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Abstract: Modeling the binding pose of an antibody is a prerequisite to structure-based affinity mat-
uration and design. Without knowing a reliable binding pose, the subsequent structural simulation
is largely futile. In this study, we have developed a method of machine learning-guided re-ranking
of antigen binding poses of nanobodies, the single-domain antibody which has drawn much interest
recently in antibody drug development. We performed a large-scale self-docking experiment of
nanobody–antigen complexes. By training a decision tree classifier through mapping a feature set
consisting of energy, contact and interface property descriptors to a measure of their docking quality
of the refined poses, significant improvement in the median ranking of native-like nanobody poses
by was achieved eightfold compared with ClusPro and an established deep 3D CNN classifier of
native protein–protein interaction. We further interpreted our model by identifying features that
showed relatively important contributions to the prediction performance. This study demonstrated a
useful method in improving our current ability in pose prediction of nanobodies.

Keywords: nanobody; single-domain antibody; antibody–antigen complex; pose prediction

1. Introduction

Knowing the initial binding pose of an antibody (Ab) to its antigen (Ag) is required
for in silico Ab affinity maturation and design. There are several approaches which aid the
prediction of the Ab binding pose [1]. Being a subclass of protein–protein interaction, one
of the main approaches is by protein–protein docking. In some protein–protein docking
algorithms, for example, ClusPro [2] and HADDOCK [3], there are dedicated functionalities
that improve the prediction of Ab–Ag interaction, such as through incorporating distance
constraints of CDR loops in docking. SnugDock, a docking algorithm that improves Ab–Ag
complex modeling by sampling CDR loop conformation to account for their flexibility,
represents a more specific application to the prediction with the protein–protein docking
approach [4]. Apart from predicting the 3D coordinates of Ab–Ag complexes, multiple
epitope and paratope prediction methods developed so far [5–9] represent a closely related
method class that aids the prediction of Ab–Ag interaction [1]. More recently, there are
an emerging number of machine learning models that predict native complex of general
protein–protein interaction [10–12], with some of them using popular neural network
architectures in feature extraction from 3D coordinates of protein–protein complexes, such
as 3D convolutional neural networks [13,14] and graph convolutional neural networks [15],
which predict the nativeness of protein–protein interactions. These models were able
to improve the rankings of native protein–protein complexes from docking and existing
re-ranking methods based on interface shape properties [16–19], evolutionary profile [20],
physics and knowledge-based potentials [16,18,19,21–23].
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Nanobody (Nb) is the variable domain of heavy-chain of the heavy-chain only an-
tibody (VHH) from camelids [24]. Nb possesses several attractive properties as an Ab
drug, such as the high thermal stability and the ease of recombinant production in bacterial
expression systems [25–28]. Comprehensive structural characterizations which compare
nanobody–antigen (Nb–Ag) and conventional Ab–Ag complexes are available [24,26,27,29].
Compared with conventional antibodies, the incorporation of more of its framework
residues in the paratope and the usage of more diverse residue types at the H3 loop for
interaction are some of the characteristics of Nb–Ag interactions. Due to these observable
differences between nanobodies and conventional antibodies, Nb–Ag interaction represents
a characteristic subclass of Ab–Ag interaction. To the best of our knowledge, a prediction
tool that is dedicated to the accurate prediction of native Nb poses is currently absent. We
reason that Ab pose prediction methods developed so far are presumably suboptimal in
predicting native Nb poses because these methods were developed on, and are therefore
biased towards, predicting a majority of conventional Ab–Ag and general protein–protein
interactions. To make good use of the desirable properties of Nb for in silico Ab drug
development, there is a need to assess the performance of currently available Ab pose
prediction methods on Nb pose prediction and improve their prediction performance.

In this study, we developed an Nb pose prediction model, NbX, and benchmarked its
performance with ClusPro [2], which is one of the top performing protein–protein docking
method from the latest CAPRI [30] and DOVE [14], a benchmarked binary classifier for
native protein–protein interaction through deep 3D convolution. We performed a large-
scale self-docking experiment of the available native Nb–Ag complexes with ClusPro. By
training a decision tree binary classifier that distinguishes native-like from non-native-like
Nb poses with a feature set combining energy, contact and interface property features of
the refined parent poses, re-ranking the parent poses using the probability of nativeness
showed a significant improvement in the ranking of native-like Nb poses compared with
the ranking from DOVE and ClusPro. We further interpreted our model by isolating
features that were important in their contribution to the prediction. The Nb pose prediction
method introduced in this study serves as a complement to the current Ab pose prediction
method in terms of their ability to predict Nb poses. Features that showed importance
in distinguishing native-like from non-native-like Nb poses suggest clues to improve
our understanding on the interface characteristics of this unique class of single-domain
Ab interaction.

2. Results and Discussion
2.1. Benchmarking with DOVE and ClusPro

NbX successfully re-ranked the whole population of native-like Nb poses from the
5-fold cross-validation (N) of the test set (Ntest = 200) with a significantly higher ranking
(p < 0.0001) than ClusPro (Figure 1). For test set prediction, the median rank predicted
by DOVE and ClusPro were 16th and 17th rank, respectively, while NbX achieved an
excellent second rank, demonstrating an eightfold improvement in median ranking. For
the 75th percentile ranking, DOVE and ClusPro rankings were beyond 33rd rank while NbX
successfully confined the ranking within the fifth rank, or a more than sixfold improvement.
For a majority of native-like Nb poses indicated by the 95th percentile, DOVE and ClusPro
rankings deteriorated beyond 80th rank while NbX was able to confine their ranking below
the 20th, which was a more than fourfold improvement of a majority ranking of native-like
Nb pose re-ranked by NbX.
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represent 95th and 5th percentile ranking, respectively. The dots represent outliers. Annotations for 

p value in t-Test are as follow, ns: 0.05 < p ≤ 1.00; **** p ≤ 0.0001. 
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Figure 1. Comparison of re-ranking of native-like Nb pose between NbX, DOVE and ClusPro in (A)
test set and (B) training set. Whole populations (Ntest = 200 and Ntrain = 660) of ranking of native-like
Nb pose from the 5-fold cross-validated were shown in boxplots. The upper and lower whiskers
represent 95th and 5th percentile ranking, respectively. The dots represent outliers. Annotations for p
value in t-Test are as follow, ns: 0.05 < p ≤ 1.00; **** p ≤ 0.0001.

To understand the difference in performance between NbX and DOVE, we further
checked the proportion of Nb–Ag complex structures in the training dataset of DOVE.
DOVE incorporated one Nb–Ag complex (PDB: 2I25) out of 120 protein–protein complexes
in their training set [14]. Apparently, the generalization in predicting native interaction of
general protein–protein complexes by DOVE was suboptimal in predicting a specific type
of protein–protein interaction, which implied the potential existence of the distinguishable
interface characteristics of the Nb–Ag interaction described in previous reviews [26,27,29].
Besides, we note that although the ClusPro ranking was based on cluster size instead of
the interface energy of docking decoys, the authors stated that cluster size was roughly
proportional to a probability of existence of an energy minimum, which suggested the
physical meaning of the ranking by ClusPro [2]. In contrast, apart from only using energy
features, NbX attained significantly better re-ranking performance by taking into account
the contact and interface property features of Nb–Ag interfaces.

2.2. NbX Was Better at Prioritizing Docking Solutions than Determining Absolute Binding Feasibility

The benchmarking of re-ranking performance has demonstrated the ability of NbX
in re-prioritizing the docking solutions from ClusPro. To understand NbX further in
its prediction ability, we have looked into the performance of NbX in distinguishing
native-like and non-native-like Nb poses by the raw native-like probability of native-
like poses. Surprisingly, although NbX successfully re-ranked the docking solutions at
a significantly better ranking than DOVE and ClusPro, the PR-AUCtest values from the
fivefold cross-validation were merely 0.276, 0.205, 0.349 (best), 0.169, and 0.229 (Figure S1),
which indicated that NbX was unable to classify native-like poses at high precision and
high recall with a single decision threshold of the classification probability. Indeed, by
examining the predicted probability of native-like poses of different PDBs from the fivefold
cross-validated test sets, we observed a considerable range from 0.00147 to 0.535. However,
among refined poses that originated from a single Nb–Ag pair, we reconfirmed that
NbX did assign a majority of non-native-like poses with a lower predicted probability of
nativeness than the native-like poses, which explained the excellent re-ranking performance
of NbX.
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One possible explanation of this phenomenon was the intrinsic hierarchy of the
NbX feature set calculated from the refined poses, which were derived from the parent
poses from self-docking, leading to a strong clustering in the NbX feature set. Such a
hierarchical structure of the feature set potentially allowed efficient learning among poses
with considerably similar feature patterns but provided less clues for the learning among
poses with distant feature patterns that hindered the meaningful scaling of native-like
probability of unrelated Nb–Ag complexes. However, it is worth-noting that the ability
in distinguishing native-like from non-native-like poses of a single pair of Nb–Ag was
translatable to re-ranking previously unseen Nb–Ag pairs in the test set. Therefore, the
current NbX model was more applicable in prioritizing docking solutions of known Nb–Ag
interactions than determining the absolute binding feasibility of unrelated nanobodies and
antigens with a classification threshold.

2.3. Re-Ranking Performance of NbX Was Insensitive to a Substantial Decrease in the Size of the
Training Dataset

To minimize information leakage from the training set to the test set, we removed
any Nb–Ag complex with the Ag having a pairwise structural alignment score higher
than 0.9 to any other Ag from the whole dataset. To assess the robustness of our model
when trained with a smaller dataset, we performed a sensitivity test of the prediction
performance of NbX to the decrease in the cutoff from 1.0 down to 0.1 (Figure 2). The
number of remaining PDBs from different cutoffs were shown in supplementary Table S1.
We observed that the re-ranking performance of the NbX model was insensitive to a wide
range of the cutoff of structural alignment scores; even down to cutoff = 0.2, the rankings
of native-like poses predicted by NbX were consistently higher (p ≤ 0.001) than the DOVE
and ClusPro ranking. NbX was able to generalize useful patterns of feature distributions
from a smaller feature set to improve the re-ranking of native-like Nb poses.
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2.4. Important Features Contributed to Prediction Performance

In the feature extraction step, in contrast to DOVE, which used deep learned features
from 3D coordinates for prediction where the transformations in the latent space were
less understandable by humans, NbX represented the conventional feature engineering
approach in which the physical meaning of the input features were relatively well-defined.
Therefore, there was a good incentive to further interpret the NbX model to understand
what were the important features that contributed to the prediction performance of NbX,
which may suggest new information that enhances our understanding of the characteristics
of the Nb–Ag interface.

We calculated the importance measure expressed in the SHAP value of each feature
in the test set prediction by the best single model which had the highest PR-AUCtest
(Figure 3). The proportion of interacting CDR3 residues in its full length was deemed as
the most important feature by NbX, which was consistent with the heavy use of CDR3 for
Ag contact in Nbs [26,27]. The energy density feature dG_cross/dSASAx100 calculated
from a Rosetta InterfaceAnalyzer was regarded as the second most important feature. An
energy dense interface as an important indicator of native-like Nb pose was consistent
to the well-known prevalence of energy hotspots in general protein–protein interfaces,
including Ab–Ag interactions [31–34]. The relatively high contact density at the Nb–Ag
interface compared with conventional Ab interfaces previously reported [27] highlighted
the requirement for energy density in native-like Nb–Ag interfaces.
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of mean (|SHAP|) of the important features, which represents the averaged importance of each feature to the test set
prediction overall regardless of the directionality of the contribution. ChainA represents Ag and chainH represents Nb.
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Apart from the energy and contact features that contributed substantially to the
prediction of NbX, several interface property features also showed importance comparable
with the energy and the contact features to the prediction of native-like Nb poses by NbX.
The hydrophobicity of the epitope and paratope (fourth and seventh most important,
respectively) expressed by the kideraFactors [35] contributed the most among all interface
property features. Compared with conventional Ab, the higher paratope hydrophobicity
of nanobodies was previously reported [26,29]. Representing a different comparison that
distinguishes native-like and non-native-like Nb poses through self-docking, NbX tended
to classify Nb poses with a less hydrophobic paratope but a more hydrophobic epitope to
be native-like (Figure 3a). Following hydrophobicity, we identified the fourth principal
component of the ST-scale [36] of the epitope (eighth most important) and the fourth
component of the BLOSUM62 substitution matrix of paratope (tenth most important),
which has negative correlations to side chain bulkiness, isoelectric point and alpha-helix
preference [37], as other important interface property features to the prediction of NbX.

3. Materials and Methods
3.1. Data Collection and Cleaning

From the SAbDab antibody structure database [38], we collected 371 native Nb–Ag
complex structures with protein antigens and a resolution cutoff of 3.5 Å in September
2020. A single biological assembly was isolated from multimeric structures to retain one Nb
chain and one Ag chain in each PDB file. Any complex structure with the absence of any of
the three CDR loops was removed by checking the CDR conformation database PyIgClas-
sify [39], a total of 260 Nb–Ag complex structures remained (Supplementary data file 1).
To remove highly similar Nb–Ag structures which could cause overestimation of prediction
performance of the test set, all antigens from the collected complexes were structurally
aligned pairwise using superpose from CCP4 [40] to check their structural redundancy. By
removing those with the antigens having structural alignment quality score higher than
0.9 with any other antigens, 119 Nb–Ag complexes were retained.

3.2. Rigid-Body Orientation, Backbone and Side Chain Randomization

We separated the Nb chain and the Ag chain of every Nb–Ag complex into inde-
pendent PDB files to prepare for docking (Figure 4). Before docking, we randomized
the rigid-body orientation and sampled the low-energy backbone dihedral angles and
side chain rotamers of all individual Nb and Ag chains. We applied a random transla-
tion and rotation in the six axes of freedom to randomize their rigid-body orientation. A
RosettaScript performing backrub [41] and side chain repacking was used to optimize
the backbone angles and rotamers of side chains, in order to reduce the conformational
memories of the interface residues derived from the Nb–Ag complex structures and to
make the docking more challenging and realistic. For each Nb and Ag chains, the lowest
total energy structure from the 1000 minimized structures was selected for docking.
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3.3. ClusPro Pose Generation and Refinement

We used the Linux API provided by ClusPro to submit docking jobs of all Nb–Ag pairs
to their web server [2]. To assess all available results from ClusPro, we self-docked each
Nb–Ag pair with both the default mode and the Ab mode, obtaining 25,658 and 7424 poses,
respectively. For each ClusPro pose (considered as the parent pose), a further refinement
was performed by RosettaDock consisting of a centroid mode and a subsequent full-atom
mode, which provided us a 9.6-fold augmented number of poses for training. After the
refinement, a total of 316, 815 refined poses were obtained.

3.4. Pose Classification by Docking Quality Assessment

To classify our refined poses, we used DockQ [42], a benchmarked docking quality
score which showed good correlation to the docking quality classes defined by CAPRI [30].
For refined poses with a DockQ score < 0.23, we classified them as “non-native-like” and
otherwise “native-like” (Table 1). With this DockQ score cutoff, the “non-native-like” poses
were approximately equivalent to “incorrect” poses according to the CAPRI definition [42].
To describe native poses, we used the term “native-like” to indicate a mix of “acceptable”,
“medium” and “native” according to the CAPRI definition. This classification divided the
refined poses into native-like and non-native-like with 4401 and 312, 414 poses, respectively.

Table 1. Labeling of native-like and non-native-like poses by DockQ score cutoffs.

CAPRI DockQ Labeling

Incorrect 0.00–0.23 Non-native-like (0)
Acceptable 0.23–0.49

Native-like (1)Medium 0.49–0.80
High 0.80–1.00

3.5. Feature Set Preparation

We prepared a feature set (Table 2) containing a total of 248 features of the refined
poses by calculating the energy, contact and interface property profile by InterfaceAnalyzer
of Rosetta [43] and AnalyseComplex of FoldX [44]. Apart from the energy terms from
the two interface analyzing programs, we calculated CDR contact features, including the
proportion of CDR residues in the paratope and the proportion of interface CDR residues
versus the full length of each CDR loop, which we hypothesized were useful in guiding
the differentiation of native-like and non-native-like poses. To describe the interface
properties, we used summations of 66 aaDescriptors [35–37,45–52] of the paratope residues
and the epitope residues, which served as physicochemical, electrostatic and topological
descriptions of the interface.

3.6. Model Selection and Training and Test Set Partition

We trained our decision tree model by XGBoost [53] by mapping our energy, contact
and interface property features to the binary nativeness classes (Table 3). XGBoost is an
implementation of the gradient-boosted decision tree model that demonstrated excellent
performance in various classification problems [54–56]. In benchmarking, we partitioned
80% (96 PDB IDs) of the Nb–Ag complex to the training set and the remaining 20% (25 PDB
IDs) to the test set. The use of the PDB IDs, but not the refined poses, for training/test
set partition minimized information leakage from the training set to the test set because
refined poses from the same parent pose might contain substantially similar feature values
and therefore would lead to overestimation of prediction performance. To account for
the randomness of the training/test set partition, which influences the performance due
to the random separation of easy and difficult targets, we repeated this partition and the
subsequent training and testing 5 times (i.e., 5-fold cross-validated) to evaluate the whole
population of test set predictions.
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Table 2. Description of individual feature groups of the feature set.

Profile Feature Group Number of
Features Description

Contact

Interface residue count 2 Count of residues in paratope and epitope

Interacting CDR count 3 Count of interacting residues from each CDR
loop

CDR full length 3 Full length of each CDR loop
Interacting CDR residues in paratope 1 Proportion of total CDR residue in paratope
Interacting CDR residues versus full

length 3 Proportion of CDR residue versus full length
of each CDR loop

Amino acid count 40 Count of individual amino acid in paratope
and epitope

Energy Rosetta InterfaceAnalyzer energy terms 20 Rosetta energy descriptors of the interface

FoldX AnalyseComplex energy Terms 44 FoldX energy descriptors of paratope and
epitope

Interface Properties Total properties of paratope and
epitope 132 Summation of each of 66 aaDescriptors of

paratope and epitope

Table 3. Summary of settings used for modeling and benchmarking NbX.

Feature
Set Labeling Partition

Sets
Number of

PDBs Model Classification
Type

Validation
Method Ranking Method

Energy,
Contact and

Interface
Properties

Profiles

Native-like
OR

Non-native-
like

Training 80%
(96 PDBs) XGBoost Binary

K-fold
Validation

(k = 5)

Descending Order of
Average Classification

Probability
of Refined PosesTest 20%

(25 PDBs)

3.7. Re-Ranking Method and Benchmarking

We assigned label “1” for native-like poses and “0” for non-native-like poses, our
XGBoost model returned a native-like probability as the output. To convert the probability
into a ranking, we first calculated the averaged native-like probability of all the refined
poses of a parent pose. Then, we sorted the parent poses in descending order of the
averaged native-like probability within a single docking run of ClusPro. This re-ranking of
parent poses was compared with the ranking from DOVE and ClusPro. DOVE was chosen
to further benchmark our model because it represents a similar class of structure-based,
machine learning classifiers of protein–protein interactions as NbX. Moreover, DOVE does
not use evolutionary information and coordinates of light chains for prediction, which are
important to predict the nativeness of Nb–Ag interactions. To generate ranking from DOVE
prediction, we ranked the parent poses in descending order of binary probability from
the ATOM40 prediction of DOVE. ClusPro was chosen to represent the protein–protein
docking method class for benchmarking because of its top performance demonstrated in
the latest CAPRI [30] and the compatibility of its Ab mode with Nb–Ag docking, which
does not require the existence of the light chain. Ranking from ClusPro was in the order
of cluster size of decoys suggested by the ClusPro webserver. To compare the ranking
of native-like Nb poses from our model, DOVE and ClusPro, a Wilcoxon matched-pairs
signed rank test was performed using GraphPad Prism version 9.1.2 on the population
of rankings of all native-like poses generated from the 5-fold cross-validation versus the
original ranking from ClusPro and the ranking calculated from DOVE prediction.

3.8. Feature Importance Calculation

We used SHAP [57] to calculate the contribution of every feature in the test set
predictions. SHAP is a package for isolating important features that contribute most to the
prediction performance of machine-learning models. To interpret SHAP value, a positive
SHAP value represents a positive contribution to the predicted probability of nativeness
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and the scalar part of a SHAP value corresponds to the degree of contribution. The ranking
of features in descending order of mean (|SHAP|) represents a ranking of importance of
the features contributed to the whole test set prediction irrespective of the directionality
of contribution.

4. Conclusions

In this study, we developed NbX, a machine learning-guided re-ranking method for
native-like Nb pose. Through re-ranking with the native-like probability from NbX, we
have successfully re-prioritized native-like Nb poses and therefore improved our ability to
predict native-like Nb poses through Ab–Ag docking. We demonstrated the usefulness
of energy, contact and interface features in describing and distinguishing the interface
characteristics of native-like and non-native-like Nb–Ag complexes. The interpretable
nature of our NbX model highlighted the describable characteristics of native-like Nb–
Ag interactions, which was not offered by the deep learning models in class. Enhanced
accuracy of native-like Nb poses prediction will facilitate progress of Nb drug development
by in silico affinity maturation and design.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14100968/s1, Figure S1: The precision-recall curve of (A) training set prediction and (B) test
set prediction of the best single model having the highest PR-AUCtest; Table S1: Performance of NbX
in terms of PR-AUCtest for different cutoffs of the pairwise structural alignment quality score. The
total number of native-like poses in the 5-fold cross-validated test sets was dependent on the random
partition of PDB IDs that separated training and test set and thus it did not correlate strictly with the
change of the cutoff and the number of PDBs.

Author Contributions: Conceptualization, C.T. and K.Y.J.Z.; data curation, C.T.; modeling, C.T.;
benchmarking, C.T. and A.K.; funding acquisition, K.Y.J.Z.; writing—original draft preparation,
C.T.; writing—review and editing, C.T., A.K. and K.Y.J.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Japan Society for the Promotion of Science, KAKENHI
grant number 18H02395.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article and supplementary files.

Acknowledgments: We acknowledge RIKEN ACCC for the computing resource at Hokusai Big-
Waterfall used in this study. C.T. is supported by the International Program Associate program
at RIKEN.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Norman, R.A.; Ambrosetti, F.; Bonvin, A.M.J.J.; Colwell, L.J.; Kelm, S.; Kumar, S.; Krawczyk, K. Computational approaches to

therapeutic antibody design: Established methods and emerging trends. Brief. Bioinform. 2020, 21, 1549–1567. [CrossRef]
2. Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein–

protein docking. Nat. Protoc. 2017, 12, 255–278. [CrossRef]
3. Van Zundert, G.C.P.; Rodrigues, J.P.G.L.M.; Trellet, M.; Schmitz, C.; Kastritis, P.L.; Karaca, E.; Melquiond, A.S.J.; van Dijk, M.; de

Vries, S.J.; Bonvin, A.M.J.J. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. J.
Mol. Biol. 2016, 428, 720–725. [CrossRef]

4. Sircar, A.; Gray, J.J. SnugDock: Paratope structural optimization during antibody–antigen docking compensates for errors in
antibody homology models. PLoS Comput. Biol. 2010, 6, e1000644. [CrossRef] [PubMed]

5. Ambrosetti, F.; Olsen, T.H.; Olimpieri, P.P.; Jiménez-García, B.; Milanetti, E.; Marcatilli, P. ProABC-2: PRediction Of AntiBody
Contacts v2 and its application to information-driven docking. Bioinformatics 2020, 36, 5107–5108. [CrossRef]

6. Krawczyk, K.; Baker, T.; Shi, J.; Deane, C.M. Antibody i-Patch prediction of the antibody binding site improves rigid local
antibody–antigen docking. Protein Eng. Des. Sel. 2013, 26, 621–629. [CrossRef] [PubMed]

7. Kunik, V.; Ashkenazi, S.; Ofran, Y. Paratome: An online tool for systematic identification of antigen-binding regions in antibodies
based on sequence or structure. Nucleic Acids Res. 2012, 40, W521–W524. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ph14100968/s1
https://www.mdpi.com/article/10.3390/ph14100968/s1
http://doi.org/10.1093/bib/bbz095
http://doi.org/10.1038/nprot.2016.169
http://doi.org/10.1016/j.jmb.2015.09.014
http://doi.org/10.1371/journal.pcbi.1000644
http://www.ncbi.nlm.nih.gov/pubmed/20098500
http://doi.org/10.1093/bioinformatics/btaa644
http://doi.org/10.1093/protein/gzt043
http://www.ncbi.nlm.nih.gov/pubmed/24006373
http://doi.org/10.1093/nar/gks480
http://www.ncbi.nlm.nih.gov/pubmed/22675071


Pharmaceuticals 2021, 14, 968 10 of 11

8. Liberis, E.; Velickovic, P.; Sormanni, P.; Vendruscolo, M.; Liò, P. Parapred: Antibody paratope prediction using convolutional and
recurrent neural networks. Bioinformatics 2018, 34, 2944–2950. [CrossRef] [PubMed]

9. Krawczyk, K.; Liu, X.; Baker, T.; Shi, J.; Deane, C.M. Improving B-cell epitope prediction and its application to global antibody–
antigen docking. Bioinformatics 2014, 30, 2288–2294. [CrossRef]

10. Eismann, S.; Townshend, R.J.L.; Thomas, N.; Jagota, M.; Jing, B.; Dror, R.O. Hierarchical, rotation-equivariant neural networks to
select structural models of protein complexes. Proteins 2021, 89, 493–501. [CrossRef] [PubMed]

11. Geng, C.; Jung, Y.; Renaud, N.; Honavar, V.; Bonvin, A.M.J.J.; Xue, L.C. iScore: A novel graph kernel-based function for scoring
protein–protein docking models. Bioinformatics 2020, 36, 112–121. [CrossRef] [PubMed]

12. Tanemura, K.A.; Pei, J.; Merz, K.M., Jr. Refinement of pairwise potentials via logistic regression to score protein–protein
interactions. Proteins 2020, 88, 1559–1568. [CrossRef] [PubMed]

13. Schneider, C.; Buchanan, A.; Taddese, B.; Deane, C.M. DLAB—Deep learning methods for structure-based virtual screening of
antibodies. bioRxiv 2021. [CrossRef]

14. Wang, X.; Terashi, G.; Christoffer, C.W.; Zhu, M.; Kihara, D. Protein docking model evaluation by 3D deep convolutional neural
networks. Bioinformatics 2020, 36, 2113–2118. [CrossRef]

15. Cao, Y.; Shen, Y. Energy-based graph convolutional networks for scoring protein docking models. Proteins 2020, 88, 1091–1099.
[CrossRef] [PubMed]

16. Akbal-Delibas, B.; Farhoodi, R.; Pomplun, M.; Haspel, N. Accurate refinement of docked protein complexes using evolutionary
information and deep learning. J. Bioinform. Comput. Biol. 2016, 14, 1642002. [CrossRef]

17. Kingsley, L.J.; Esquivel-Rodríguez, J.; Yang, Y.; Kihara, D.; Lill, M.A. Ranking protein–protein docking results using steered
molecular dynamics and potential of mean force calculations. J. Comput. Chem. 2016, 37, 1861–1865. [CrossRef]

18. Degiacomi, M.T. Coupling molecular dynamics and deep learning to mine protein conformational space. Structure 2019, 27,
1034–1040.e3. [CrossRef]

19. Gainza, P.; Sverrisson, F.; Monti, F.; Rodolà, E.; Boscaini, D.; Bronstein, M.M.; Correia, B.E. Deciphering interaction fingerprints
from protein molecular surfaces using geometric deep learning. Nat. Methods 2020, 17, 184–192. [CrossRef]

20. Nadaradjane, A.A.; Guerois, R.; Andreani, J. Protein–protein docking using evolutionary information. Methods Mol. Biol. 2018,
1764, 429–447.

21. Pierce, B.; Weng, Z. ZRANK: Reranking protein docking predictions with an optimized energy function. Proteins 2007, 67,
1078–1086. [CrossRef]

22. Lu, H.; Lu, L.; Skolnick, J. Development of unified statistical potentials describing protein–protein interactions. Biophys. J. 2003,
84, 1895–1901. [CrossRef]

23. Huang, S.-Y.; Zou, X. An iterative knowledge-based scoring function for protein–protein recognition. Proteins 2008, 72, 557–579.
[CrossRef]

24. Muyldermans, S. Single domain camel antibodies: Current status. J. Biotechnol. 2001, 74, 277–302. [CrossRef]
25. Hassanzadeh-Ghassabeh, G.; Devoogdt, N.; De Pauw, P.; Vincke, C.; Muyldermans, S. Nanobodies and their potential applications.

Nanomedicine 2013, 8, 1013–1026. [CrossRef]
26. Mitchell, L.S.; Colwell, L.J. Analysis of nanobody paratopes reveals greater diversity than classical antibodies. Protein Eng. Des.

Sel. 2018, 31, 267–275. [CrossRef]
27. Mitchell, L.S.; Colwell, L.J. Comparative analysis of nanobody sequence and structure data. Proteins 2018, 86, 697–706. [CrossRef]
28. Olson, M.A.; Legler, P.M.; Zabetakis, D.; Turner, K.B.; Anderson, G.P.; Goldman, E.R. Sequence Tolerance of a Single-Domain

Antibody with a High Thermal Stability: Comparison of Computational and Experimental Fitness Profiles. ACS Omega 2019, 4,
10444–10454. [CrossRef] [PubMed]

29. Zavrtanik, U.; Lukan, J.; Loris, R.; Lah, J.; Hadži, S. Structural Basis of Epitope Recognition by Heavy-Chain Camelid Antibodies.
J. Mol. Biol. 2018, 430, 4369–4386. [CrossRef] [PubMed]

30. Lensink, M.F.; Nadzirin, N.; Velankar, S.; Wodak, S.J. Modeling protein–protein, protein-peptide, and protein-oligosaccharide
complexes: CAPRI 7th edition. Proteins Struct. Funct. Bioinf. 2020, 88, 916–938. [CrossRef] [PubMed]

31. Akiba, H.; Tamura, H.; Kiyoshi, M.; Yanaka, S.; Sugase, K.; Caaveiro, J.M.M.; Tsumoto, K. Structural and thermodynamic basis
for the recognition of the substrate-binding cleft on hen egg lysozyme by a single-domain antibody. Sci. Rep. 2019, 9, 15481.
[CrossRef]

32. Keskin, O.; Ma, B.; Nussinov, R. Hot regions in protein–protein interactions: The organization and contribution of structurally
conserved hot spot residues. J. Mol. Biol. 2005, 345, 1281–1294. [CrossRef] [PubMed]

33. Lafont, V.; Schaefer, M.; Stote, R.H.; Altschuh, D.; Dejaegere, A. Protein–protein recognition and interaction hot spots in an
antigen-antibody complex: Free energy decomposition identifies “efficient amino acids”. Proteins 2007, 67, 418–434. [CrossRef]

34. Moreira, I.S.; Fernandes, P.A.; Ramos, M.J. Hot spots—a review of the protein–protein interface determinant amino-acid residues.
Proteins 2007, 68, 803–812. [CrossRef] [PubMed]

35. Kidera, A.; Konishi, Y.; Oka, M.; Ooi, T.; Scheraga, H.A. Statistical analysis of the physical properties of the 20 naturally occurring
amino acids. J. Protein Chem. 1985, 4, 23–55. [CrossRef]

36. Yang, L.; Shu, M.; Ma, K.; Mei, H.; Jiang, Y.; Li, Z. ST-scale as a novel amino acid descriptor and its application in QSAM of
peptides and analogues. Amino Acids 2010, 38, 805–816. [CrossRef]

37. Georgiev, A.G. Interpretable numerical descriptors of amino acid space. J. Comput. Biol. 2009, 16, 703–723. [CrossRef]

http://doi.org/10.1093/bioinformatics/bty305
http://www.ncbi.nlm.nih.gov/pubmed/29672675
http://doi.org/10.1093/bioinformatics/btu190
http://doi.org/10.1002/prot.26033
http://www.ncbi.nlm.nih.gov/pubmed/33289162
http://doi.org/10.1093/bioinformatics/btz496
http://www.ncbi.nlm.nih.gov/pubmed/31199455
http://doi.org/10.1002/prot.25973
http://www.ncbi.nlm.nih.gov/pubmed/32729132
http://doi.org/10.1101/2021.02.12.430941
http://doi.org/10.1093/bioinformatics/btz870
http://doi.org/10.1002/prot.25888
http://www.ncbi.nlm.nih.gov/pubmed/32144844
http://doi.org/10.1142/S0219720016420026
http://doi.org/10.1002/jcc.24412
http://doi.org/10.1016/j.str.2019.03.018
http://doi.org/10.1038/s41592-019-0666-6
http://doi.org/10.1002/prot.21373
http://doi.org/10.1016/S0006-3495(03)74997-2
http://doi.org/10.1002/prot.21949
http://doi.org/10.1016/S1389-0352(01)00021-6
http://doi.org/10.2217/nnm.13.86
http://doi.org/10.1093/protein/gzy017
http://doi.org/10.1002/prot.25497
http://doi.org/10.1021/acsomega.9b00730
http://www.ncbi.nlm.nih.gov/pubmed/31460140
http://doi.org/10.1016/j.jmb.2018.09.002
http://www.ncbi.nlm.nih.gov/pubmed/30205092
http://doi.org/10.1002/prot.25870
http://www.ncbi.nlm.nih.gov/pubmed/31886916
http://doi.org/10.1038/s41598-019-50722-y
http://doi.org/10.1016/j.jmb.2004.10.077
http://www.ncbi.nlm.nih.gov/pubmed/15644221
http://doi.org/10.1002/prot.21259
http://doi.org/10.1002/prot.21396
http://www.ncbi.nlm.nih.gov/pubmed/17546660
http://doi.org/10.1007/BF01025492
http://doi.org/10.1007/s00726-009-0287-y
http://doi.org/10.1089/cmb.2008.0173


Pharmaceuticals 2021, 14, 968 11 of 11

38. Dunbar, J.; Krawczyk, K.; Leem, J.; Baker, T.; Fuchs, A.; Georges, G.; Shi, J.; Deane, C.M. SAbDab: The structural antibody
database. Nucleic Acids Res. 2014, 42, D1140–D1146. [CrossRef]

39. Adolf-Bryfogle, J.; Xu, Q.; North, B.; Lehmann, A.; Dunbrack, R.L., Jr. PyIgClassify: A database of antibody CDR structural
classifications. Nucleic Acids Res. 2015, 43, D432–D438. [CrossRef]

40. Krissinel, E.; Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions.
Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2256–2268. [CrossRef]

41. Davis, I.W.; Arendall, W.B., 3rd; Richardson, D.C.; Richardson, J.S. The backrub motion: How protein backbone shrugs when a
sidechain dances. Structure 2006, 14, 265–274. [CrossRef]

42. Basu, S.; Wallner, B. DockQ: A Quality Measure for Protein–protein Docking Models. PLoS ONE 2016, 11, e0161879. [CrossRef]
43. Stranges, P.B.; Kuhlman, B. A comparison of successful and failed protein interface designs highlights the challenges of designing

buried hydrogen bonds. Protein Sci. 2013, 22, 74–82. [CrossRef] [PubMed]
44. Delgado, J.; Radusky, L.G.; Cianferoni, D.; Serrano, L. FoldX 5.0: Working with RNA, small molecules and a new graphical

interface. Bioinformatics 2019, 35, 4168–4169. [CrossRef] [PubMed]
45. Cruciani, G.; Baroni, M.; Carosati, E.; Clementi, M.; Valigi, R.; Clementi, S. Peptide studies by means of principal properties of

amino acids derived from MIF descriptors. J. Chemom. 2004, 18, 146–155. [CrossRef]
46. Liang, G.; Li, Z. Factor Analysis Scale of Generalized Amino Acid Information as the Source of a New Set of Descriptors for

Elucidating the Structure and Activity Relationships of Cationic Antimicrobial Peptides. QSAR Comb. Sci. 2007, 26, 754–763.
[CrossRef]

47. Mei, H.; Liao, Z.H.; Zhou, Y.; Li, S.Z. A new set of amino acid descriptors and its application in peptide QSARs. Biopolymers 2005,
80, 775–786. [CrossRef] [PubMed]

48. Osorio, D.; Rondón-Villarreal, P.; Torres, R. Peptides: A package for data mining of antimicrobial peptides. Small 2015, 12, 44–444.
[CrossRef]

49. Sandberg, M.; Eriksson, L.; Jonsson, J.; Sjöström, M.; Wold, S. New chemical descriptors relevant for the design of biologically
active peptides. A multivariate characterization of 87 amino acids. J. Med. Chem. 1998, 41, 2481–2491. [CrossRef]

50. Tian, F.; Zhou, P.; Li, Z. T-scale as a novel vector of topological descriptors for amino acids and its application in QSARs of
peptides. J. Mol. Struct. 2007, 830, 106–115. [CrossRef]

51. Van Westen, G.J.; Swier, R.F.; Wegner, J.K.; Ijzerman, A.P.; van Vlijmen, H.W.; Bender, A. Benchmarking of protein descriptor
sets in proteochemometric modeling (part 1): Comparative study of 13 amino acid descriptor sets. J. Cheminform. 2013, 5, 41.
[CrossRef]

52. Zaliani, A.; Gancia, E. MS-WHIM Scores for Amino Acids: A New 3D-Description for Peptide QSAR and QSPR Studies. J. Chem.
Inf. Comput. Sci. 1999, 39, 525–533. [CrossRef]

53. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing
Machinery: New York, NY, USA, 2016; pp. 785–794.

54. Zhang, D.; Gong, Y. The Comparison of LightGBM and XGBoost Coupling Factor Analysis and Prediagnosis of Acute Liver
Failure. IEEE Access 2020, 8, 220990–221003. [CrossRef]

55. Sharma, A.; Verbeke, W.J.M.I. Improving Diagnosis of Depression With XGBOOST Machine Learning Model and a Large
Biomarkers Dutch Dataset (n = 11,081). Front. Big Data 2020, 3, 15. [CrossRef]

56. Dhaliwal, S.S.; Nahid, A.-A.; Abbas, R. Effective Intrusion Detection System Using XGBoost. Information 2018, 9, 149. [CrossRef]
57. Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference

on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.

http://doi.org/10.1093/nar/gkt1043
http://doi.org/10.1093/nar/gku1106
http://doi.org/10.1107/S0907444904026460
http://doi.org/10.1016/j.str.2005.10.007
http://doi.org/10.1371/journal.pone.0161879
http://doi.org/10.1002/pro.2187
http://www.ncbi.nlm.nih.gov/pubmed/23139141
http://doi.org/10.1093/bioinformatics/btz184
http://www.ncbi.nlm.nih.gov/pubmed/30874800
http://doi.org/10.1002/cem.856
http://doi.org/10.1002/qsar.200630145
http://doi.org/10.1002/bip.20296
http://www.ncbi.nlm.nih.gov/pubmed/15895431
http://doi.org/10.32614/RJ-2015-001
http://doi.org/10.1021/jm9700575
http://doi.org/10.1016/j.molstruc.2006.07.004
http://doi.org/10.1186/1758-2946-5-41
http://doi.org/10.1021/ci980211b
http://doi.org/10.1109/ACCESS.2020.3042848
http://doi.org/10.3389/fdata.2020.00015
http://doi.org/10.3390/info9070149

	Introduction 
	Results and Discussion 
	Benchmarking with DOVE and ClusPro 
	NbX Was Better at Prioritizing Docking Solutions than Determining Absolute Binding Feasibility 
	Re-Ranking Performance of NbX Was Insensitive to a Substantial Decrease in the Size of the Training Dataset 
	Important Features Contributed to Prediction Performance 

	Materials and Methods 
	Data Collection and Cleaning 
	Rigid-Body Orientation, Backbone and Side Chain Randomization 
	ClusPro Pose Generation and Refinement 
	Pose Classification by Docking Quality Assessment 
	Feature Set Preparation 
	Model Selection and Training and Test Set Partition 
	Re-Ranking Method and Benchmarking 
	Feature Importance Calculation 

	Conclusions 
	References

