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Abstract. Eight monoclonal antibodies that bind to 
specific sites on the tail of Dictyostelium discoideum 
myosin were tested for their effects on polymerization 
and ATPase activity. Two antibodies that bind close to 
the myosin heads inhibited actin activation of the ATP- 
ase either partially or completely, without having an 
effect on polymerization. Two other antibodies bind to 
sites within the distal portion of the tail that has been 
shown, by cleavage mapping, to be important for poly- 
merization. One of these antibodies binds close to the 
sites of heavy chain phosphorylation which is known 
to regulate both myosin polymerization and actin- 
activated ATPase activity. Both antibodies showed 
strong inhibition of polymerization accompanied by 
complete inhibition of the actin-activated ATPase 

activity. 
A unique effect was obtained with an antibody that 

binds to the end of the myosin tail. This antibody 
prevented the formation of bipolar filaments. It caused 
myosin to assemble into unipolar filaments with heads 
at one end and the antibody molecules at the other. 
Only at concentrations higher than required for its 
effect on polymerization did this antibody show sub- 
stantial inhibition of the actin-activated ATPase. These 
results indicate that, using a monoclonal antibody as a 
blocking agent, parallel assembly of myosin can be 
dissected out from antiparallel association, and that es- 
sentially normal actin-activated ATPase activity could 
be obtained after significant reductions in filament 
size. 

URING cell aggregation of Dictyostelium discoideum, 
amebas respond chemotactically to gradients of 
cAMP which guide them towards aggregation cen- 

ters. They respond within seconds to a local stimulus of the 
attractant by extending pseudopods (Gerisch et al., 1975; 
Swanson and Taylor, 1982). In response to a sudden increase 
in cAMP concentration, amebas change their shape with a 
contraction-like cringe (Futrelle et al., 1982). Amebas also 
modulate their net speed of movement when exposed to tem- 
poral decreases or increases in cAMP concentrations (Var- 
num et al., 1985). 

Myosin has been implicated to function in these cAMP- 
induced shape changes and movements of D. discoideum 
amebas because it undergoes changes in distribution and in 
its state of phosphorylation after a chemotactic stimulus. 
When cells round up with a cringe, myosin that appeared to 
be filamentous and located throughout the cytoplasm, redis- 
tributes to beneath the membrane (Yumura and Fukui, 
1985). Myosin seems to be excluded from pseudopods (Ru- 
bino et al., 1984) and concentrated at the rear of cells that 
are migrating up a concentration gradient of chemoattractant 
(Yumura et al., 1984). 

When a pulse of cAMP is given to cells in suspension, 
threonine residues on the heavy chains of myosin are first 
slightly dephosphorylated and then rephosphorylated (Rahms- 

dorf et al., 1978; Malchow et al., 1981; Maruta et al., 1983; 
Berlot et al., 1985) and the light chains are phosphorylated 
(Berlot et al., 1985). Heavy chain phosphorylation has two 
effects on myosin functions in vitro. It reduces the capability 
of myosin to polymerize (Kuczmarski and Spudich, 1980) 
and lowers actin-activated ATPase activity (Kuczmarski and 
Spudich, 1980; Maruta et al., 1983). 

The relationships between heavy chain phosphorylation, 
polymerization, and actin-activated ATPase activity of myo- 
sin have also been studied in Acanthamoeba. When Acan- 
thamoeba myosin II is phosphorylated at the end of its tail, 
the actin-activated ATPase activity is inhibited (Collins et 
al., 1982a, b). Experiments using monoclonal antibodies 
(Kiehart and Pollard, 1984a) and mild proteolytic digestion 
(Kuznicki et al., 1985) indicated that tail-bearing myosin II 
must be filamentous to show actin-activated enzyme activity. 
However, phosphorylation does not simply inhibit actin- 
activated ATPase activity by preventing filament formation; 
phosphorylated myosin II still can polymerize, although the 
filaments formed are smaller than those of dephosphorylated 
myosin (Pollard, 1982; Collins et al., 1982b). 

Using a threonine-specific myosin heavy chain kinase 
from aggregation competent D. discoideum cells (Maruta et 
al., 1983) and monoclonal antibodies whose binding sites on 
the myosin tail had been mapped by electron microscopy 
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(Claviez et al., 1982), we showed that heavy chain phos- 
phorylation sites are located ~150 nm along the length of the 
188-nm tail away from the heads and adjacent to a region of 
the molecule that is important for polymerization of chymo- 
tryptic fragments (Pagh et al., 1984). This result suggested 
that, in D. discoideum, heavy chain phosphorylation directly 
affects the assembly state of myosin. Spudich and co-workers 
identified three monoclonal antibodies each of which binds 
to the tail of D. discoideum myosin and inhibits one of three 
myosin functions assayed: polymerization, actin-activation 
of ATPase activity, or motility of myosin-coated beads (Peltz 
et al., 1985; Flicker et al., 1985). Here we compare the 
effects on myosin polymerization and actin-activated ATPase 
activity of eight monoclonal antibodies that bind at defined 
sites along the tail. A unique effect was found with an anti- 
body that binds to the end of the tail. This antibody com- 
pletely blocked antiparallel myosin assembly as it normally 
occurs in the middle region of a filament. The small unipolar 
filaments that formed could exhibit substantial actin-acti- 
vated ATPase activity. 

Materials and Methods 

Protein Purification 
D. discoideum myosin was purified from aggregation-competent cells as was 
described by Maruta et al. (1983), using an extraction buffer containing 
30 mM Tris-HCI, pH 7.5, 30% sucrose, 0.2 mM ATE 2 mM EGTA, 1 mM 
dithiothreitol, 0.02% NAN3, 10 mM benzamidine, and 0.1 mM phenyl- 
methylsulfonyl fluoride, or one in which ATP was at 0.5 mM and EGTA 
was replaced by 2 mM EDTA. Purified myosin was stored on ice and used 
within 3 wk after purification for the ATPase assays. The phosphate content 
of myosin from aggregation-competent cells was shown by Maruta et al. 
(1983) to be negligible. Contamination of purified myosin with RNA, which 
has been shown to affect its polymerization (Stewart and Spudich, 1979), was 
measured spectrophotometrically and found to be undetectable. In addition, 
RNase treatment according to Stewart and Spudich (1979) had no effect on 
myosin polymerization as is described here. 

F-actin was prepared from rabbit skeletal muscle (Schleicher et al., 1984) 
and was generously provided to us by Dr. G. Isenberg. 

Monoclonal antibodies, designated as mAb 14-26-5, 21-32-3, 21-51-3, 
15-153-33, and 21-96-3, were produced against D. discoideum whole myosin 
(Claviez et al., 1982). mAb 29-55-4 was produced against a chymotryptic 
tail fragment, while mAb 40-253-6 and mAb 56-396-5 were obtained by 
screening hybridomas from mice immunized with plasma membrane frac- 
tions. In this paper, the antibodies are referred to as mAb 26, 32, 51, 153, 
96, 55, 253, and 396, respectively. The monoclonal antibodies were purified 
from hybridoma supernatants on protein A-Sepharose as described by 
Claviez et al. (1982) and stored on ice in 10 mM Tris-HCl, pH 7.5, 15% 
sucrose, 50 mM KCI, and 0.02 % NAN3. 

ATPase and Sedimentation Assays 
Monomeric myosin was preincubated with monoclonal antibody for 2-4 h 
on ice in high-salt buffer containing 500 mM KC1, 10 mM Tris-HCl, pH 7.5, 
0.02 % NAN3, and 1 mM dithiothreitol. For preincubation of preformed 
myosin filaments with antibody, monomeric myosin was first induced to 
polymerize by dilution into low-salt buffer containing 10 mM Tris-HCl, pH 
7.5, 50 mM KC1, 1 mM dithiothreitol, and 0.02% NaN3 for 10 min on ice. 
Subsequently, antibody was added for 4-6 h of preincubation on ice. Pro- 
tein concentrations were determined according to Lowry for myosin, and 
by absorption at 280 nm for antibody assuming an extinction coefficient of 
1.5. Typically, myosin was at 1 mg/ml and antibody was at 1.5-2 mg/rnl dur- 
ing preincubations. 

After preincubation of either monomeric myosin or filaments with anti- 
body, the mixtures were diluted 6-10-fold to final concentrations of 40-50 
~tg myosin/ml with polymerization buffer containing 10 mM Tris-HC1, 
pH 7.5, 0.2 mM ATP and, unless specified otherwise, 10 mM MgCI2 
diluted from a 4.8 M stock solution as supplied by Sigma Chemical Co. (St. 
Louis, MO). KCI was adjusted to a final concentration of 50 raM. ATPase 
assays and sedimentation analyses were carried out after 1 h on ice. 

ATPase activity was measured by the release of 32p inorganic phosphate 
according to Pollard and Korn (1973). Assays were carded out at 25°C, with 
20 p.g of myosin in polymerization buffer. To measure actin-activated ATP- 
ase activity, 1.5 gg of F-actin was added per 2.0 Ixg of myosin immediately 
before assay. For the preparation of F-actin, G-actin from rabbit skeletal 
muscle was freshly polymerized at room temperature for 1 h by adding 
1 mM MgCI2 and 50 mM KC1. 

For sedimentation assays, samples in polymerization buffer were cen- 
trifuged in a Beckman airfuge (Beckman Instruments, Inc., Palo Alto, CA) 
and processed for SDS PAGE or fixed with glutaraldehyde for electron mi- 
croscopy. 

SDS Gel Electrophoresis 

SDS PAGE of total myosin and fractions was carded out using mini-slab 
gels with 10% polyacrylamide as described by Schleicher et al. (1984). Den- 
sitometry of bands stained with Coomassie Blue R-250 was performed with 
a Gel Scanner (Camag, Mutteuz, Switzerland). Reliability of the method 
was confirmed by dot blotting of myosin on nitrocellulose with ~25I-labeled 
mAb 396 according to Stadler et al. (1982). 

Electron Microscopy 
For negative staining, samples were fixed with 0.025 % glutaraldehyde for 
1 h on ice if not stated otherwise. This mild treatment prevented myosin illa- 
ments from dissociating. Glutaraldehyde concentrations of 0.25% seemed 
to clump filaments at the myosin concentrations routinely used. 

Negative staining was carded out according to Pollard (1982). 5-~tl ali- 
quots containing 50 Ixg/ml of myosin alone or together with antibody were 
stained with 1% uranyl acetate in water. Carbon films were routinely made 
hydrophilic as described by Trinick and Elliott (1982). 

Rotary-shadowed preparations were made by diluting 7 Ixl of either 
unfixed or glutaraldehyde-fixed sample with 7 ~tl of glycerol. The mixture 
was sprayed immediately onto freshly cleaved mica. Rotary shadowing, 
electron microscopy, estimates of dissociation constants, and computer 
analyses of antibody binding positions were performed essentially as de- 
scribed by Claviez et al. (1982). Magnifications were calculated using cata- 
lase crystals photographed at a known objective current. The dimensions 
of negative-stained filaments were measured on prints magnified to 

100,000 x. 

lmmunogold Labeling 
The location of antibodies that labeled myosin filaments was determined 
with 20-nm gold particles coated with goat anti-mouse antibody (Janssen 
Pharmaceutica, Beerse, Belgium). The commercial stock solution was cen- 
trifuged, resuspended in an equal volume of polymerization buffer contain- 
ing 50 mM KCI or of 50 mM ammonium formate, and diluted directly into 
a suspension of myosin filaments that had been formed in the presence of 
antibody. Incubations with immunogold were carried out for 1 h on ice. The 
best labeling was achieved when filaments were unfixed and freed of un- 
bound antibody by ultracentrifugation. Samples were applied to carbon- 
coated electron microscopic grids and washed extensively with water before 
negative staining. 

Results 

Identification of Monoclonal Antibodies 
That Interfere with Myosin Polymerization 
To study the polymerization of D. discoideum myosin, we 
used eight out of 45 isolated monoclonal antibodies. These 
selected antibodies could be shown by electron microscopy 
to bind to unique sites on the tail of myosin monomers. The 
binding sites of five of these antibodies have been mapped 
previously (Claviez et al., 1982). Those of mAb 396, mAb 
253, and mAb 55 are shown in Fig. 1, a-f. The antibody 
binding sites are located within diverse regions of the myosin 
tail, between its proximal end near to the heads and its termi- 
nus (Fig. 1 g). None of these antibodies competed with one 
another in solid-phase radioimmunoassay. One antibody, 
mAb 96, binds near to the sites phosphorylated by a myosin 
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Figure I. Binding sites of monoclonal antibodies on the tail of D. 
discoideum myosin. Complexes of monomeric myosin and antibody 
were rotary-shadowed (a-f). The map of binding sites shown in g 
has been compiled from previously published (Claviez et al., 1982; 
Pagh et al., 1984) as well as new data. A new antibody, mAb 396, 
bound simultaneously to two sites at the same position of the myosin 
tail (a and b), indicating that identical epitopes on the two heavy 
chains of the myosin molecule were accessible. These sites were lo- 
cated 14.4 + 5.4% of the length of the tail away from the heads. 
The binding sites of three other antibodies important for this paper 
are shown in c-f. MAb 96 and mAb 55 were distinguishable after 
double labeling with Fab fragments and IgG, respectively (d). MAb 
55 bound to the very end of the tail (e), and binding sites on both 
myosin heavy chains were simultaneously accessible (f). 

Figure 2. Sedimentation of myosin preincubated with antibodies. 
Monomers (a and b) were preincubated with or without ( - )  anti- 
bodies in high-salt buffer. Filaments (c) were preincubated with the 
antibody in low-salt buffer. The samples were then diluted into 
polymerization buffer. After incubation for 1 h (a and b) or 6 and 
48 h (c), they were ultracentrifuged for 15 min at 30 psi in an air- 
fuge. Supernatant (S) and pellet (P) fractions were subjectr, M to 
SDS PAGE in minislab gels and the proteins stained with Coomas- 
sie Blue. Control samples in c for total myosin and antibody (T) 
were not ultracentrifuged. The upper major band is that of the 
heavy chains of myosin and the lower ones correspond to the heavy 
chains of the IgG antibody. MAb 396 was poorly soluble under the 
conditions used; it was the only antibody that pelleted by forming 
a precipitate, in addition to sedimenting with myosin. 

heavy chain kinase (Pagh et al., 1984). Its binding site rel- 
ative to mAb 55 was demonstrated in a double labeling ex- 
periment in which mAb 96 was used as a Fab fragment 
(Fig. 1 d). 

The effects of antibodies on myosin polymerization were 
assessed by sedimentation experiments. Monomeric myosin 
in a buffer containing 500 mM KCI was preincubated with 
a fivefold molar excess of  antibody, and then induced to poly- 
merize by dilution into a low-salt, high Mg 2+ buffer ("poly- 
merization buffer") containing final concentrations of  50 mM 
KCI, 10 mM MgClz, and 0.2 mM ATP. After ultracentrifu- 
gation in an airfuge at 30 psi for 15 min, nearly all of  the con- 
trol myosin was found in the pelleted fraction (Fig. 2). Myo- 
sin preincubated with antibody sedimented as in the control 
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Figure 3. Negative stain preparations of myosin preincubated with a fivefold molar excess of antibodies and induced to potymerize in their 
presence (b-g). In the control (a), no antibody was added. After 1 h in the polymerization buffer, samples were fixed with glutaraldehyde 
and stained with 1% uranyl acetate. The inset in c illustrates the enhanced 14.5-nm axial periodicity of preformed filaments after incubation 
with mAb 396. 
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in all cases (Fig. 2 a) except for three antibodies. About 50 
and 96% of the myosin remained in the supernatant with 
mAb 253 and mAb 96, respectively (Fig. 2 b). About 10% 
of the myosin preincubated with mAb 55 remained in the su- 
pernatant fraction. When ultracentrifugation was carried out 
at 25 psi for 15 min, up to 40% of the myosin preincubated 
with mAb 55 was found in the supernatant, indicating that 
the filaments were smaller than in controls, in which only 
trace amounts of myosin remained in the supernatant under 
these conditions. 

In contrast to their strong effects on the polymerization of 
monomeric myosin, neither mAb 55 nor mAb 96 disassem- 
bled preformed filaments at a fivefold molar excess over my- 
osin. Even after 48 h of incubation with mAb 96, sedimenta- 
tion analysis showed very little myosin in the supernatant 
fraction (Fig. 2 c). 

Effects of Antibodies on the Size 
and Structure of Myosin Filaments 

In negative stain preparations, control myosin formed bipo- 
lar filaments (Fig. 3 a) that averaged 512 nm in length and 
formed a bare zone of *220 am (Table I), as has been de- 
scribed by Clarke and Spudich (1974). Filaments with sizes 
resembling the control were found when myosin polymer- 
ized in the presence of antibodies that bound nearest to the 
heads: mAb 32 (Fig. 3 b; Table I) and mAb 51. Because mAb 
32 co-sedimented significantly with myosin filaments (Fig. 
2 a), its failure to interfere with polymerization could not be 
due to a weak affinity for myosin. 

With mAb 396, a third antibody that binds relatively near 
to the heads, the filamentous material that formed had promi- 
nent lateral striations with a repeat spacing of 14.5-15.0 nm 
(Fig. 3 c). This is the normal staggering of myosin molecules 
in filaments (Harrington and Rodgers, 1984). When pre- 
formed filaments were incubated with mAb 396, they re- 
mained intact and the striations were more clearly seen (Fig. 
3 c, inset). 

Filaments, which were smaller than in the control, formed 
in the presence of the two antibodies, rnAb 26 and mAb 153, 
that bind one-third of the length of the tail from the heads 
(Fig. 3 d). Filament lengths with mAb 26 averaged 360 nm, 
which is comparable in size to the filaments formed in con- 
trols when MgCI2 was only 0.2 mM, rather than 10 mM 
(Table I). The "apparent bare zone; i.e., the zone that was 
free of heads and antibodies, was less than the 188-nm tail 
length because the antibodies remained bound to the fila- 
mentous myosin. 

The three antibodies with binding sites within the terminal 
third of the tail had striking inhibitory effects on myosin poly- 
merization (Fig. 3, e-g). Only few filaments were formed in 
the presence ofmAb 253 (Fig. 3 e). This antibody also disas- 
sembled preformed filaments, as judged from a reduction in 
the number of filaments in negative stain preparations after 
4 h of incubation with a fivefold molar excess of the antibody. 
With mAb 96, essentially no filaments were observed in 
negative stain preparations (Fig. 3 f ) .  As revealed by rotary 
shadowing, ,,085 % of the monomeric myosin molecules had 
bound mAb 96. The remaining monomers may not have 
formed filaments because they were below a critical concen- 
tration required for polymerization. Essentially no dimers or 
oligomers of myosin were seen, indicating that mAb 96 in- 

Table L Sizes of Myosin Filaments Formed at a Fivefold 
Molar Excess of Antibodies 

mAb Mg 2+ (mM) Length (nm) Apparent bare zone (nm) 

None 10 512 ± 58 221 ± 24 
32 10 441 ± 69 202 ± 25 
26 10 360 ± 34 154 ± 19 
55 10 233 ± 20 117 ± 17 
None 0.2 360 ± 30 208 ± 21 

Myosin was pmincubated with one of the antibodies or with buffer alone. Poly- 
merization was induced by dilution into polymerization buffer with MgC12 
concentrations as indicated. The reaction was stopped after 1 h by the addition 
of glutaraldehyde. Means and standard deviations are given. 

hibits the primary steps required for myosin assembly. With 
mAb 55, an antibody that binds to the tip of the myosin tail, 
numerous myosin filaments were visible (Fig. 3 g). How- 
ever, these filaments measured only ~230 nm in length, with 
an apparent bare zone of 117 am (Table I), suggesting that 
they were unusual in structure. 

Myosin Forms Small Unipolar l~laments 
in the Presence of mAb 55 That Binds to the 
Tip of the Tail 

In rotary-shadowed preparations of control samples, the 
heads of myosin molecules were recognizable at both ends 
of a filament (Fig. 4, a and b). In contrast to these bipolar 
filaments, the small filaments formed after incubation with 
mAb 55 had heads clearly visible at only one end (Fig. 4, 
c-e). At the opposite end were globular particles somewhat 
larger than myosin heads, which were comparable in size to 
unbound antibody molecules seen in the background. In 
some cases, they appeared to be staggered with the periodic 
14-15-nm repeat of myosin filaments (Fig. 4 c), indicating 
that the structures observed were not produced by cross- 
linkage of myosin molecules with the antibody. The number 
of pairs of heads in these filaments varied between 6 and 12. 

Evidence that the globular structures seen at one end of 
the small filaments were antibody molecules was provided by 
immunogold labeling. The labeling patterns obtained with 
various dilutions of gold-conjugated anti-mouse antibody 
are given in Table II and illustrated in Fig. 5, a-g. Most of 
the labeling was unipolar, i.e., gold particles were located at 
only one end of the filament. At the highest concentrations 
of the gold-conjugated antibody used, 90% of all filaments 
were labeled, and in 90% of these, labeling was unipolar. 
The remaining 10% of filaments were labeled at both ends 
although the number of gold particles was always minor at 
one of these ends (Fig. 5 d). Few filaments were associated 
with gold particles when preformed filaments were in- 
cubated with anti-mouse antiserum alone. Association of 
gold particles with myosin filaments, when it was observed 
in these controls, occurred with equal probability either 
somewhere along the bare zone, or at either of the two fila- 
ment ends (Table II), indicating the absence of any localized 
labeling without first antibody. 

The unipolar organization of filaments formed in the pres- 
ence of mAb 55 was striking when the filaments had ag- 
gregated by their heads into clusters of three or more (Fig. 
5, f and g). Filaments formed in the presence of mAb 32, 
an antibody that did not alter polymerization, gave a bipolar 
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labeling pattern (Fig. 5, h-j; Table II), and they aggregated 
into chains rather than into clusters (Fig. 5 h). Even the 
smaller filaments formed in the presence of mAb 26 were 
found to be bipolar in labeling (Table II). 

Effects of  the Antibodies on Actin-activated 
MgATPase Activity Compared with Their Effects 
on Myosin Polymerization 

Sensitivity of the actin-activated ATPase activity to antibod- 
ies was studied under the same conditions as used for poly- 
merization of myosin except that F-actin was added to the 
polymerization buffer. The actin did not change the inhibi- 
tory effects of mAb 96 and mAb 55 on polymerization of the 
myosin. (For other antibodies this was not tested.) Enzyme 
activity was near maximal at pH 7.5 and 25°C in our stan- 
dard polymerization buffer, which contained 10 mM MgC12 
(Fig. 6). 

In a first series of experiments, antibody was incubated in 
high-salt buffer at a fivefold molar excess with monomeric 
myosin and, after 1 h in the polymerization buffer, samples 
were assayed for actin-activated MgATPase activities. As 

Table 11. Localization of Monoclonal Antibodies Associated 

Figure 4. Rotary-shadowed filaments 
formed by myosin in controls with- 
out antibody (a-b) and in prepara- 
tions with mAb 55 (c-e). Monomeric 
myosin was induced to polymerize 
for 1 h after preincubations without 
or with a fivefold molar excess of 
antibody. To reduce background, 
MgC12 and ATP were left out of the 
polymerization buffer for electron 
microscopy. In a, c, and e, samples 
were fixed with glutaraldehyde, in b 
and d samples were unfixed. In e, 
filaments were sedimented in an air- 
fuge at 30 psi for 15 rain before fixa- 
tion to remove unbound antibody. 
The periodic substructure of illa- 
ments formed in the presence of 
mAb 55 is indicated by arrows in c. 

shown in Table III (experiments I and II), all antibodies in- 
hibited the enzyme activity to some extent. The degree of in- 
hibition sometimes varied with the amount of F-actin added 
to the assay mixture. Three antibodies were distinguished 
from the others by their strong inhibitory effects. Two of 
them, mAb 253 and mAb 96, bound within the distal portion 
of the tail of the myosin and were strong blockers of its poly- 
merization (Figs. 2 b and 3, e and f ) .  The third antibody, 
mAb 396, bound near to the heads and did not block poly- 
merization (Figs. 2 a and 3 c). 

When incubated with myosin filaments, only some of the 
antibodies showed similarly strong inhibition of the actin- 
activated ATPase activity as when monomeric myosin was 
applied (Table III, experiment 3). The two best blockers 
among these antibodies, mAb 32 and 396, did not inhibit the 
polymerization of myosin (Figs. 2 a and 3, b and c), although 
mAb 396 was found to be incorporated into preformed fila- 
ments (Fig. 3 c, insert). The lack of an effect of mAb 96 on 
the actin-activated ATPase activity of filaments was in agree- 
ment with the inability of this antibody to bind to polymer- 
ized myosin (Fig. 2 c). The finding that even after 24 h of 
incubation the ATPase was only weakly inhibited (Table III, 

with Myosin Filaments by the ImmunogoM Labeling Method 

Labeling pattern* 
First antibody Immunogold* 
(mAb) (rel. concentration) Unipolar Bipolar Other Filaments labeled§ 

% 

55 1 92 2 6 <50 
55 2 87 11 2 80 
55 3.3 85 13 2 >90 
55 5 90 8 2 >90 
32 2 28 70 2 72 
26 2 31 62 7 <50 
None 2 47 4 49 <20 

Monomeric myosin was incubated with a fivefold molar excess of monoclonal antibody and then induced to polymerize as described in Materials and Methods. 
For the experiments with mAb 55, filamentous myosin was centrifuged in an airfuge for 30 min at 30 psi. The resuspended filaments were fixed for 10 min with 
0.025% glutaraldehyde, ultracentrifuged, and washed with 50 mM ammonium formate, pH 7.2. The fixation greatly reduced the reactivity with mAb 32 and mAb 
26; therefore, for these antibodies the fixation step was omitted. We have confirmed that the unipolar labeling pattern obtained with mAb 55 also occurred with 
unfixed material. 
* 20-am gold particles coated with goat anti-mouse antibody were centrifuged, washed with 50 mM ammonium formate, pH 7.2, and resuspended in the original 
volume. Numbers denote relative concentrations with 1 representing 10% of the commercial preparation. 
* "Unipolar" means that gold particles were at one end of a filament and "bipolar" corresponds to labeling at both ends. "Other" designates labeling within the 
bare zone of filaments. In each experiment, between 50 and 75 labeled filaments were characterized. 
§ Percentage of filaments that were labeled with gold particles. 
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Figure 6. Myosin ATPase activity as a function of MgCI2 concen- 
trations. Basal (0) and actin-activated (o) ATPase activities were 
measured in polymerization buffer with varying concentrations of 
MgCI2. 

Figure 5. Localization by immunogold labeling of monoclonal anti- 
bodies on filaments. Monomeric myosin was induced to polymerize 
with a fivefold molar excess of either mAb 55 (a-g) or mAb 32 
(h-j). After 1 h, specimens were fixed with glutaraldehyde, ultra- 
centrifuged to remove unbound antibody, and reacted with gold 
anti-mouse antibody. 

experiment 4) coincided with the low degree of depolymer- 
ization observed after even longer incubation of myosin fila- 
ments with mAb 96 (Fig. 2 c). 

To eliminate differences in the inhibitory effects that are 
caused by varying affinities of the antibodies (Table IV), we 

have preincubated five antibodies at different molar ratios 
with monomeric myosin. 1 h after dilution into polymeriza- 
tion buffer, myosin was assayed for basal and actin-activated 
MgATPase activity, and, in parallel, samples were processed 
for SDS PAGE (Fig. 7). 

Each of the five antibodies showed significant effects on ei- 
ther actin-activated ATPase activity or polymerization of 
myosin, or on both, at an equimolar concentration relative 
to myosin. Thus, differences between the effects of these anti- 
bodies on myosin were not simply caused by varying affini- 
ties. None of the antibodies had a significant effect on the 
basal MgATPase activity with the possible exception of mAb 
96, which seemed to partially inhibit this enzyme activity. 
Over the entire concentration range examined, no effect 
of mAb 32 and mAb 396 on myosin polymerization was 
observed (Fig. 7, a and b). These antibodies differed in 
their inhibitory effect on the actin-activated ATPase, which 
reached a plateau at a level of ,~70% inhibition with mAb 

Table IlL Actin-activated ATPase Activity of  Myosin after Preincubation of Monomers (Exps. I and 2) or Filaments 
(Exps. 3 and 4) with Antibodies 

mAb 

Exp. 1 Exp. 2 Exp. 3 Exp. 4 

ATPase activity % Inhibition ATPase activity % Inhibition ATPase activity % Inhibition ATPase activity % Inhibition 

32 102 + 25 49 56 + 3 55 30 5 : 1  77 39 + 2 73 

51 117 + 16 42 82 + 3 34 103 + 5 20 ND - 
396 36 + 2 82 14 -I- 1 89 48 + 3 63 50 5- 2 65 

26 203 -I- 9 0 72 + 1 42 128 + 4 0 147 + 5 0 

153 179 + 22 11 56 + 5 55 129 + 10 0 ND - 

253 54 -I- 5 73 23 -I- 1 82 101 + 3 21 87 5- 1 39 
96 32 -I- 6 84 14 5- 1 89 137 + 5 0 128 _-_ 4 11 
55 124 + 9 38 40 + 2 68 136 :t: 4 0 154 5- 5 0 

Control 200 ± 18 - 125 + 8 - 128 + 5 - 143 5- 3 - 

After preincubation of myosin with a fivefold molar excess of antibody in high-salt buffer the samples were diluted sixfold into polymerization buffer. ATPase 
activities are expressed in nmoles ATP hydrolyzed per minute and milligram myosin, Means and slandard deviations are given, In Exp. 1, 20 lag of myosin was 
supplemented with 45 I.tg of F-actin, which resulted in a 20-fold activation over the basal Mg 2+ ATPase activity of the control. In Exp. 2, 15 lag of F-actin was 
added, resulting in a 10-fold activation over basal enzyme levels of the control. In Exps. 3 and 4, 20 pg of filamentous myosin was preincubated with a fivefold 
excess of antibodies, and 15 ltg of F-actin was added before assay. In Exp. 3, samples were kept for 1 h and in Exp. 4, for 24 h in polymerization buffer before 
assay. ND, not determined. 
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Table IV. Synopsis of the Antibody-Myosin Interactions 

Inhibition of actin-activated ATPase~: 

No. of Binding site Estimates Inhibition of Binding to Starting with With preformed 
antibody (% of tail length) of Ko* polymerization preformed filaments unpolymerized myosin filaments 

Specific properties 
of the antibody 

32 3 > 4  × 10 -6 - + + + +  
<1 x 10 -2 

51 9 >13 x 10 -7 - N D  + + 
<2 x 10 -6 

396 14 ND - + ++ +++ 

26 27 ND Partial + - to + - 

153 31 1.6 x 10 -6 Part ia l  + - to + - 

253 68 N D  C o m p l e t e  + + +  + 

( 
96 81 "~1 x 10 -7 C o m p l e t e  - + +  - 

55 100 7 × 10 -7 Par t ia l  - + - 

Enhances periodic 
s t ruc ture  of  
f i laments  

Reduce size of 
bipolar filaments 

Block myosin 
polymerization 
completely 

Blocks antiparallel 
assembly 

ND, not determined. 
* KD estimates were obtained by counting antibody-myosin complexes and free myosin after rotary shadowing in the electron microscope (Claviez et al., 1982). 
Kt, was calculated for the interaction of a single binding site on the antibody IgG with a single epitope on the myosin tail. Upper and lower limits refer to cases 
in which one antibody molecule inhibited the binding of a second, identical one to a myosin molecule. 

- ,  inhibition <20 %; +, inhibition 20-70%; ++,  inhibition >70 %. Variations observed with different concentrations of actin (Table III, Exps. 1 and 2) are in- 
cluded. 

32, while mAb 396 inhibited completely. Both mAb 253 and 
mAb 96 inhibited polymerization and actin-activated ATP- 
ase completely at a threefold molar excess over myosin (Fig. 
7, c and d). At lower antibody to myosin ratios, mAb 253 
appeared to preferentially inhibit polymerization, while the 
actin-activated ATPase seemed to be more sensitive to mAb 
96. Further work is required to confirm that these minor 
differences are significant. 

The results obtained with mAb 55 are more complicated. 
The dissociation constant for the interaction of a single anti- 
gen binding site of this antibody with a corresponding epi- 
tope on one of the myosin heavy chains has been estimated 
as KD = 7 x 10 _7 M (Claviez, M., unpublished observa- 
tions). As shown in Fig. 1, d and f, the ends of both heavy 
chains of a myosin molecule are accessible to antibody bind- 
ing. It follows from these data that '~51% of the heavy chain 
ends should be occupied under our conditions when myosin 
is preincubated with antibody at a molar ratio of 2:1. At this 
ratio, mAb 55 appeared to exert its almost maximal effect on 
myosin polymerization. This is suggested from Fig. 7 e 
where the small decrease in pelleted myosin seen at this ra- 
tio remained at almost the same level with increasing anti- 
body concentrations. Moreover, evaluation of the sizes of 
myosin filaments in negative stain preparations indicated that 
as little as one mAb 55 molecule per two myosin molecules 
limited the overall size of the filaments and blocked bipolar 
filament formation. Even after 24 h of incubation in poly- 
merization buffer, virtually no filaments comparable in size 
to control filaments were visible. Filament lengths remained 
essentially constant with molar ratios of mAb 55 to myosin 
ranging from 0.5 to 8. These results indicate that mAb 55 in- 
hibits bipolar filament formation and reduces the size of the 
unipolar filaments even if myosin is in excess, and that high 
excess of antibody still allows the unipolar filaments to be 
formed. Quite in contrast to the effect of mAb 55 on poly- 

merization, its effect on the actin-activated ATPase, which 
was negligible at an antibody to myosin ratio of 0.5:1, in- 
creased steadily with increasing antibody concentrations 
(Fig. 7 e). Thus, as far as mAb 55 is concerned, the effect 
on polymerization was not accompanied by significant inhi- 
bition of actin-activated ATPase, and strong inhibition of the 
ATPase at higher antibody concentrations was not paralleled 
by further inhibition of polymerization. 

Discussion 

General Conclusions 

Monoclonal antibodies with unique binding sites on the tail 
of D. discoideum were found to interfere with filament for- 
mation in three distinct ways; by (a) suppressing selectively 
the antiparallel association of myosin monomers, (b) inhibit- 
ing myosin-myosin polymerization completely, and (c) lim- 
iting the size but not the normal bipolar structure of fila- 
ments. 

Two general statements can be made about the effects of 
antibodies on the actin-activated MgATPase activity of D. dis- 
coideum myosin. First, any antibody that blocked myosin as- 
sembly abolished actin activation, although not every anti- 
body that inhibited actin activation of the ATPase had a 
concomitant effect on the assembly of myosin. Second, the 
actin-activated ATPase activity was only marginally affected 
by reduction in the size of myosin filaments from a length of 
500 nm to •230 nm, even when antiparallel assembly was 
eliminated. The effects of the eight antibodies examined are 
summarized in Table IV. 

Selective Inhibition of  Antiparallel Myosin Assembly 

Myosin assembly is thought to start with the association of 
monomers into dimers and to proceed by antiparallel assem- 
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Figure 7. Basal (o) and actin-activated (e) kTPase activities and 
sedimentation after preincubation of myosin with antibodies at 
different ratios. Monomeric myosin was preincubated in high-salt 

bly of the dimers. By this process, a bare zone rich in an- 
tiparallel interactions is produced (Harrington and Rodgers, 
1984). Filaments subsequently increase in length by parallel 
dimer addition (Davis et al., 1982). One of our antibodies, 
mAb 55, which binds to the tip of the myosin tail, inhibited 
selectively all antiparallel associations. The unipolar fila- 
ments formed in the presence of mAb 55 seemed to have the 
typical 14.5-nm periodicity of parallel-packed molecules 
(Harrington and Rodgers, 1984). We do not as yet know 
whether mAb 55 inhibits antiparallel assembly because the 
tail-end is important for this type of assembly, or whether the 
binding of antibody at this site imposes constraints on myosin 
interactions that are mediated elsewhere. The same applies 
to the second inhibitory effect of mAb 55, which is to limit 
parallel assembly to 6-12 myosin molecules per filament. It 
appears to be likely that the antibody imposes steric hin- 
drance on monomer-monomer or dimer-dimer interactions, 
and that the antiparallel association is most susceptible to 
this. The bare zone, which is rich in antiparallel packing, has 
proven to be quite resistant to disassembly under various 
conditions (Niederman and Peters, 1982; Reisler et al., 
1982; Trinick and Cooper, 1980). Therefore, antiparallel as- 
sembly should not be inhibited by mAb 55 simply because 
it is less stable than parallel assembly. 

It has been proposed that filament size is determined by 
increases in the off-rate of parallel dimer addition with in- 
creasing filament length (Davis, 1985). The limitation in size 
of the unipolar filaments caused by mAb 55 may be conse- 
quently due to antibody-induced increases in the off-rate such 
that equilibrium is reached at shorter filament lengths. 

Complete Inhibition of Myosin Assembly 
by Antibodies Binding to a Region Important 
for Polymerization 

We defined a region important for polymerization of D. dis- 
coideum myosin by mapping polymerizable chymotryptic 
tail fragments with monoclonal antibodies (Pagh et al., 
1984). This region spans maximally from '~50 to 80% of the 
tail length from the heads. The distal portion of this region 
is adjacent to, and probably covers, the two threonine 
residues which are phosphorylatable by myosin heavy chain 
kinase (Maruta et al., 1983). 

In the present study, two antibodies were found to com- 
pletely inhibit myosin-myosin interactions as judged from 
sedimentation analyses and electron microscopy. These anti- 
bodies bind within the region of the tail that we identified as 
being important for polymerization. One of the two antibod- 
ies, mAb 253, binds to a position that is '~68% of the tail 
length from the heads. The second antibody, mAb 96, binds 
to a site 81% of the length of the tail from the heads (Claviez 

buffer in the presence or absence of one of the five antibodies as 
indicated, and the mixtures were diluted 10-fold into polymeriza- 
tion buffer. After 1 h, ATPase activity was measured with or with- 
out the addition of F-actin. In parallel samples, without actin, the 
myosin heavy chain content was determined in total fractions, and 
in supernatants and pellets obtained by ultracentrifugation for 15 
min at 30 psi in an airfuge. The fractions were subjected to SDS 
PAGE, Coomassie Blue staining, and densitometry, and the pelleted 
myosin expressed in percent of the total. In a control, showing that 
monomeric myosin was not precipitated by mAb 55, a sample was 
ultracentrifuged at the end of preincubation in high-salt buffer 
((~) in e). 
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et al., 1982) which is near to the heavy chain phosphoryla- 
tion sites (Pagh et al., 1984). It has been shown that only ex- 
ceptionally more than one molecule of mAb 96 binds to a 
myosin molecule and that this antibody does not cross-link 
myosin molecules (Claviez et al., 1982). Our results indicate 
that the 1:1 complexes of myosin and mAb 96 cannot poly- 
merize at all. With decreasing ratios of antibody to myosin, 
more myosin molecules remain free of antibody and accord- 
ingly form normal filaments. Peltz et al. (1985) also identi- 
fied an antibody that blocks polymerization ofD. discoideum 
myosin; its binding site appears to lie in between the two 
binding sites described here (Flicker et al., 1985). 

Based on thermodynamic studies of filament formation, 
only ,o1% of the skeletal muscle myosin molecule is assumed 
to participate in strong associations (Harrington, 1979). Pro- 
teolytic removal of as little as 5-10 kD of the tail tip of skele- 
tal muscle myosin (Lu et al., 1983) or Acanthamoeba myosin 
II (Kuznicki et al., 1985) abolishes polymerization. The 
finding that antibodies that bind very close to one another on 
the tail of Acanthamoeba myosin II may or may not inhibit 
filament formation has suggested that the ability of myosin 
to polymerize may reside in one or two specific sites (Kiehart 
et al., 1984). Our results together with those of Peltz et al. 
(1985) suggest that, in D. discoideum, sites participating in 
myosin-myosin association may be more dispersed since 
three separate binding sites of blocking antibodies were 
identified within a 13 % span of the tail. However, monoclo- 
nal antibodies are probably not reliable probes for fine map- 
ping of functional sites on proteins. In addition to blocking 
specific sites, antibodies may cause conformational changes, 
impose steric constraints, or induce even grosser shape 
changes, as was suggested from electron microscopic prepa- 
rations in which bends were seen at positions where an anti- 
body was bound to the myosin tail (Claviez et al., 1982). 

Disassembly of myosin filaments is expected to be rapid 
when the equilibrium between filaments and monomers is 
shifted (Josephs and Harrington, 1968). Therefore an anti- 
body like mAb 96, which prevents the reassociation of 
monomers, should efficiently shift this equilibrium. Under 
our conditions, dissociation seemed to occur very slowly. 
Even after 48-h incubation with mAb 96 at concentrations 
sufficient to block reassembly of monomers, only a small 
fraction of the polymerized myosin was disassembled. In 
comparison with conditions thought to be physiological 
ones, we have used a rather high Mg 2+ concentration of 
10 mM because this was required for an optimal stimulation 
of actin-activated ATPase, and a higher pH to prevent aggre- 
gation of antibodies. It will be of interest to know whether 
the dissociation rate is faster in vivo such that antibodies that 
efficiently block polymerization can also disassemble pre- 
formed filaments. 

Size Constraints on Filaments Imposed 
by Antibodies Binding Near to the Heads 

Two antibodies limited the size but did not alter the structure 
of myosin filaments. These antibodies, mAb 26 and mAb 
153, have binding sites near to one another, at approximately 
one-third of the length of the tail from the heads. Since an 
adjacent, more proximal portion of the tail is very sensitive 
to chymotrypsin (Pagh et al., 1984), these binding sites may 
correspond to the amino-terminal portion of the light mero- 
myosin fragment formed by proteolytic cleavage of myosins. 

In skeletal muscle myosin, this portion of the tail is packed 
into the filament shaft (Harrington, 1979). Therefore, it is 
likely that these antibodies impose steric constraints on the 
packing. 

The three antibodies that bind to the tail closest to the 
heads, mAbs 32, 51, and 396, had either undetectable effects 
or had only marginal ones on filament formation. Both mAb 
32 and mAb 396 were demonstrated to bind to filaments, 
which shows that their binding sites are accessible when my- 
osin is polymerized. (For mAb 51 this has not been tested.) 
Accessibility of binding sites is particularly evident for mAb 
396, which enhances the periodic substructure of preformed 
filaments. A similar effect has been observed with a mono- 
clonal antibody that binds to skeletal muscle myosin (Shimi- 
zu et al., 1985). The portion of the tail near to the heads, to 
which our three antibodies bind, seems to be flexibly linked 
to the filament shaft, presumably to allow for movements of 
the heads (Trinick and Elliott, 1979). It is therefore reason- 
able that binding of antibody to this portion of the tail does 
not impose steric constraints on the packing of myosin 
molecules into filaments. 

Effects of Antibodies on Actin-activated ATPase Activity 

Antibodies that bind within the proximal 15 % of the tail in- 
hibited actin-activated MgATPase activity without prevent- 
ing myosin from forming large, bipolar filaments. The effect 
ofmAb 32, which binds closest to the heads, saturated with- 
out reaching full inhibition of the ATPase, while mAb 396 
inhibited completely. The sensitivity of this enzyme activity to 
monoclonal antibodies binding to the proximal part of the tail 
has been noted previously (Kiehart and Pollard, 1984b; 
Peltz, et al., 1985), and attention has been drawn to a putative 
hinge in this region which may function in mechanochemical 
force transduction (Harrington and Rodgers, 1984). 

Two of the antibodies studied, mAb 26 and mAb 153, bind 
more distal from the heads. Decreases in the length of bipo- 
lar myosin filaments from 500 nm to ,o360 nm, as caused 
by these antibodies, had minor effects on the actin-activated 
ATPase activity. 

Strong inhibition of actin-activated MgATPase activity by 
mAb 96 and mAb 253 paralleled their inhibition of myosin 
polymerization (Fig. 7). Since these antibodies bind at dis- 
tances from the heads of 128 and 152 nm, respectively, a di- 
rect effect on the ATPase catalytic or F-actin binding sites of 
the same monomer is unlikely. This finding is in agreement 
with the work of Kiehart and Pollard (1984a) who recog- 
nized, for Acanthamoeba myosin II, a relationship between 
the inhibitory effects of monoclonal antibodies on filament 
formation and actin-activated MgATPase. Accordingly, 
these authors proposed that myosin must be filamentous to 
show actin-activated ATPase activity as also was suggested 
by Kuznicki et al. (1985). However, it has to be taken into 
account that the ATPase activity of nonpolymerizable frag- 
ments of D. discoideum myosin is activated by F-actin (Peltz 
et al., 1981): when myosin is intact, the tail seems to act as 
a negative regulator, imposing constraints on the activity of 
the heads. 

In D. discoideum, phosphorylation has been reported to 
reduce filament formation and to inhibit the actin-activated 
ATPase activity of myosin (Kuczmarski and Spudich, 1980). 
It is therefore of significance that mAb 96, which binds close 
to the phosphorylation sites on the myosin tail, inhibits poly- 
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merization, since it suggests that phosphorylation may also 
inhibit actin-activated ATPase activity by reducing the capa- 
bility of myosin to form filaments (Pagh et al., 1984). How- 
ever, we have shown here, using other antibodies, that the 
filament size must be reduced drastically before substantial 
inhibition of actin-activated ATPase activity occurs. It has 
not yet been shown that heavy chain phosphorylation has that 
strong effect on polymerization. In Acanthamoeba, the fila- 
ment sizes as well as actin-activated ATPase activities are 
lower in phosphorylated versus dephosphorylated myosin II 
(Collins et al., 1982b). But, by varying a number of condi- 
tions, Kuznicki et al. (1983) did not find a strict correlation 
between filament size and enzyme activity. Thus it is not yet 
clear, both for D. discoideum myosin and Acanthamoeba my- 
osin II, to what extent changes in polymerization contribute 
to the regulation of ATPase activity by heavy chain phos- 
phorylation. 

In this context the effects of mAb 55, which binds to the 
tail at the longest possible distance from the heads, are of in- 
terest since its inhibition of bipolar filament formation did 
not parallel its effect on actin-activated ATPase activity. A 
sharp decrease in size of filaments from ,0500 nm to ,0230 nm 
was accompanied by only slight reductions of actin activation 
(Fig. 7 e). The gradual decrease in actin-activated MgATP- 
ase activity with increasing excess ofmAb 55 was apparently 
not due to further reductions in filament size. It is possible 
that the increase in number of antibody molecules bound to 
up to a maximum of two per myosin molecule affects the 
actin-activated ATPase activity by changing the packing of 
monomers within the filaments. The effect of mAb 55 on 
actin-activated ATPase activity and also its inhibition of an- 
tiparallel myosin assembly demand further investigation. 
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