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Abstract

In this work we develop a novel algorithm for reconstructing the genomes of ancestral indi-

viduals, given genotype or sequence data from contemporary individuals and an extended

pedigree of family relationships. A pedigree with complete genomes for every individual

enables the study of allele frequency dynamics and haplotype diversity across generations,

including deviations from neutrality such as transmission distortion. When studying heritable

diseases, ancestral haplotypes can be used to augment genome-wide association studies

and track disease inheritance patterns. The building blocks of our reconstruction algorithm

are segments of Identity-By-Descent (IBD) shared between two or more genotyped individu-

als. The method alternates between identifying a source for each IBD segment and assem-

bling IBD segments placed within each ancestral individual. Unlike previous approaches,

our method is able to accommodate complex pedigree structures with hundreds of individu-

als genotyped at millions of SNPs.

We apply our method to an Old Order Amish pedigree from Lancaster, Pennsylvania,

whose founders came to North America from Europe during the early 18th century. The ped-

igree includes 1338 individuals from the past 12 generations, 394 with genotype data. The

motivation for reconstruction is to understand the genetic basis of diseases segregating in

the family through tracking haplotype transmission over time. Using our algorithm thread,

we are able to reconstruct an average of 224 ancestral individuals per chromosome. For

these ancestral individuals, on average we reconstruct 79% of their haplotypes. We also

identify a region on chromosome 16 that is difficult to reconstruct—we find that this region

harbors a short Amish-specific copy number variation and the gene HYDIN. thread was

developed for endogamous populations, but can be applied to any extensive pedigree

with the recent generations genotyped. We anticipate that this type of practical ancestral
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reconstruction will become more common and necessary to understand rare and complex

heritable diseases in extended families.

Author summary

When analyzing complex heritable traits, genomic data from many generations of an

extended family increases the amount of information available for statistical inference.

However, typically only genomic data from the recent generations of a pedigree are avail-

able, as ancestral individuals are deceased. In this work we present an algorithm, called

thread, for reconstructing the genomes of ancestral individuals, given a complex pedi-

gree and genomic data from the recent generations. Previous approaches have not been

able to accommodate large datasets (both in terms of sites and individuals), made simpli-

fying assumptions about pedigree structure, or did not tie reconstructed sequences back

to specific individuals. We apply thread to a complex Old Order Amish pedigree of

1338 individuals, 394 with genotype data.

This is a PLOS Computational Biology Methods paper.

Introduction

Pedigree structures and associated genetic data provide a wealth of information for studying

recent evolution. Nuclear families (parents and children) and other small pedigrees have been

used to estimate mutation and recombination rates in humans [1–4] and other species [5–7].

Pedigrees have informed breeding of domesticated animals [8], enabled the study of short-

term evolution in natural populations [9], and can be used to study heritable diseases [10].

Genetic studies of rare, recessive traits pose a challenge to researchers when individuals

expressing these traits are too sparse or too scattered to obtain sufficient genetic data. Endoga-

mous populations with detailed pedigree records provide an important exception. Endoga-

mous populations, defined by the practice of marriage within a social, ethnic, or geographic

group, are often characterized by small effective population sizes with limited external admix-

ture. These groups are of great interest to geneticists because a single small population can pro-

vide enough data to inform rare trait and rare variant studies with worldwide implications [11,

12]. Endogamous populations are also informative for common diseases [13, 14].

Extended pedigrees from endogamous populations provide a valuable system for studying

heritable disease, but genetic data is typically limited to recent generations. If genetic informa-

tion from every individual in the pedigree were available, we would be in a better position to

understand the transmission of disease-associated variants throughout the history of the popu-

lation. More specifically, we often know the disease phenotypes of ancestral individuals, but

cannot obtain their genetic information. In these cases, reconstructed haplotypes would allow

us to augment genome-wide association studies (GWAS), where large sample sizes are essen-

tial. In addition, reconstructed genomes would enable the computation of polygenic risk

scores (PRS) [15, 16] for ancestral individuals.
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Reconstructed ancestral haplotypes also allow us to study genome dynamics over short

time scales, including inheritance patterns and haplotype transmission. In populations with

large nuclear families, transmission distortion [17, 18] and other deviations from neutrality

are particularly visible. Understanding which parts of the genome are over- or under-repre-

sented in the recent generations could help us identify forms of deleterious variation. From a

theoretical perspective, there has been relatively little work on the question of how much

ancestral reconstruction is possible given genetic information from contemporary individuals.

One example from a small livestock pedigree can be found in [19].

Previous work on ancestral reconstruction has typically been applied to small pedigrees

with no loops (marriage between close relatives). One of the earliest examples comes from the

Lander-Green algorithm [20], which uses a hidden Markov model (HMM) with inheritance

vectors as the hidden state and genotypes as the observed variables. Methods such as Sim-
Walk2 [21] and Merlin [22] use descent graphs and sparse gene flow trees (respectively) to

extend the idea of likelihood-based computation to larger pedigrees. However, these methods

do not perform reconstruction explicitly and also do not handle loops, as tree-based interme-

diate steps are common to both algorithms. With millions of loci and hundreds of individuals,

the time complexities of these methods are prohibitive (see [23] for a runtime overview).

Other HMM-based approaches such as HAPPY [24], GAIN [25], and RABBIT [26] recon-

struct genome ancestry blocks, but do not tie them to specific individuals. HAPLORE [27]

quantifies possible ancestral haplotype configurations but does not incorporate recombina-

tion, and the Bayesian approach in [28] is more suitable for haplotyping.

The authors of [29] reconstructed ancestral haplotypes for the purpose of identifying

regions that contain susceptibility genes for schizophrenia. However, their pedigree was much

smaller (with no loops), many fewer markers (450) were used, and several of the reconstruc-

tion steps were done by inspection or by hand, which does not scale to our scenario. Another

study [30] reconstructed the African haplotype of an African-European individual who

migrated to Iceland in 1802 and had 788 descendants, 182 of which were genotyped. However,

this scenario is much simpler, as the regions of African ancestry within each descendant were

easily identified and all belonged to the same individual.

The problem studied here is different from pedigree reconstruction, where genetic informa-

tion is used to reconstruct (previously unknown) family relationships (see [31–36]). It is also

different from ancestral reconstruction in a phylogenetic context, where a single tree repre-

sents the evolutionary relationships between species (see [37]).

In this study we apply our method to an Old Order Amish population from Lancaster,

Pennsylvania who can trace their ancestry to founders who came from Europe to Philadelphia

in the early 18th century (see Fig 3 of [38] for an analysis of the contributions of the 554 foun-

ders). The Amish are an ethno-religious group in the Anababtist tradition, with a history of

detailed record keeping and marriage within the Amish community [39]. In this work, we

study an unpublished pedigree of 1338 individuals, augmented [40] from a pedigree of 784

individuals originally described in the Amish Study of Major Affective Disorder [41, 42].

Roughly one third of the individuals in the original pedigree display some form of mood disor-

der, and about 19% have been diagnosed with bipolar disorder specifically [16]. Bipolar disor-

der in a broad sense is roughly 80% heritable in this pedigree [16], and recent work has

focused on understanding the genetic basis of this disease [42]. The availability of genetic data

from 394 contemporary individuals from this pedigree gives us an opportunity to use recon-

struction as another lens on inheritance patterns of mood disorders.

Here we present a novel algorithm, thread, for reconstructing ancestral haplotypes

given an arbitrary pedigree structure and genotyped or sequenced individuals from the recent

generations. thread can be applied in a variety of scenarios including pedigrees with loops,
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inter-generational marriage, and remarriage. More ancestral chromosomes will be recon-

structed as the percentage of individuals with genetic data increases, but our method can be

applied even when this fraction is modest. This work represents a key step towards under-

standing the limits of quantifying the genomes of ancestral individuals in the absence of

ancient DNA. thread is available as an open-source software package: https://github.com/

mathiesonlab/thread.

Materials and methods

Ethics statement

All work contained within this study was approved by the IRB of the Perelman School of Med-

icine at the University of Pennsylvania (protocol #827037). All study participants were 18

years or older and provided written consent (see [42] for details of the consent process). The

Anabaptist Genealogy Database (AGDB) [40] is covered by an IRB-approved protocol at the

NIH (protocol #97HG0192).

Problem statement

The first input to our reconstruction algorithm thread is a pedigree structure P. For each

individual p 2 P (aside from founders and married-in individuals), we have information

about the mother p(m) and father p(f), which are also members of P. In the case of founders or

married-in individuals, we represent p(m) and p(f) as 0’s. The pedigree may contain loops. For-

mally, a loop occurs when the undirected version of the directed marriage graph has a cycle

(see [43, 44] for more information). Usually a loop means that the parents of a child share a

common ancestor, but other loop structures are possible, e.g. when two brothers marry two

sisters.

The second input is a dataset of phased haplotypes (e.g. in Variant Call Format, VCF) from

a subset of individuals in the pedigree, typically from the most recent generations. Phasing

assigns the alleles of each individual to parental haplotypes. Our aim is to reconstruct the hap-

lotypes of as many ancestral individuals in the pedigree as possible. An illustration of the prob-

lem is shown in Fig 1.

High level description

thread is built upon the idea of Identity-By-Descent (IBD). IBD segments are long stretches

of DNA shared by a cohort of two or more individuals due to descent from a common ancestor

(source). Our algorithm alternates between analyzing IBD segments and analyzing individuals.

During each iteration (outer loop of Algorithm S1), we first consider each IBD segment inde-

pendently (as opposed to working sequentially along the chromosome as an HMM would).

We attempt to find the source of the IBD segment, as well as individuals who are on descen-

dance paths from this ancestor to the cohort. After source identification we consider each indi-

vidual in turn, clustering and assembling their associated IBD segments into haplotypes.

During this grouping step we identify IBD segments that have been placed in a manner that is

inconsistent with assigned haplotypes—in the next iteration we will update their sources. We

repeat these steps until no new haplotypes are reconstructed. Each chromosome of the genome

is processed independently. A schematic of thread is shown in Fig 2, and pseudocode is

given in Algorithm S1 (S1 Text).
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Fig 1. Problem statement illustration. Squares represent males and circles represent females. Horizontal lines create

couples and show sibling relationships. Parents and offspring are connected by vertical lines. Filled in symbols

represent individuals who have been genotyped. Our aim is to reconstruct all ungenotyped individuals (orange

question marks) who have genotyped descendants.

https://doi.org/10.1371/journal.pcbi.1008638.g001

Fig 2. Algorithm overview. In the first two steps we identify IBD segments and compile a list of potential sources for each one. In the iterative

phase, we alternate between choosing sources for each IBD and grouping the IBDs that are placed within each individual. If the IBDs assigned to

an individual can be arranged into two haplotypes meeting thresholds for coverage defined in Methods, then those haplotypes are considered

strong. IBD segments that conflict with strong haplotypes are rejected and must be assigned a different source. When we are no longer building

more haplotypes, we return the reconstructed chromosomes.

https://doi.org/10.1371/journal.pcbi.1008638.g002
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Input pedigree

The Amish pedigree under study was developed from several sources, including the book

Descendants of Christian Fisher [45], the Anabaptist Genealogy Database (AGDB) [40] and

associated software PedHunter [38], and the Amish Study of Major Affective Disorder [41].

A summary of the number of individuals in each generation is shown in Table 1, along with

the number of genotyped individuals. The complete pedigree structure is shown in S1 Fig (cre-

ated with the kinship2 R package [46]).

To assess the levels of relatedness and genetic similarity in this population, we compare the

haplotypes of each pair of genotyped individuals. For each comparison, we compute the num-

ber of SNPs two haplotypes have in common over the total number of genotyped SNPs. Then

for each pair of individuals, we take their overall genetic similarity to be the average of their

haplotype similarities (paired to maximize similarity). This method accounts for differing

chromosome lengths by weighting the similarities based on the number of SNPs genotyped on

each chromosome. We plot genetic similarity against kinship coefficient, which is computed

using PedHunter and the AGDB (or our Amish pedigree if one or both of the individuals

are not in the AGDB). The results are shown in Fig 3, which demonstrates that genetic similar-

ity generally increases linearly as kinship coefficient increases. We also include a histogram of

inbreeding coefficients for each individual in S2 Fig (also computed using PedHunter). See

[47] for more information about kinship and inbreeding coefficients.

Step 1: Find IBD segments

Step 1 begins by reading in the pedigree structure. The pedigree may contain inter-genera-

tional marriage and loops, and the individuals do not need to be separated into generations.

Let t be the total number of individuals in the pedigree, n be the number of genotyped individ-

uals, and m be the number of ungenotyped individuals with genotyped descendants. In the

pedigree under study, t = 1338, n = 394, and m = 686, leaving 258 individuals with no geno-

typed descendants; we do not expect to be able to reconstruct these individuals.

Next, IBD segments between pairs of genotyped individuals are identified using GERM-
LINE [48], although IBD-Groupon for detecting IBD in groups could be used instead [49].

When using GERMLINE, we use the default parameters, except for the -haploid flag to

Table 1. Individuals per generation, with the founders assigned generation 1. The generation of a non-founder is

defined to be one more than the maximum of the generations of their parents. Married-in individuals carry the genera-

tion of their spouse. The total number of individuals is 1338, with genotype information for 394 (largely in generations

9-12).

Generation # Individuals # Genotyped

1 9 0

2 15 0

3 35 0

4 64 0

5 76 0

6 149 0

7 186 0

8 187 4

9 142 53

10 198 143

11 178 145

12 99 49

https://doi.org/10.1371/journal.pcbi.1008638.t001
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indicate our dataset is phased. Thus the minimum IBD segment length is 3cM, and the length

of seeds for exact matches is 128 markers. For each IBD segment I, we combine pairs until we

obtain a cohort C of individuals who share this segment, where |C| 2 {2, n}. The descendance
path of an IBD segment includes all descendants of the source who also passed down the IBD

to reach the cohort descendants. In this Amish pedigree, genotypes for each genotyped indi-

vidual were obtained from Illumina Omni 2.5M SNP arrays, and then phased into haplotypes

using SHAPEIT2 [50]. The size of C ranged from two to 180 individuals.

Step 2: Find sources for IBD segments

In the next phase of thread, sources for each IBD segment are identified independently. By

the end of this step, we will have enumerated all possible individuals who could have been the

source of each IBD segment I, given its associated cohort C. This process is done only once

and is not part of the iterative phase. When searching for all common ancestors of a cohort,

each previous generation doubles the number of ancestors to search. thread maximizes effi-

ciency in this exponential problem by merging overlapping paths using a modified breadth-

first search algorithm (explained in detail below and in pseudocode in Algorithm S2).

First all the individuals in the cohort are added to a queue. For example, in Fig 4,

C ¼ f1; 2; 5; 7; 8g

so we would start out with Q = (1, 2, 5, 7, 8). We then pop the first individual, p0 = 1 (in this

example), off the queue. If p0 is an ancestor of all individuals in the cohort, we add p0 to a set of

possible sources, S. Either way, we add p0’s parents to the back of the queue and keep process-

ing individuals (even if p0 is an ancestor, its parents may be ancestors via paths that do not

Fig 3. Genetic similarity vs. kinship. For each pair of genotyped individuals, we compute their genetic similarity

(counting genotyped SNPs only) and plot this on the y-axis against their kinship coefficient on the x-axis. The expected

linear trend is apparent, with an average sequence similarity of 72.5%. The minimum similarity out of all pairs was

70.5%, and the maximum was 99.999% (twins).

https://doi.org/10.1371/journal.pcbi.1008638.g003
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include p0). In this example, we first pop individual 1 off the queue. Since it has not been pro-

cessed, we push 1’s parents onto the end of the queue to obtain

Q ¼ ð2; 5; 7; 8; a; bÞ:

Each time we add an individual p to the queue, we keep track of how many paths exist from p
to the members of the cohort using a multiset Mp. For the members of the cohort, Mp = {p}

(just one path to themselves). When we add a parent to the queue, we concatenate the multi-

sets of the individual’s children. For individual a in this example, its multiset would become

Ma = {1, 2}, indicating one path to individual 1 and one path to individual 2. Going further up

the pedigree, individual ℓ has two children, h and e with Mh = {1, 2, 5, 7, 8} and Me = {5}.

Concatenating these two multisets, we obtain the multiset Mℓ = {1, 2, 5, 5, 7, 8}, indicating that

there are two possible paths from ℓ to cohort member 5. As soon as an individual’s multiset

contains all members of the cohort, the individual is a possible source.

There are two post-processing phases to the source-finding algorithm. (1) Trim redundant

sources: a source is redundant if it is an ancestor of another source and does not add any

unique descendance paths to the cohort. In other words, we do not want to include individuals

if all their paths to the cohort go through another source. Redundant sources do not depend

on ordering effects, other than that children are added to the queue before their parents. For-

mally, if the cardinality of an individual’s multiset is equal to the maximum cardinality of the

multisets of its children, it is redundant (for example, k is a redundant ancestor since |Mk| =

|Mh|). (2) We merge couples into a single source, as typically we will not be able to resolve the

source of an IBD segment beyond the couple level. Spouses with different multiset cardinality

are an exception. These cases are usually caused by remarriage with at least one child from

each marriage. Individual ℓ is an example; we do not consider couple kℓ a source because |Mk|

< |Mℓ| due to ℓ’s remarriage to m. If the cardinalities had been the same (and not redundant),

we would have considered kℓ a source.

In the Fig 4 example, we identify three potential sources: S = {gh, ℓ, pq}. Note that we cannot

stop processing the queue when we get to source gh, as there exist sources further up the pedi-

gree that are in previously unvisited descendance paths.

Fig 4. Source-finding illustration. (A) Let individuals 1–8 be the genotyped individuals of this pedigree. Let C = {1, 2, 5, 7, 8} (orange individuals) be

the cohort sharing IBD segment I. Note that this pedigree contains two loops, since c and f share recent ancestors p and q, and d and e share recent

ancestor ℓ. The multiset Mp for each ancestral individual p is shown below the node name. Mp is formed by concatenating the multisets of p’s children,

and it represents the number of paths from ancestor p to each member of the cohort. (B) After trimming redundant ancestors and merging couples, we

obtain a set of putative sources for the IBD segment. In this case, we have three potential sources: S = {gh, ℓ, pq}. We begin the iterative phase by

selecting the source with the fewest descendance paths, which in this case is gh (starred). We place the IBD segment in individuals that are on all paths

from gh to the cohort. In this case we would add the IBD segment to individuals b, c, and d (light orange).

https://doi.org/10.1371/journal.pcbi.1008638.g004
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The use of multisets allows us to quickly determine the number of descendance paths from

each source to the cohort. For each source s and each individual c in the cohort, let ms(c) be

the multiplicity of c in Ms. For example, in Mℓ, the multiplicity of individual 5 is two, meaning

that there are two paths from ℓ to individual 5. The total number of descendance paths (d)

from source s to cohort C (sharing IBD I) is the product of all the multiplicities:

dðsÞ ¼
Y

c2C

msðcÞ

In this example, we obtain d(gh) = 1, d(ℓ) = 2, and d(pq) = 8. A few of these descendance paths

are shown in blue in Fig 5 for clarity.

Before moving into the iterative part of the algorithm, we take note of individuals that are

on all paths from all sources. For example, individual b happens to be on all 11 paths from the

sources, so we know that individual b should have the IBD segment.

Step 3: Place IBD segments in ancestors

At this stage the iterative part of the algorithm begins. Every iteration starts with lists of recon-
structed individuals and unreconstructed individuals. During the first iteration, the recon-
structed list only includes genotyped individuals. The goal of Step 3 is to select a source for

each IBD segment out of the potential sources enumerated in Step 2. While the true source is

unknown at this stage, we provide two methods for selecting a likely source.

For the first method, we use the greedy heuristic of choosing the source with the fewest

paths, provided that it does not create a conflict with one of the reconstructed individuals. The

intuition behind choosing the source with the fewest paths is that this source will (often) be

more recent than others, with fewer meioses separating the source from the cohort. For exam-

ple, in Fig 4, we would choose source gh since it has only one descendance path. We denote

this method “min path”.

An alternative approach involves computing the probability that an IBD segment is trans-

mitted from the source to all members of the cohort, taking into account the length of the IBD

segment and the genetic map. We then select the source with the highest probability. If this

source is rejected due to IBD conflicts in the grouping stage (Step 4), we take the source with

the next highest probability. Although we track the probability of IBD transmission through-

out the paths from the source to the cohort, we do not account for the probability that non-

cohort members do not have the IBD. Therefore these computations do not result in the prob-

ability of observing a particular configuration of the segregating IBD segment, only the

Fig 5. Example descendance paths. Given a cohort of five individuals sharing an IBD segment (orange), we often obtain multiple sources (blue nodes) and

multiple descendance paths (blue lines) from each source. In this example we have 11 total paths from three sources. After we choose a source, we assign the

IBD segment to ancestors along all descendance paths (light orange). (A) One path from source ℓ. (B)-(C) Two different descendance paths from the same

source pq. We would not assign the IBD to d and e since they are not on all paths from this source.

https://doi.org/10.1371/journal.pcbi.1008638.g005
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probability of transmission to the cohort. We denote this method “max prob” (further mathe-

matical details are provided in S1 Text. under the Probabilistic source identification section).

Once a source is selected, we can begin to look at the individuals that lie on paths from this

source. In the case of only one path, all the individuals on the path will be given the IBD seg-

ment (b, c, and d in this example), thus augmenting the associated cohort. In the more com-

mon situation when we have multiple paths from the source, we give the IBD segment only to

individuals that appear on all the paths. However, if we try to give this IBD segment to a recon-
structed individual and it conflicts with both of the individual’s previously assigned haplotypes,

we reject the source and choose the source with the next fewest paths or next highest probabil-

ity. These tentative assignments result in potentially conflicting IBDs being assigned to the

same individual, which we resolve in Step 4.

Step 4: Group IBDs and resolve conflicts

During Step 3, we analyzed each IBD segment independently, identifying ancestral individuals

who likely also share the IBD segment. In Step 4, we analyze the individuals independently and

assemble the IBDs that have been placed within each individual. Say we are analyzing ancestral

individual p with putative set of IBD segments I p. The goal of assembly is to separate the IBD

segments into two haplotypes such that their sequences are consistent within each group. At a

high level, this process can be compared to de novo genome assembly, where many small reads

are stitched together to create contigs. We have an advantage over traditional assembly because

we know the locations of each segment along the chromosome. But we may have included IBD

segments that do not actually belong to a given individual, which we will need to identify and

remove.

After grouping, we can identify individuals that are reconstructed. We define reconstructed

as follows.

Definition 1. Reconstructed individual. If we can group the IBDs placed within an individ-

ual into exactly two strong groups, we declare the individual reconstructed. Additionally, if

there are two strong groups plus additional groups, the groups that are not strong must either

have half as many IBD segments or be half as long as the weaker of the two strong groups.

Definition 2. Strong group. To determine if a group is strong, it must meet a combination of

thresholds: a minimum number of IBD segments and a minimum coverage (#SNPs recon-

structed/#SNPs genotyped on the chromosome). We use a sliding scale: if the group contains

1-2 IBDs, it must cover 90% of the SNPs. If a group contains 3-9 IBDs, it must cover 70% of

the SNPs. And if a group contains 10 or more IBDs, it must cover 50% of the SNPs. These

parameters can be customized by the user.

Our grouping algorithm (covered in pseudocode in Algorithm S3) begins by identifying

regions of homozygosity within the IBD segments. This is accomplished by condensing all seg-

ments in I p down into a single sequence with a list of alleles at each site. Any region greater

than 300kbp with only one allele per site and at least 100 SNPs is declared homozygous. It is

important to identify these regions early in the grouping algorithm, otherwise we may assume

only one group contains this stretch. Each homozygous region is duplicated so that each chro-

mosome will have a copy, and IBD segments contained within homozygous regions are not

used in the next stages.

We process the remaining IBDs (those not incorporated into a group) one by one, from

longest to shortest (in kbp). If the IBD does not overlap with any of the current groups, we cre-

ate a new group initialized by the IBD segment. If the IBD does overlap with one or more

groups, we add it to the group with the largest overlap (above a threshold).
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At this point in the grouping algorithm, we have a set of homozygous groups, a set of het-

erozygous groups, and a set of remaining IBDs. If an IBD overlaps with two groups, we use it

to merge the groups into one (assuming no previous overlap/conflict). Finally, we merge

groups that “line up” with each other—i.e. they do not overlap, but their IBD segments span

adjacent SNPs and were likely separated by an ancestral recombination event. At the end of

this process, three situations may emerge:

• We have two clear groups (which meet our definition of strong) forming two haplotypes.

This is the ideal scenario and it means we have a successful reconstruction of the individual.

• We have two strong groups, but we also have several weaker ones. This scenario is resolvable,

as we can retain the two strong groups as the reconstruction, and reject the other groups.

The IBD segments from the rejected groups give us a lot of information—since this individ-

ual was on all paths from the selected source, if the IBD segment does not fit with the recon-

structed haplotypes, then we assume the source was incorrect. Throughout Step 4 we collect

all IBD segments that have been incorrectly sourced to update in the next iteration.

• In all other situations, we typically cannot resolve the individual’s haplotypes. We may have

only one group (which could be one of the individual’s haplotypes), but we do not declare

the individual reconstructed. We could have many groups without two strong ones, or we

may not have assigned any IBDs to the individual.

At the end of Step 4, we move individuals from the first two scenarios in to the reconstructed
list. IBDs that did not cause any conflicts are marked as processed and we retain the rest to re-

source in the next iteration. An illustration of the grouping algorithm is shown in Fig 6.

Step 5: Return ancestral haplotypes

At the end of Step 4 we have a set of IBD segments that were incorrectly sourced. We then

repeat Step 3: we update the source for each such IBD by selecting the source with the next

fewest paths. This allows us to assign the IBD to a new set of individuals. In the next Step 4 we

treat reconstructed individuals and unreconstructed individuals differently. If an individual is

Fig 6. Grouping algorithm illustration. Each horizontal line represents one IBD segment that we placed within a specific individual (highlighted in

the pedigree inset). Each vertical line indicates a difference (heterozygous site) between groups. In this case, the orange IBD segment conflicts with both

the blue and green groups, so we would reject its source and attempt to find a new one in the next iteration.

https://doi.org/10.1371/journal.pcbi.1008638.g006
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already marked as reconstructed, we use each additional IBD to strengthen its groups or reject

the new source of the IBD. If an individual has not been reconstructed, we run the grouping

algorithm again. We keep iterating Steps 3 and 4 until we are no longer reconstructing more

individuals.

The final step is to return the haplotype sequences for the reconstructed individuals. These

may contain some gaps, but due to our coverage and length thresholds, if an individual is

declared reconstructed, we will return at least half of each haplotype (for the chromosome

under consideration). In S1 Text we provide a theoretical complexity analysis of the full

algorithm.

Validation

We used two approaches to validate our approach directly. (1) To test the grouping algorithm,

we grouped all IBD segments identified (by GERMLINE) as belonging to each genotyped indi-

vidual. For this process, we did not specify which IBD segments belonged to which haplotypes,

even though this information is known for genotyped individuals. (2) To evaluate our recon-

struction results under a realistic situation, we “left-out” one genotyped individual at a time

and attempted to reconstruct that individual’s genome. We restricted this analysis to geno-

typed individuals with at least one genotyped descendant, which left 89/394 individuals.

Because all the genotyped individuals are in the five most recent generations, this analysis is

limited to the more recent past. This approach can be interpreted as a form of leave-one-out

cross-validation. In both of these validation approaches we compared the reconstructions to

the original haplotypes using sequence similarity.

We also validated our method through whole-genome simulations. To mirror the demo-

graphic history of the Amish, we first simulated a founder population using msprime [51]

with an effective population size of 10,000 diploids and the HapMap recombination map [52].

To simulate pre-migration endogamy in Europe, we created a 25-generation pedigree struc-

ture with a small constant population size (400 diploids). In this pedigree structure we con-

strained 5% of marriages to be between second-degree relatives (e.g. first-cousins), 10%

between third-degree relatives, and 10% between fourth-degree relatives. We used Ped-sim
[53] to simulate genetic data under this pedigree, using sequences from msprime as the foun-

ders. In the final generation of this pre-migration phase, we were left with genetic data for 400

individuals, 186 of which we use as founders for the true Amish pedigree structure after migra-

tion to North America. We again used Ped-sim to create genetic data for the 1338 individu-

als in this pedigree, and retained this data for the same 394 individuals we have genotyped.

Finally, we ran GERMLINE and thread on this dataset, and compared the reconstructed

sequences to their true values.

We also developed a method to automatically predict which individuals would be well

reconstructed. To do this, we created a filter that identifies individuals based on their genera-

tion and average per-base IBD coverage, since we find that more recent individuals and those

with high IBD coverage are typically more accurately reconstructed. In the Results section we

highlight how many individuals pass this filter and the average reconstruction accuracy of

these individuals.

Our simulation framework provides the opportunity to test thread in a variety of

scenarios. First, to model varying levels of endogamy, we varied the size of the pre-migration

population from 200 to 2000 individuals. Additionally, we compared our first IBD source

identification algorithm “min path” (greedy approach of taking the source with the fewest

paths to the cohort) with the probabilistic approach “max prob” (described in Step 3 and in

S1 Text).
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By using IBD segments called by GERMLINE, the input to thread may already contain

inaccuracies from segments that are Identical-By-State (IBS). To assess the impact of such

inaccuracies, we used the true IBD segments as input to thread. These true IBD segments

are identified by Ped-sim as part of simulating meiosis. These segments reflect IBD post-

migration; there may be more ancient IBD sharing not reflected in the Ped-sim segments. In

addition, it is possible that some individuals in the population share a known IBD segment

due to IBS, but are not included in the Ped-sim segments because they did not inherit the

segment from an ancestor in the pedigree.

Finally, our simulation framework allowed us to experiment with the strong groups defini-

tion, as a single definition of strong group may not be applicable for all individuals across all

generations. To that end, we tested two different settings of the strong group definition.

• Setting A: For individuals with generation number 8 or greater, we use the same strong

group settings as before. If the individual has generation number 7 or lower (i.e. more

ancient) then we use the following sliding scale: if the group contains 1-3 IBDs, it must cover

90% of the SNPs. If a group contains 4-14 IBDs, it must cover 70% of the SNPs. And if a

group contains 15 or more IBDs, it must cover 50% of the SNPs. This is meant to provide

stricter thresholds for individuals in the more ancient generations.

• Setting B: For individuals with generation number 8 or greater, we use the same strong

group settings as before. If the individual has generation number 7 or lower (i.e. more

ancient) then we use the following sliding scale: if the group contains 1-3 IBDs, it must cover

70% of the SNPs. If a group contains 4-14 IBDs, it must cover 60% of the SNPs. And if a

group contains 15 or more IBDs, it must cover 50% of the SNPs. This is meant to relax the

IBD length thresholds, but still require more IBD segments for individuals in the more

ancient generations.

Results

Grouping algorithm validation

After grouping the IBD segments called for each genotyped individual of the Amish pedigree,

we analyzed the resulting haplotypes for coverage and correctness. Fig 7 shows two chromo-

somes of a genotyped individual that were reconstructed using the grouping algorithm

thread. Each horizontal line represents one IBD segment shared with a cohort of other gen-

otyped individuals. IBD segments of the same color represent haplotypes, and have a consis-

tent sequence along the chromosome. In other words, if we agglomerated the IBD segments of

a single color in Fig 7A or Fig 7B, a single sequence would emerge. In general we found that

our grouping algorithm worked very well for genotyped individuals, who typically share many

IBD segments with other members of the pedigree. In 8558 out of 8668 chromosomes (22 per

genotyped individual), we successfully grouped placed IBDs into two haplotypes. Very occa-

sionally (1.3% of cases) we obtained three groups (example in Fig 7A). In chromosome 21 for

one individual, all IBD segments belonged to a single group, indicating homozygosity along

the entire chromosome. The sequences of these grouped haplotypes are very close to the true

haplotypes—average per chromosome accuracies are between 98.6% and 99.7%, as measured

by sequence similarity.

Leave-one-out validation

To evaluate our reconstruction results under a realistic situation, we “left-out” one genotyped

individual at a time and attempted to reconstruct that individual’s genome. We restricted this
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analysis to genotyped individuals with at least one genotyped descendant, which left 89/394

individuals. On average, these individuals had 9.87 genotyped descendants (min 1, max 48).

Table 2 shows the results of this procedure for chromosomes 18-22. For example, in the case of

chromosome 18 we reconstructed 71/89 individuals, with an average sequence similarity of

96.7% (measured against the corresponding true sequences). To be reconstructed, at least half

the chromosome must be assembled for each haplotype, with sufficient support in terms of

coverage and number of IBD segments (further details in Definitions 1–2). It is likely that we

reconstructed parts of the remaining 18 individuals, but they did not meet our definition of

reconstructed.

We also explored the relationship between number of genotyped descendants Dg and the

probability of being reconstructed. We computed P(reconstructed|Dg), where Dg was low,

medium, and high based on breaks in the distribution of number of genotyped descendants.

We did not find a strong relationship, perhaps because the chance of being reconstructed

depends more on the pedigree structure itself and the likelihood that a particular individual

can be identified as the source of an IBD segment. To address this hypothesis, we computed

the Jaccard similarity coefficients between each pair of chromosomes (from 18-22). For this

analysis we considered the data for each chromosome as a binary vector of length 89, with

each individual being reconstructed or not. Overall the Jaccard coefficients were high (all pairs

between 0.66 and 0.87, with an average of 0.79), indicating that an individual’s position in the

Fig 7. Example of the grouping algorithm on a genotyped individual. Each horizontal line represents one IBD segment shared with a cohort of other genotyped

individuals. IBD segments of the same color represent haplotypes, and have a consistent sequence along the chromosome. Small vertical lines represent heterozygous

sites between the two haplotypes. (A) Chrom 8: very occasionally we merge groups incorrectly and obtain three groups. (B) Chrom 21: we almost always see two clear

haplotypes (here we also see a large stretch of homozygosity).

https://doi.org/10.1371/journal.pcbi.1008638.g007

Table 2. Leave-one-out results. For each chromosome 18-22, we left out one genotyped individual in turn and attempted to reconstruct their haplotypes. The second row

shows how many individuals (out of 89) met our criteria for reconstructed. The third row shows the average sequence identify of the individuals we we were able to recon-

struct, measured against their true sequences.

chr18 chr19 chr20 chr21 chr22

# reconstructed 71 67 57 66 67

average sequence identity 0.954 0.958 0.960 0.966 0.956

https://doi.org/10.1371/journal.pcbi.1008638.t002
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pedigree structure is an important factor when considering our ability to reconstruct their

genome.

Simulation results

After running thread on the entire genome for the simulated data described above, we

assessed the accuracy by comparing the reconstructed genomes to the correct simulated ones.

The average accuracy of the reconstructions is shown in Table 3. We note that although we

simulated a small population with marriage between close relatives, the number of unique IBD

segments per chromosome is less than half the observed number of unique IBD segments in

the genotyped Amish individuals, which likely led to fewer reconstructed individuals.

Individual level results are shown in Fig 8. Here we plotted two reconstruction metrics that

increase as reconstruction is more successful—the number of chromosomes reconstructed

and the average accuracy of the reconstructed chromosomes. The strongest relationship

appears with generation, where more recent individuals generally have more accurate genome

reconstructions (r = 0.61). There is a mixed relationship with the number of genotyped direct

descendants (children and grandchildren). Individuals with more genotyped direct descen-

dants generally have more accurate reconstructions (r = 0.59), but not necessarily more chro-

mosomes reconstructed (r = 0.29). As inbreeding coefficient increases we see a general

increase in accuracy (r = 0.48), but again not a strong relationship. We also show the relation-

ship between generation, reconstruction accuracy, and number of chromosomes

Table 3. Whole-genome ancestral reconstruction results: Simulated data. The second column shows the total number of IBD pairs identified between genotyped indi-

viduals. The third column shows the number of unique IBD segments per chromosome. The fourth column shows how many iterations the algorithm needed to converge.

The fifth column shows the number of ancestral (ungenotyped) individuals we were able to successfully reconstruct. The sixth column shows the average sequence similar-

ity of the individuals we were able to reconstruct, as compared to their true genomes. The rightmost two columns show the number of individuals that we predicted would

be very well reconstructed, along with their average accuracies.

chr IBD pairs unique IBDs iter recon. acc. % filter filter acc. %

1 312526 10447 8 181 86.05 34 90.19

2 314518 9588 9 173 86.14 40 89.42

3 273032 8006 6 162 86.52 33 91.39

4 186735 7336 5 164 86.42 42 89.95

5 258649 7891 9 195 86.22 30 90.25

6 225494 7249 8 189 85.97 45 89.94

7 198285 6657 6 172 85.81 37 89.97

8 169540 5833 8 143 86.64 29 92.55

9 188457 5687 5 127 85.31 28 91.15

10 209888 6191 6 146 87.97 33 92.16

11 183196 5910 5 163 87.25 31 91.50

12 212065 6040 5 168 86.22 37 89.12

13 136549 4561 7 156 86.62 28 91.19

14 121796 3858 6 132 86.63 29 91.96

15 157815 4837 5 169 87.52 27 92.86

16 150385 4515 6 134 88.34 29 92.70

17 136973 4351 6 148 87.34 30 90.65

18 112425 3885 7 158 86.74 28 90.54

19 120179 3523 4 125 86.82 23 88.61

20 135525 3959 5 143 87.40 23 90.52

21 79550 2109 6 90 88.73 17 92.96

22 86547 2528 4 85 86.90 17 90.27

https://doi.org/10.1371/journal.pcbi.1008638.t003
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reconstructed in a more holistic fashion in S3 Fig. In addition, we demonstrate a few examples

of how IBD segments are removed during conflict resolution in S4 Fig. In the first example we

show how incorrectly placed IBD segments were successfully identified and removed, leading

to a perfect reconstruction. In the second case we show an example where thread failed to

identify incorrect segments, leading to a reduced reconstruction accuracy.

The results of varying pre-migration population size and IBD source selection algorithms

for chromosome 21 are shown in Fig 9. The greedy algorithm is denoted “min path” and the

probabilistic algorithm is denoted “max prob”. As the population size increases, we generally

see more accurate reconstructions, but fewer individuals reconstructed. This tradeoff is likely

due in part to differences in cohort size—if only a few individuals share an IBD segment, its

source can be more easily identified than if many individuals share the IBD. This leads to

more accurate reconstructions, but fewer individuals will be assigned sufficient IBD segments.

The probabilistic source identification algorithm typically results in fewer reconstructed indi-

viduals, but higher accuracies (up to 98.38%). By definition the “max prob” source will have at

least as many paths as the “min path” source, but there will be fewer individuals on all paths

from the source to the cohort. This leads to fewer IBD segments placed into individuals, but

higher accuracy for those that are placed. In terms of runtime, “min path” is usually slightly

longer. The average runtime for the experiments in Fig 9 was 19.8 minutes for “min path” and

16.7 minutes for “max prob”.

In S5 Fig we sort the individuals reconstructed by “min path” and “max prob” by genera-

tion (for pre-migration population size 400). We observe that individuals well-reconstructed

by “min path” are also often well-reconstructed by “max prob”, especially in the most recent

Fig 8. Individual results: Simulated data. The same results as Table 3, but shown on the individual level. The top set of figures shows reconstruction completeness as

measured by the number of reconstructed chromosomes. The bottom set of figures shows reconstruction accuracy as measured by sequence identity averaged over the

reconstructed chromosomes. These two metrics are plotted against three statistics about each individual: the generation number (lower is more ancient), the number

of genotyped direct descendants (children and grandchildren), and the inbreeding coefficient as calculated by PedHunter using the entire AGDB comprised of more

than 500,000 individuals. Correlation coefficients are shown for each relationship.

https://doi.org/10.1371/journal.pcbi.1008638.g008
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generations. “Max prob” does not typically reconstruct individuals that have low accuracy in

“min path”. As the generations become more ancient, “max prob” reconstructs several individ-

uals very accurately (e.g. in generation 5) that are not reconstructed at all by “min path”. This

corroborates the idea that when “min path” and “max prob” choose different sources for an

IBD segment, “max prob” will typically choose a more ancient source, enabling the accurate

reconstruction of some ancient individuals.

The results of using the true IBD segments from Ped-sim are shown in S1 Table, for chro-

mosomes 18-22. Overall there were more unique IBD segments than called by GERMLINE,

possibly due to more accurate detection of the endpoints of IBD segments. Overall however,

the results do not show dramatic improvement, and the number of reconstructed individuals

is typically fewer than when using GERMLINE (but not less accurate). This indicates that IBS

called as IBD is not likely a major cause of inaccuracies in thread reconstructions. (For IBS

segments with large cohort sizes, if no sources can be identified then we skip the segment.)

Based on the results in Fig 9, source confusion likely plays a bigger role in creating reconstruc-

tion error.

Finally, the results of modifying the strong group criteria are shown in S1 Table, for chro-

mosomes 18-22. Setting A reduces the number of reconstructed individuals, which makes

sense since it is a strictly stronger criteria than before. But gains in accuracy are minimal. Set-

ting B produces similar results as the original settings, indicating that much more relaxed crite-

ria are needed to reconstruct individuals in more ancient generations (which would likely lead

Fig 9. Varying population size and source-finding approach: Simulated data. The top panel shows the average

reconstruction accuracy of chromosome 21 as a function of pre-migration population size. The bottom panel shows

the number of reconstructed individuals for the corresponding scenarios. The greedy source-identification algorithm

is denoted “min path” and the probabilistic algorithm is denoted “max prob”. There is a clear tradeoff between

accuracy and the number of individuals reconstructed.

https://doi.org/10.1371/journal.pcbi.1008638.g009
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to decreases in reconstruction completeness and accuracy). Overall, ancient individuals

remain difficult to reconstruct.

Reconstruction results

After running thread on each chromosome using the entire Amish pedigree and all geno-

typed individuals, we assessed the results in terms of how many individuals were successfully

reconstructed. For all chromosomes, thread converged in 5-10 iterations, and the number

of successfully reconstructed ancestral individuals ranged between 162 and 248 (24%-36% of

the 686 individuals with genotyped descendants). On average this is 224 individuals per chro-

mosome, with an overall average of 79% of their haplotypes reconstructed. See Table 4 for the

details of each chromosome. Using a single CPU, the runtime was always less than 24 hours

for a single chromosome. Typical memory requirements were 40G for all but the largest few

chromosomes, which needed 80G.

We also compared the IBD length distributions of the simulated data and the real data, as

shown in Fig 10. In general the simulations have fewer unique IBDs (especially short IBDs),

but the distribution shapes are similar.

The conflict resolution step was essential for removing misplaced IBD segments and rout-

ing them to other sources. An example is shown in Fig 11. In this case, the green and blue

groups were removed from this individual, as they were much less strong than the cyan and

red groups. In the next iteration, we re-source the associated IBDs and consider the individual

reconstructed. Examples of successful ancestral reconstructions are shown in Fig 12, for a

Table 4. Whole-genome ancestral reconstruction results: Amish data. The second column shows the total number of IBD pairs identified between genotyped individu-

als. The third column shows the number of unique IBD segments per chromosome. The fourth column shows how many iterations the algorithm needed to converge. The

fifth column shows the number of ancestral (ungenotyped) individuals we were able to successfully reconstruct. We require a successfully reconstructed chromosome to

have two haplotypes that cover at least half the chromosome, with sufficient IBD support for each haplotype. Finally, the last column shows the runtime.

chr IBD pairs unique IBDs iter reconstructed time (hrs)

1 351230 28359 10 248 22.91

2 288059 26962 7 248 19.19

3 246909 22488 6 232 11.23

4 250878 20980 6 223 9.83

5 219746 19448 7 236 9.14

6 244751 20883 7 224 10.76

7 225155 19370 6 216 6.73

8 222422 16950 6 241 4.96

9 232309 17547 6 236 3.85

10 220391 16822 7 223 6.22

11 198145 15416 8 238 5.49

12 175552 16712 7 227 5.08

13 161721 13296 5 202 2.74

14 169906 11867 6 239 2.36

15 180198 12179 7 248 2.60

16 143985 13010 7 251 2.74

17 121688 11768 5 195 2.44

18 129719 11359 7 219 2.13

19 141857 10702 6 218 1.44

20 139179 9910 8 235 1.95

21 77745 5020 6 175 0.68

22 73766 5773 5 162 0.77

https://doi.org/10.1371/journal.pcbi.1008638.t004
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Fig 10. IBD length distribution. Left: IBD length distribution for the real data for chromosome 21. Right: IBD length

distribution for the simulated data for chromosome 21. x-axis units are 10Mbp.

https://doi.org/10.1371/journal.pcbi.1008638.g010

Fig 11. Conflict resolution example. The blue and green groups are removed, since they are less strong than the cyan and red groups. In the next iteration, we retain

only strong groups and consider the individual reconstructed. Newly sourced IBDs after this point may not conflict with these reconstructed haplotypes.

https://doi.org/10.1371/journal.pcbi.1008638.g011
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variety of different chromosomes and generations back in time. As expected, in the more dis-

tant generations, we place fewer IBD segments and generally have less coverage over the

chromosome.

Although we reconstruct many individuals well in the recent generations, there are many

haplotypes we are unable to resolve. Several examples are shown in S6 Fig. Sometimes

thread constructs one haplotype successfully, but not the other (S6A Fig). Often we have

some successful reconstruction, but the groups do not meet our threshold for “two strong”

since the third group has too many IBD segments (S6B Fig). Sometimes there are four groups,

which could represent ambiguity between the individual’s spouse or close relative (S6C Fig).

Fig 12. Successful ancestral reconstructions. Ancestral reconstructions of ungenotyped individuals, from a variety of chromosomes and generations (back in time).

As we go back in time, we generally have fewer IBD segments to group.

https://doi.org/10.1371/journal.pcbi.1008638.g012
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Sometimes there are too many IBD segments placed within an individual, which could arise if

they have many descendants (S6D Fig).

Table 4 and Fig 13 show our results in a holistic view. Table 4 shows how many individuals

we are successfully reconstructing for each chromosome. Fig 13 shows these same results on

the family level, broadly indicating which individuals we are reconstructing well. S7 Fig shows

these results on the individual level.

Lost regions

We were particularly interested in regions of the genome that have been “lost” over time, as

they may be deleterious. To assess this, we looked for regions of the genome with a low fraction

of reconstructed individuals. We measured this by analyzing non-overlapping sliding windows

of 50 SNPs; if less than 40% of the bases in a window were not reconstructed, we declared the

region difficult to reconstruct. We then merged adjacent regions to form a set of “lost” regions.

The telomeres of each chromosome formed the majority of regions that were difficult to

reconstruct, which is expected. Across the entire genome, there was only one non-telomeric

region that met our criteria for a lost region, chr16:70824983-71066078. This region on chro-

mosome band 16q22, containing most of the large gene HYDIN (chr16:70835987-71264625),

is known be genomically unstable in two ways that could make it difficult to reconstruct haplo-

types. The more likely difficulty is that there are frequent segmental duplications with varying

breakpoints in this region [54], which have been associated with autism [55].

Re-examination of the copy-number variants (CNVs) called in a previous study [56] by

RLK using the software PennCNV [57] shows that there are overlapping intervals of a duplica-

tion within the interval chr16:70696689-70745016 in 67 genotyped individuals in the pedigree.

One boundary of the CNV is shared by most of the 67 individuals. The other boundary, how-

ever, varies considerably, which is unusual for an inherited CNV and may reflect either the dif-

ficulty in calling genotypes mentioned above or genomic instability. The average length of the

duplication among the 67 individuals is 32,641 bp.

Fig 13. Nuclear family graph. Each node represents a nuclear family (parents and children). When a child of one family becomes the parent of another, we draw an

edge. Black nodes have at least 80% of the family genotyped. Gray nodes have at least 80% of the family without genotyped descendants. Yellow (fewer)—Red (more)

colors represent the average number of chromosomes reconstructed for the individuals in the family.

https://doi.org/10.1371/journal.pcbi.1008638.g013
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The less likely difficulty is that in evolution, the instability of this region led to a recent (by

evolutionary time scales) paralogous duplication of the region that landed on human chromo-

some band 1q21, and contains the paralogous gene HYDIN2. The chromosome 1 copy is suffi-

ciently similar to the 16q22 that it caused difficulty in assembling early versions of the human

genome [58]. The sequence similarity of the 16q22 and 1q21 segments could lead to imperfect

genotypes in either interval.

Discussion

The methodology behind thread represents a new direction for ancestral reconstruction

that scales in both the number of individuals and the number of loci. Previous ancestral haplo-

type reconstruction algorithms have either been too slow to apply, too rigid to accommodate a

complex pedigree, perform steps by hand, or consider a more diverse ancestral population.

Although a likelihood approach to reconstruction is theoretically possible, our work represents

a practical alternative as pedigree size and complexity continues to grow. We note that our

method is most suitable when genotyped individuals exhibit high levels of IBD sharing, ideally

with each IBD segment descending from a single ancestor. thread may need further devel-

opment to handle pedigrees from populations with very large effective population sizes and/or

high levels of admixture.

Through simulations we validate thread in a variety of scenarios, including a range of

ancestral population sizes. With realistic simulation parameters it was difficult to obtain the

number of unique IBDs found in the Amish population, which is likely a reason why we recon-

struct fewer individuals in simulations. One overall trend is that as the population size

increases, we reconstruct fewer individuals, but their reconstructions are more accurate. Well

reconstructed individuals also tend to be closer to the present. A future version of the algo-

rithm could use these observations to build up reconstructions gradually—after an initial

group of individuals is accurately reconstructed, they could be added to the original list of

“genotyped” individuals, then the entire algorithm could be run again to reconstruct a next

group of individuals, and so on. This type of approach might be particularly useful for popula-

tions with less endogamy, where reconstructing ancient individuals is naturally more difficult.

There are many possible algorithmic improvements to the IBD-based approach of

thread. The grouping algorithm could make use of the genetic map to merge groups at

recombination hotspots. More realistic simulations could model crossover interference and

sex-specific recombination maps, as in [53]. In rare cases (only chromosome 21 for one geno-

typed individual) the entire chromosome is homozygous, so the criteria of two strong groups

could be relaxed or made more flexible. As there is a tradeoff between accuracy and number of

individuals reconstructed for the “min path” and “max prob” algorithms, these two strategies

could be merged.

In terms of implementation, thread could be parallelized across IBD segments and indi-

viduals. Simulations and runtime profiling suggest that for the Amish pedigree, the bottleneck

is the implementation of the conflict resolution procedures inside Algorithm 1. If the conflict

resolution were faster, this would enable more complicated conflict resolution strategies,

which may improve reconstruction accuracy. The running time analysis shows that for animal

pedigrees with more generations, the source and descendance path finding (Algorithm 2) will

be the bottleneck because it takes exponential time in the number of generations (in the worst

case).

An important use case for genealogies of isolated populations has been to study rare

recessive diseases, including finding causative genes. After collecting data on living affected

individuals, it may be of interest to find the most likely paths of inheritance of the rare
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disease-causing allele, which is a simpler problem than assigning (not necessarily rare) haplo-

types across the genome. In AGDB and the associated software PedHunter, the problem of

finding the best paths of inheritance to explain the presence of a rare allele is solved as a combi-

natorial optimization problem closely related to the classical minimum Steiner tree problem in

graphs [59] and large instances can be solved to optimality using mixed integer linear pro-

gramming (e.g., [60]) even though the Steiner tree problem is NP-complete. In the BALSAC

http://balsac.uqac.ca/ project that contains a large genealogy of the population of Québec, the

rare allele inheritance problem is formulated statistically and is solved in the software ISGen
(https://github.com/DomNelson/ISGen) using Monte Carlo Markov Chain techniques [61]

extending earlier seminal work of Geyer and Thompson on a Hutterite genealogy [62]. For the

haplotype problem, the methods in thread are based on deterministic combinatorial algo-

rithms, like the methods in PedHunter. One could imagine instead solving the haplotype

assignment problem by MCMC methods.

The most major consideration for the utility of thread is data availability. On one hand,

collection of human genealogies is increasing due to popular interest in genealogy research.

One example that has been used in medical genetics studies is the historical genealogy col-

lected by deCODE Genetics of more than 630,000 people who lived in Iceland over many gen-

erations [63]; in comparison, AGDB contains approximately 540,000 individuals. There are

also large animal pedigrees for which thread may be suitable. On the other hand, the popu-

larity of SNP genotyping is declining as the cost of DNA sequencing declines and because SNP

arrays based on variants seen in HapMap Populations are not ideal to study populations such

as the Amish [64]. Whole-genome sequencing (WGS) would reveal genotypes genome-wide,

but at present, the less expensive whole exome sequencing (WES) is used more than WGS

because most disease-relevant mutations are thought to be in exomes. WES reveals SNPs and

their genotypes in any regions that are covered by the exome kit being used, but the placement

of genes and their exons across the human genome is far from uniform. Thus, the potential

application of thread to complex pedigrees will increase as the cost of WGS decreases

further.

Individual-level reconstruction opens the door for many types of downstream analysis.

Using reconstructed genomes to augment GWAS could increase sample sizes by hundreds of

individuals when the phenotype is known. More generally, quantifying allele frequency

changes, transmission distortion, and un-reconstructable (“lost”) regions allows us to model

genome dynamics on a recent time scale. thread could be applied to other genetically char-

acterized endogamous populations with high levels of recessive traits, such as Mennonites and

Hutterites [65]. Our method would also be suitable for model organisms and domestic ani-

mals, where extensive pedigree records are common.

In addition, our results could be used to find individuals of clinical significance in cases

where a gene-inhibiting drug may provide a therapeutic option for a disease. More specifically,

loss of function (LoF) mutations in some genes have shown to protect against disease [66, 67].

If a loss of function allele has been observed, then haplotype reconstruction in any large pedi-

gree makes it possible to identify carriers. If in addition, the pedigree has one or more loops,

then haplotype reconstruction makes it possible to identify extremely rare individuals who

may be homozygous for the LoF allele.

Conclusion

In this work, we gave a formal algorithmic treatment of the problem of reconstructing ances-

tral haplotypes from the genotypes of individuals in the most recent generations of an

extended pedigree. In publicly available software called thread, we designed and
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implemented a new algorithm for ancestral haplotype reconstruction that can handle highly

complex pedigrees, which arise in isolated human populations and in animal breeding. We

evaluated the performance of our algorithm on an Old Order Amish pedigree of 1338 individ-

uals, many of whom have been diagnosed with bipolar or other mood disorders. Versions of

this pedigree have been studied in psychiatric and statistical genetics for decades, as the genetic

variations contributing to bipolar disorder remain poorly understood. Using our new algo-

rithm, it is possible to trace the inheritance of many haplotypes in this pedigree, including

those of long-deceased individuals. In future clinical studies, this should lead to a better under-

standing of which haplotypes are associated with bipolar disorder in this Amish pedigree. We

anticipate that thread could be similarity useful in other endogamous populations.

Supporting information

S1 Fig. Pedigree structure: 1338 individuals over 10 generations. Squares represent males

and circles represent females. Dotted lines connect the same individual appearing in two dif-

ferent parts of the pedigree. Filled in symbols represent genotyped individuals.

(EPS)

S2 Fig. Inbreeding coefficients for each individual in the pedigree structure from S1 Fig.

Inbreeding coefficients were computed using the software PedHunter and the entire AGDB.

(EPS)

S3 Fig. Simulation results per individual. The generation of the individual is plotted on the

x-axis (higher number generations are more recent). For the chromosomes we were able to

reconstruct, we compute and plot the accuracy on the y-axis. Symbol size and color shows how

many chromosomes we were able to reconstruct.

(EPS)

S4 Fig. Demonstration of removed segments in simulations. Headers for each set of figures

show the individual ID and overall reconstruction accuracy for chromosome 21. Each hori-

zontal line represents one IBD segment shared with a cohort of genotyped individuals. The top

row of figures for each individual represent IBDs assigned at the beginning of each iteration.

The bottom row represents the IBDs that remain after conflict resolution. Light blue segments

are correct segments added during iteration 0, and dark blue segments are correct and added

during iteration 1. Gray segments are incorrect. A) For this individual, we successfully

removed these gray segments and achieved 100% reconstruction accuracy. B) For this individ-

ual, we failed to detect several incorrect IBD segments and achieved a lower reconstruction

accuracy.

(EPS)

S5 Fig. “Min path” vs. “max prob”: Simulated data. On the x-axis are all individuals recon-

structed by the “min path” (blue) and “max prob” (orange) source finding algorithms, for a

pre-migration population size 400. The presence of both blue and orange bars on either side of

a tick mark indicates the individual was reconstructed by both methods. The y-axis shows the

reconstruction accuracy of each individual. The individuals are sorted by generation (more

ancient to the left and more recent to the right). We observe that “max prob” reconstructs

fewer individuals than “min path”, but they are generally more accurate.

(EPS)

S6 Fig. Unsuccessful reconstruction examples. Each horizontal line represents one IBD seg-

ment shared with a cohort of other genotyped individuals. IBD segments of the same color

represent haplotypes, and have a consistent sequence along the chromosome. Small vertical
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lines represent heterozygous sites between the two haplotypes. A) Occasionally we only build

one haplotype (which may not actually be unsuccessful if the individual was entirely homozy-

gous for the given chromosome). B) Sometimes we have a fairly strong reconstruction, but due

to the presence of other groups it does not meet our threshold for two strong group. C) Four

groups may indicate ambiguity with a spouse or other close relative. D) Sometimes we see

many groups and cannot resolve the individual.

(EPS)

S7 Fig. Position of reconstructed individuals in the pedigree. Black: genotyped individual,

white: no genotyped descendants, yellow-red heatmap: represents number of chromosomes

reconstructed, blue: no chromosomes reconstructed.

(EPS)

S1 Table. Algorithm experimentation: Simulated data. The first block of results shows the

output of thread when run on the true IBD segments from Ped-sim. The second block of

results shows setting A of the strong groups criteria, which requires more IBD support for

individuals in ancient generations (described in more detail the main text). Similarly, the third

block of results shows setting B, which requires more IBD support but relaxes the length

requirements for older generations. The third column shows the number of unique IBDs

(called by GERMLINE in the second two blocks). The fourth column shows how many itera-

tions the algorithm needed to converge. The fifth column shows the number of ancestral

(ungenotyped) individuals we were able to successfully reconstruct. The last column shows the

average sequence similarity of the individuals we were able to reconstruct, as compared to

their true genomes.

(XLSX)

S1 Text. Algorithm pseudocode, complexity analysis, and probabilistic source identifica-

tion. Here we include the technical details of thread. Algorithm 1: overview of thread. Algo-

rithm 2: source and descendance path finding. Algorithm 3: grouping IBD segments within

individuals. Then we specify the time complexity of thread, and finally we include the mathe-

matical details of the probabilistic source finding algorithm.

(PDF)
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PLOS COMPUTATIONAL BIOLOGY Ancestral haplotype reconstruction using identity-by-descent

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008638 February 26, 2021 25 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008638.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008638.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008638.s009
https://doi.org/10.1371/journal.pcbi.1008638


Software: Kelly Finke, Michael Kourakos, Gabriela Brown, Huyen Trang Dang, Shi Jie Samuel

Tan, Sara Mathieson.

Supervision: Maja Bućan, Sara Mathieson.

Validation: Huyen Trang Dang, Shi Jie Samuel Tan, Yuval B. Simons, Alejandro A. Schäffer,
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