measured. The relationship between adipocyte
size, Zn2+ levels, and NOS expression was further explored by using normal subcutaneous
fat tissue from patients in breast cancer surgeries. Adipocyte size was examined by us-
ing immunohistochemistry. Tissue Zn2+ levels were measured by NexION 350 ICP-MS
(PerkinElmer, Inc., Shelton, CT, USA). NOS expression in adipose tissue was evaluated by
using real-time RT-PCR.

4.3. 3T3-L1 Fibroblast Cell Culture and Differentiation Conditions

3T3-L1 fibroblasts (American Type Culture Collection, Rockville, MD, USA) were
seeded into six-well cell culture plates (Falcon, Becton Dickinson, NJ, USA) and were grown
and maintained in DMEM containing 100 units/mL penicillin, 100 µg/mL streptomycin
(both from Gibco BRL, Gaithersburg, MD, USA), and 10% fetal bovine serum (Biowest,
Nuaillé, France) (complete medium) in 10% CO2. About 3 × 105 cells/well were seeded into
six-well cell culture plates. Cell number at confluence was about 1.2 × 106 cells/well. Cells
were grown to 2 days post-confluency and were differentiated by incubating them for 3 days
in complete medium containing isobutylmethylxanthine (IBMX; 0.5 mM), dexamethasone
(0.5 µM), and insulin (1.7 µM) (all from Sigma, St. Louis, MO, USA). Cells were then
maintained in complete medium containing 10% insulin for another three days. The
medium was changed every three days until the cells were fully differentiated. Typically,
by day 10, more than 95% of the fibroblasts had differentiated into mature adipocytes as
determined by staining for lipid accumulation using BODIPY 493/503.

4.4. BODIPY 493/503 Staining

To examine lipid accumulation, cells cultured in 12-well plates were fixed with forma-
lin and stained with BODIPY 493/503. For photomicrographs, cells were counterstained
with DAPI. BODIPY 493/503 is an alternative lipid dye with low background staining and
a narrow emission spectrum.

4.5. Measurement of Triglyceride

Intracellular triglyceride content was measured by a colorimetric method using triglyc-
eride assay kits (DiaSys Diagnostic Systems GmbH, Holzheim, Germany).

4.6. Immunoblot Analysis

Whole cell lysates were collected by sonication in lysis buffer (1% Triton X-100, 50 mM
KCl, 25 mM Hepes, pH 7.8, 10 µg/mL leupeptin, 20 µg/mL aprotinin, 125 µM dithiothre-
itol, 1 mM phenylmethylsulfonyl fluoride) containing protease and phosphatase inhibitor
cocktails. Samples (100 µg of total protein) in 50 µL of Laemmli sample buffer were boiled
for 10 min and resolved with 15% mini-SDS-PAGE. The contents of the gel were then
transferred onto a polyvinylidene difluoride membrane. The membrane was pre-blotted
in 5% skim milk in phosphate-buffered saline (PBS) for 60 min at room temperature and
then immunoblotted with the indicated primary antibodies overnight at 4 ◦C, followed
by 60 min labeling with a secondary antibody conjugated with horseradish peroxidase at
room temperature. After the chemiluminescence reaction (Amersham Biosciences, Bucking-
hamshire, UK), bands were detected by exposing blots to X-ray films in a dark environment
for an appropriate period of time.
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4.7. MTT Assay

Cells were incubated in 12-well plates for 72 h, with or without NO/Zn2+. The medium
was replaced with a medium containing 1 mg/mL MTT solution (USB, Amersham Life
Sciences, Cleveland, OH, USA) and cells were incubated for 2 h. The supernatant was
removed, and 100 µL of dimethyl sulfoxide (DMSO, Sigma-Aldrich Chemical Company,
St. Louis, MO, USA) was added to each well to fully dissolve the formazan crystals that
were produced inside the live cells. The absorbance was measured with a microplate reader
at 570/630 nm.

4.8. Live-cell Imaging of Intracellular Zinc

Microscopy was conducted with a Zeiss LSM880 confocal microscope. 3T3-L1 fibrob-
lasts were preloaded with 5 µM FluoZin™-3 AM, diluted in cell imaging medium (phenol
red free DMEM media supplemented with 10% FBS), for 30 min. Cells were washed three
times with PBS and 1 mL of cell imaging medium was added. The excitation wavelength
used was 485 nm, and the emission wavelength was 510–540 nm. Intensities of intracellular
zinc signals in live cells were measured from 10 pre-chosen cytosolic regions (1 µm2) per
cell, and the mean value for each cell was obtained.

4.9. Collection of Human Subcutaneous Adipose Tissues

Thirty female breast cancer patients were recruited from one outpatient department
of the Taipei Veterans General Hospital in Taiwan. Normal subcutaneous adipose tissue
weighing about 5 g was obtained from patients in breast cancer surgeries. Adipocyte size
was examined by using immunohistochemistry. Tissue Zn2+ levels were measured by
NexION 350 ICP-MS (PerkinElmer, Inc., Shelton, CT, USA). NOS expression in adipose
tissue was evaluated by using real-time RT-PCR. The protocol was reviewed and approved
by the Institutional Review Board of the National Yang Ming Chiao Tung University
(YM104146EF). Patients were only entered into the study after informed written consent
had been obtained.

4.10. Real-time Polymerase Chain Reaction (RT-PCR)

Total RNA was extracted by using a Tri Reagent kit (Sigma-Aldrich, St. Louis, MO,
USA), and the extraction was carried out as previously described [45]. TaqMan Gene
Expression Assays (FAM dye-labeled MGB probe; Applied Biosystems, Foster City, CA,
USA) containing specific primers, TaqMan MGB probe (FAM dye-labeled), TaqMan Fast
Universal PCR Master Mix, and 100 ng of cDNA were used to detect and quantify mRNA
expression. The probe was obtained from Thermo Fisher (Thermo Fisher, Inc., Waltham,
MA, USA); the primers used were iNOS (Hs01075529_m1) and eNOS (Hs01574665_m1).
GAPDH mRNA was amplified as the internal control, and GAPDH Ct values were sub-
tracted from those of target genes. Reactions were performed as follows: 95 ◦C for 10 min
followed by 40 cycles at 95 ◦C for 15 s/60 ◦C for 1 min.

4.11. Statistical Analysis

Statistical analyses were performed using SPSS software (IBM Corp. Armonk, NY, USA).
Experiments were repeated at least three times. All results are expressed as mean ± SD.
Statistical significance was assessed by one-way analysis of variance or Student’s t test.
The correlations between variables were evaluated using Pearson correlation. A value of
p < 0.05 was considered statistically significant.
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