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Three-dimensional (3D) bioprinting has demonstrated great potential for the fabrication
of biomimetic human tissues and complex graft materials. This technology utilizes
bioinks composed of cellular elements placed within a biomaterial. Mesenchymal
stromal cells (MSCs) are an attractive option for cell selection in 3D bioprinting. MSCs
can be isolated from a variety of tissues, can pose vast proliferative capacity and
can differentiate to multiple committed cell types. Despite their promising properties,
the use of MSCs has been associated with several drawbacks. These concerns are
related to the ex vivo manipulation throughout the process of 3D bioprinting. The
herein manuscript aims to present the current evidence surrounding these events and
propose ways to minimize the risks to the patients following widespread expansion of
3D bioprinting in the medical field.
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INTRODUCTION

With an increasing aging population the need to regenerate diseased tissues or replace tissues
and organs lost due to trauma or surgery is increasing (Colwill et al., 2008; International
Population Reports, 2016). There is already a lack of supply of sufficient organ donations and
tissue grafts which is likely to worsen in the future (Yanagi et al., 2017; American Transplant
Foundation, 2018). Tissue engineering that was introduced in the last few decades generally
employs the seeding of scaffolds with cells (Langer and Vacanti, 1993). This process is associated
with inhomogeneous distribution of cells within the scaffold, which can also affect subsequent
engineered construct survival, integration and function (Gao et al., 2014). It was previously
hypothesized that inhomogeneous seeding could prevent some cells from nutrients and oxygen
resulting in poor function (Melchels et al., 2010).

The recent advent of three-dimensional (3D) bioprinting has brought about new possibilities
to advance tissue engineering and regenerative medicine. Three-dimensional bioprinting involves
the use of cells that are mixed with a carrier material while in liquid form with subsequent
solidification of such material by using one of a number of cross-linking techniques. This
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mixture, known as bioink may also include growth factors
(Ashammakhi et al., 2019a,b) or other additives such as
osteoconductive materials (Byambaa et al., 2017; Ashammakhi
et al., 2019c). Three-dimensional bioprinting techniques and
bioinks have evolved tremendously over the last two decades, to
address the need to create complex biomimetic tissue constructs
(Mandrycky et al., 2016; Figure 1).

Cells used in bioinks have represented one of the major
challenges faced by tissue engineers because of their limited
availability (Freimark et al., 2010), proliferation (Willerth and
Sakiyama-Elbert, 2008), and differentiation potential (Tuszynski
et al., 2014). While already differentiated cells could be ideal,
their harvest can cause donor site morbidity while often perform
poorly with ex vivo manipulation. Alternative cell sources of cells
include embryonic or reprogrammed cells. These cell types are
associated with many challenges (Bongso et al., 2008; Trounson
and McDonald, 2015) and concerns. The biggest concern shared
by physicians and other care providers, regulatory bodies and
industry as a whole is the safety of stem cell therapeutics for
use in patients (Goldring et al., 2011). Mesenchymal stem cells
on the other hand, have gained popularity and represent a cell
type of choice for many experimental and clinical studies in tissue
engineering.

MSCs IN 3D BIOPRINTING

Mesenchymal stromal cells (MSCs) represent one of the most
popular types of cells used in tissue engineering today. In fact,
their clinical use is so strong today that are used in more than 700
clinical trials listed on US clinical trials. This is because MSCs
have potential to differentiate into a wide variety of cell types
(Sasaki et al., 2008) but also due of their wide availability from
different sources such as the bone marrow (Gnecchi and Melo,
2009), adipose tissue (Katz et al., 2005), blood vessels (Kuznetsov
et al., 2001), muscle (Young et al., 1995) as well as rather
“embryonic” tissues such as amniotic fluid (Tsai et al., 2004) and
cord blood (Bieback et al., 2004). MSCs actively participate in
the regeneration of tissues and provide substitute cells for those
that expire (Pintus et al., 2018). Following injury MSCs mobilize
to distant sites and either provide reparative cells and/or secrete
trophic factors to promote healing. In addition, MSCs pose anti-
inflammatory and immunomodulatory capacity as can improve
inflammation and restore or inhibit the functions of immune
cells (Pintus et al., 2018). MSCs can be easily expanded ex vivo
to provide clinically relevant numbers prior to use. Although
their exact function is not fully elucidated, MSCs have been used
widely in tissue engineering instead of pluripotent stem cells
(embryonic or induced pluripotent stem cells) which possess
their own concerns and more complex processing techniques
(Porada et al., 2006).

In 3D bioprinting, MSCs remains a popular cell type for
the use in bioink. Their use is not limited to bone (Ong
et al., 2018), cartilage (Bae et al., 2018), and adipose tissue (Qi
et al., 2018) but MSCs are considered and used in many other
3D bioprinting applications. In fact, in addition to bone and
cartilage, MSCs were used in 3D bioprinting of muscle (Phillippi

et al., 2008), aortic valve (Kang et al., 2017), cardiovascular
tissue (Ryu et al., 2015), neural tissues (Jakab et al., 2010),
tendons and ligaments (Rak Kwon et al., 2020), and others
(Tasnim et al., 2018). Thus, the objective of this review is to
examine the literature on 3D bioprinting that utilized MSCs and
examine accumulated data pertaining to the safety of MSCs in
3D bioprinting in various pre-, intra-, and post-printing stages.
Discussion of findings is included, challenges highlighted, and
future directions are outlined.

PRE-PRINTING

The generation of reliable MSC-based 3D bioprinting products
requires first an in-depth understanding of the MSC physiology.
MSC physiology is complex and it is influenced by the local
microenvironment. For example, some researchers have shown
that MSCs have tumor-suppressing properties (Khakoo et al.,
2006; Cousin et al., 2009; Ho et al., 2013). On the contrary,
MSCs can also favor tumor progression by promoting tumor
angiogenesis, maturation of tumor vasculature and expansion
through the secretion of a wide range of bioactive biomolecules
(Kucerova et al., 2010; Suzuki et al., 2011; Huang et al., 2013). The
reason for such dual roles is largely obscure. Together with MSC
physiology, the target tissue micro-architectural topography,
physiology, mechanical properties have to be elucidated. This
will dictate the porosity, stiffness, orientation of the scaffold
components and depict the exact location of the cellular
components (Daly et al., 2017).

In addition to robust understanding of MSC physiology,
further work on developing methodologies that safeguard high
viability and ensure safety of grafts is needed. Literature suggests
that the success of potential application of MSCs is closely related
to the number of MSCs (Hernigou et al., 2005a,b). The expansion
of the cells raises several concerns involving the extent of the
expansion (expansion induces deprivation of MSCs properties),
the effect of culture conditions, culture media and tissue culture
plastics on the cells as well as the effect of cryopreservation on
MSCs (Sotiropoulou et al., 2006; Pountos et al., 2007). The need
for supplementation of the culture media with cytokines and
chemokines in high non-physiologic concentrations is unknown
whether it can affect their long-term properties. Worrying
reports are available suggesting, that ex vivo expansion of MSCs
can induce spontaneous malignant transformation into cells
with tumorigenic potential (Rubio et al., 2005). Even more
disturbing are the reports of occasional sarcoma formation in
patients receiving bone marrow treatment and those undergone
autologous fat graft (Perrot et al., 2010).

PRINTING PROCESS

Characteristics of 3D Bioprinting
Methods in Brief
There are several 3D printing techniques among which the most
commonly used for 3D bioprinting are extrusion, laser-based
(Catros et al., 2011), inkjet (Cui et al., 2010), stereolithography
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FIGURE 1 | The pathway of creating complex 3D printed structures. (i) Modeling of a mandibular defect with the use of patients CT scans. (ii) Construction of 3D
architecture. (iii) 3D printing process. (iv) Culture of the graft. (v) Differentiation of the cells to osteoblasts. Reproduced with permission from Kang et al. (2016).

(Wang et al., 2015) and electrospinning-based printing (Khalil
and Sun, 2009; Wüst et al., 2011; Dababneh and Ozbolat,
2014; Figure 2). The same technologies can be used to
create smart 3D-bioprinted structures able to respond to the
environment; commonly referred to as four-dimensional (4D)
bioprinting (Figure 3). Extrusion 3D bioprinting or pressure-
assisted bioprinting uses hydrogel bioinks extruded from a
syringe in a continuous trace through a fine nozzle (Maher et al.,
2009; Bhuthalingam et al., 2015; Irvine et al., 2015). In most
extrusion bioprinters, the nozzle can move on y-z axes with the
substrate collector plate moving in the x-axis to produce the final
structure (Maher et al., 2009; Bhuthalingam et al., 2015; Irvine
et al., 2015). Extrusion bioprinting delivers good homogeneity
of bioinks, can deliver very high cell densities and does not
require any specific environmental conditions (can be carried
out at room temperature) (Atala and Yoo, 2015; Bishop et al.,
2017). The overall resolution is rather poor compared to other
techniques (minimum feature size is generally over 100 µm)
(Leberfinger et al., 2017). Despite this, the technique has been
used to create complex structures but MSCs survival was as low
as 40% due to apoptosis and cell deformation.

Laser bioprinting uses a pulsed nanosecond or ultraviolet
(UV) like wavelength laser as a source of energy to stimulate
the upper surface of an energy absorbing metal film, which is
usually made of a layer of titanium or gold (Catros et al., 2011).
This metal film is coated with bioink on its lower surface and
acts as a donor film. Stimulation of the upper surface of the
metal film causes vaporization, creating a pressure bubble that

drives the bioink from the donor film onto a substrate plate
containing a biopolymer (Stolberg and McCloskey, 2009; Jana
and Lerman, 2015; Irvine and Venkatraman, 2016; Li et al., 2016).
The biopolymer functions to aid in sustaining growth and cellular
adhesion of the cells after transfer from the donor film (Catros
et al., 2011; Trombetta et al., 2017). The precise resolution is
influenced by a number of factors including the energy emitted
by the laser, printing speed, viscosity and thickness of the bioink
layer on the donor film and its rheological properties, shape and
organization of the structure and substrate wettability (Guillemot
et al., 2010a,b; Li et al., 2016). Despite that, this is a scaffold-
free technique reaching resolutions between 10 and 50 µm.
Some studies managed to achieve a resolution of a single cell
per droplet. This method negates the shearing stress experienced
by cells during deposition down a narrow print head or nozzle
(Murphy and Atala, 2014; Mandrycky et al., 2016; Keriquel et al.,
2017). The potential of laser bioprinting has been demonstrated
in a number of studies (Barron et al., 2004; Guillemot et al.,
2010a,b).

Inkjet bioprinting arose from the adaptation of conventional
desktop inkjet printers. It is a noncontact printing process where
a droplet of bioink is deposited through the print head on
demand, under the control of a thermal or piezoelectric actuator.
This type of multi-cell printing is known as drop on demand
(Irvine and Venkatraman, 2016). The resolution is in the region
of up to 50 µm (Mandrycky et al., 2016). Thermal actuation is
the more commonly used method for inkjet bioprinting where
droplets of bioink are generated by an electric current. The
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FIGURE 2 | The pathways and components of 3D bioprinting process.

thermal actuator element reaches temperatures in excess of up
to 300◦C, allowing a vapor bubble to generate sufficient pulse
pressure to expel the bioink from the print head (Cui et al.,
2010). This could potentially impart both shear and thermal
stress on the cells (Irvine and Venkatraman, 2016; Li et al.,
2016). The requirement to use low viscosity inks to prevent
blockage of the print-head prevents the use of a number of
efficacious bioinks. In contrast to the thermal, the piezoelectric
actuation produces a transient pressure to eject the droplets on
to the substrate. It produces more homogenous droplets than
thermal actuation, but some authors reported greater levels of cell
damage (Seetharam, 1991; Nakamura et al., 2005; Saunders et al.,
2007).

Stereolithography is another 3D bioprinting technique that
can be used to generate 3D constructs. This technique involves
the solidification of a cell-laden photo-crosslinkable polymer
solution in a layer-by-layer fashion, and it is controlled by a
moveable stage along the z-axis (Murphy and Atala, 2014).
In stereolithography, 3D complex structures can be produced
without the need for a printhead that moves in x–y direction. In
this process, a digital micromirror device (DMD) which allows
highly precise patterns to be created, is used to control selectively
crosslinking of bioink in z direction (Heinrich et al., 2019). This
selective crosslinking method by light does not lead to any cell
shear stress, making it possible to achieve higher cell viability
in produced constructs. However, the use of transparent bioinks

is required in stereolithography in order to achieve uniform
crosslinking. This restricts the cell density that can be used in
the bioink (Minteer et al., 2013). Despite this limitation, the
technique has a great potential because of high speed, high
resolution (∼1 µm) and controllability of the internal and
external architecture of the resulting construct (Gruene et al.,
2011a,b; Kang et al., 2017).

Electrospinning is a high-resolution fabrication method that
can be used to produce thin fibers (Heinrich et al., 2019).
During the process of electrospinning, a high voltage is
applied to the ejected polymeric solution from the syringe.
When the electrostatic repulsion starts to overcome the surface
tension of the solution, the solution begins to evaporate
and it is subsequently solidified during transit to form
fibers (Ashammakhi et al., 2008; Bhardwaj and Kundu,
2010). Thin fiber-based constructs can be produced by this
technique. Recently, this process technique has been modified
for bioprinting by adding cells and controlling the process
of fiber arrangement in the resulting structure. One of
the primary features of electrospinning-based bioprinting
(EBB) is the shorter collecting range of fibers (around
0.5–3 mm) in comparison to traditional electrospinning.
This allows for more controllable deposition of electrospun
materials with less applied voltage than usually used in
conventional electrospinning (Heinrich et al., 2019). Visser
et al., 2015; have recently used electrospinning-based bioprinting
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FIGURE 3 | The different printing technologies (3D, 3D bioprinting, 4D, and 4D bioprinting). (A,B) shows conventional 3D printing and bioprinting techniques. (C,D)
For-dimensional bioprinting is defined as 3D printing of cell-laden materials in which the printed structures would be able to respond to external stimulus due to
stimuli-responsive bioinks or internal cell forces. Reproduced with permission from Ashammakhi et al. (2018).

technology to enhance GelMA hydrogel mechanical strength
by reinforcing high-porosity poly(ε-caprolactone) (Visser et al.,
2015). The rigidity of GelMA hydrogels increased 30 times
by 7–214 kPa while its elastic properties were preserved
(Visser et al., 2015). However, the main restrictions of
EBB are the fast spinning of fibers, resulting in a spatially
unstable 3D structures and the high processing temperature
and voltage, which is challenging to cells contained in the
electrospun material.

Cell Death During 3D Bioprinting
The viability of the cells can be influenced by a number of factors.
These include the storage of the cells in the printer, the thermal
damage during the printing process and the mechanical forces
exerted during bioprinting. Table 1 shows documented survival
rates following 3D bioprinting.

Cell storage and conditions during the printing process can
potentially affect cell viability. During this process the cells are
required to be stable and in media that could allow them to
recover from the effects of cells-detaching solution (i.e., Trypsin,
TrypLE, collagenase or others) and the stress exerted on them
during the detachment process (i.e., centrifugation, washing,
etc.). It is known that these methods can affect cell survival,
phenotype and differentiation potential (Parvin et al., 2012; Tsuji
et al., 2017). In addition, the effect of prolonged bioprinting
protocols would require stable media and stable cell conditions.
At present, there are limited studies in this field.

Thermal injury to cells is another area of concern. For
example, during inkjet printing, where temperatures exceed 200
◦, studies have shown that the bioink temperatures are raised
by just 4–10◦ (Cui et al., 2010) and this does not significantly
adversely affect the viability of mammalian cells (Suzuki et al.,
2011). This heating effect is thought to be temporary (∼5 µs),
with less than 8% of the cells being lysed during bioprinting
(Cui et al., 2010). Similar results were reported for the heat
shock of the laser pulse where the cell survival, proliferation and
differentiation were comparable to those of controls at 5 days in
cell culture (Gruene et al., 2011b).

In addition to the potential thermal damage, the mechanical
stress should be also taken into account. Cells are known to
respond to mechanical stress by changing their gene expression
and cell function. Among many cells’ adaptation mechanisms
activated, MSCs activates several intracellular signaling cascades,
including kinases (PKB, MAPK, FAK), β-catenin, GTPases
(Thompson et al., 2012). Chang et al. (2008), found that cellular
viability is inversely related to extrusion pressure, with as
little as 40% viability found at the extremes of high pressure.
Mechanical pressure observed in inkjet printing has been
demonstrated to promote the differentiation of MSCs toward
bone and cartilage lineages (Shav and Einav, 2010). In contrast,
the shear stress produced in extrusion techniques promotes
differentiation toward both endothelial and bone tissues (Stolberg
and McCloskey, 2009). The choice of the 3D technology is mostly
done on the basis of required resolution and the target tissue as
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TABLE 1 | Studies presenting the survival rates of cells used as bioink for 3D-bioprinting applications.

Author, year 3D Printer Cell types Survival rates Comments/Other findings

Inkjet bioprinting
Christensen et al. (2015) Thermal inkjet printing Chinese hamster ovary cells and primary

embryonic motor neurons from ventral
cords of 14-day embryos from pregnant
Sprague-Dawley rats

Greater than 90% cellular viability after printing.

Saunders et al. (2007) Piezoelectric drop-on-demand inkjet
printing

HT 1080 human fibroblasts Cellular survival of 94–98%. Survival rates decrease with increased printing
pulse amplitude. Sampled printed at 40v
demonstrated survival rates that could not be
distinguished from unprinted control samples.

Cui et al. (2010) Thermal inkjet printing Green fluorescent protein expressing
Chinese hamster ovary cells

Average cellular viability was 89%. No significant difference in viability was
observed in different cellular concentrations of
ink. Printed cell number correlated with
increasing cellular ink concentrations.

Christensen et al. (2015) Inkjet based free form fabrication NIH 3T3 mouse fibroblasts Post printed cellular viability was 92.4%
immediately after printing and 90.8% after 24 h
of incubation.

Levato et al. (2014) Bioscaffolder system (Levato et al., 2014) Mesenchymal stem cells from 2 to 4 weeks
old Lewis rats

Post dispensing viability was 80% after 1 day
and more than 90% after 3 days.

Pre-seeded particles suspended in the gels had
the lowest number of viable cells (60%) after 1
day of culture, which increased to 90% after 3
days.

Du et al. (2015) Inkjet with four independent
z-axis-controlled ink reservoirs

Bone mesenchymal stem cells from
4-weeks-old male adult Sprague-Dawley
rats

Cellular viability of > 90% was seen during
printing

CBD-BMP2-collagen microfibers induced
BMSC differentiation into osteocytes within 14
days more efficiently than the osteogenic
medium.

Extrusion bioprinting
Zhao et al. (2014) Microextrusion printing HeLa cells Post printed viability of the HeLa cells in

constructs was 94.9% ± 2.2% with parameters
of 10 mm3 min−1 extrusion speed, 250 µm
nozzle inner diameter, 10◦C chamber
temperature and 25◦C nozzle temperature.

Comparisons of 3D and 2D tumor models of
HeLa cells show a higher cellular proliferation
rate and more simulated tumor characteristics
with 3D printing

Zhao et al., 2015 Four nozzle microextrusion printing A549 cells Cell survival rate was > 90% for all rheological
conditions at a holding temperature of 20◦

For all concentrations of bioink used in
microextrusion printing, a holding temperature
of 20◦ should be used. Optimum holding times
were variable, dependent upon bioink
concentration

Laser assisted bioprinting
Barron et al. (2005) BioLPTM Biological Laser Printing Human osteosarcoma cells After six days of incubation, cells demonstrated

a 100% viability
Koch et al. (2010) Laser based printing based on laser

assisted forward transfer (LIFT)
Skin cell lines (fibroblasts, keratinocytes);
Human mesenchymal stem cells

98% ± 1% standard error of the mean (skin
cells) and 90% ± 10% (hMSC).

No increase in apoptosis or DNA fragmentation
was seen with the use of LIFT. hMSC
phenotype was maintained as proven by
fluorescence activated cell sorting analysis.

Hopp et al. (2012) Femtosecond KrF laser in laser assisted
forward transfer (LIFT)

Human neuroblastoma, chronic myeloid
leukemia and osteogenic sarcoma cell lines
and primary astroglial rat cells

Short-term and long-term survival for
neuroblastoma and astroglial cells was
65–70%. Long term survival of osteosarcoma
cells was low, while myeloid leukemia cells did
not tolerate the procedure under the conditions.
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well as other factors. Lee et al. (2015) suggested that laser assisted
and inkjet bioprinting may be preferable to extrusion bioprinting
in most circumstances, but where circumstances necessitate the
use of bioink with a high viscosity, extrusion bioprinting may
be necessary. In these circumstances, the effects of sheer stress
may be countered by modification of the bioink composition, e.g.,
by the inclusion of thinning polymers and the control of back
pressure during the printing process (Mackay et al., 1998).

Bioink Characteristics and Cellular
Adhesion
The primary aim in preparing a bioink is the biomimicry of the
extracellular matrix, which creates a microenvironment that is
optimal for cellular adhesion, proliferation and differentiation.
An ideal bioink will maintain its printed structure integrity,
be crosslinkable and can undergo degradation. It must
accommodate cells, and sustain their integrity and viability
throughout the printing process (Irvine and Venkatraman,
2016; Grungor-Ozkerim et al., 2018). It should also have the
specific mechanical, physicochemical, rheological and biological
properties needed for printability and for the preservation of
cellular phenotype (Byambaa et al., 2017). Skardal and Atala
(2015) highlighted that most biocompatible bioinks which were
able to bear the vertical weight of emerging structures either
produced toxic macromolecules during the setting process or
required a toxic solvent for setting itself.

Porosity and interconnectivity are also two essential factors.
Pore size, shape and volume are all influential in the behavior of
cells following adhesion to the scaffold structure. Matsiko et al.
(2015), found that pore size correlates with cellular organization,
mineralization and the development and assembly of collagen
I. Greater porosity and more interconnectivity allow for better
matrix deposition and transportation of oxygen and other
essential substrates into the center of the scaffold, promoting
better ingrowth of tissue. Domingos et al. (2013), concluded that
the morphology of printed cells did not appear to be influenced
by the topology of pores, but that cell viability and proliferation
were strongly affected by the size and shape of the pores, with
large quadrangular pores resulting in the best viability and
proliferation of human MSCs.

Scaffold stiffness has also been noted to play an integral role
in the terminal differentiation of cells. MSCs have been observed
to differentiate into cell types that best fit the microenvironment
supported by the mechanical properties of the attachment
surface or matrix. Differentiation toward an osteogenic lineage is
observed in cells adhering to a rigid surface (34 kPa), compared
with a more elastic surface (0.1–1 kPa), where MSCs display a
tendency to differentiate toward a neuronal lineage (Engler et al.,
2006; Lane et al., 2014). In relatively soft hydrogels (2.5–5 kPa),
a differentiation toward adipogenesis is observed (Arany et al.,
2010). This offers the possibility for the modification of bioink
matrices and scaffolds to induce a specific lineage differentiation.
Gao et al. (2015), produced a bioink that was optimized
for bone and cartilage regeneration. The ink, made from a
hybrid of polyethylene glycol and gel dimethylacrylate, had a
compressive modulus of 1–2 MPa when printed, significantly
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stiffer than previously used hydrogels. MSCs printed in this
hydrogel demonstrated a greater propensity toward osteocyte
and chondrocyte lineage (Gao et al., 2015), but only in the
context of specific extracellular matrix (Rowlands et al., 2008) and
cross-linking conditions (Das et al., 2015).

It has been previously suggested that a scaffold can guide
MSCs toward a specific lineage. In cases where the aim
is to maintain stemness, bioinert hydrogels should be used.
This avoids creating an environment that may be favorable
to one particular lineage of cells. One such example of a
bioinert hydrogel is alginate (Irvine and Venkatraman, 2016)
which retains the stemness of printed stem cells (Blaeser
et al., 2016). However, caution must be exercised when using
bioinert hydrogels, as proliferative capabilities and movement
are reduced, which may promote anoikis (Carrow et al., 2015),
however, this may be overcome by the addition of the integrin
binding peptide arginyl-glycyl-aspartic acid (RGD) moieties to
bioinert alginates which increases cellular interaction whilst
maintaining stemness (Carrow et al., 2015). Hyaluronic acid is
an alternative to alginate, with proven clinical efficacy (Ozbolat
and Hospodiuk, 2015). In contrast to alginate, hyaluronic acid
promotes MSC attachment and maintains multipotency and
proliferation through CD44 receptors (Cao et al., 2016), with
the added benefit of adaptation to promote a specific lineage
differentiation. One such example is the use of hyaluronic acid
in cardiogenesis (Mairim et al., 2012). Where bioinert inks have
been used, MSCs can be differentiated by incubation with soluble
factors that direct maturation to a specific lineage in a similar
fashion to culture additives (Irvine and Venkatraman, 2016). To
remove reliance on extrinsic factors, additives can be included in
bioink. For example, alginate bioinks have been modified with the
addition of hydroxyapatite in the context of bone regeneration
(Wüst et al., 2014). In vivo murine models of alginate scaffolds
containing biphasic calcium phosphate particles (consisting of
hydroxyapatite and β-tricalcium phosphate) displayed greater
osteogenic differentiation than scaffolds having no biphasic
calcium triphosphate (Wang et al., 2007).

The Effect of Cross-Linking
Three-dimensionally bioprinted extracellular matrix may lack
the required stability and integrity to support contained cells.
Crosslinking is often an essential step and a number of
physical, biological and chemical crosslinking techniques have
been proposed over the years. The aim of these techniques
is to enhance the mechanical and biological properties of the
grafts preventing the cell-mediated contraction. Crosslinking
induces chemical or physical links between the polymer
chains of the scaffold and can be achieved by using UV
light, dehydrothermal treatment, or treatment with sodium
citrate, sodium tripolyphosphate, sulfosuccinic acid, oxalic acid,
glutaraldehyde, genipin, or carbodiimide (Lew et al., 2007;
Pfeiffer et al., 2008; Jóźwiak et al., 2017; Vining et al., 2019).

Crosslinking can affect several of the cellular functions,
including proliferation, differentiation and cellular ability
to attach to a scaffold (Davidenko et al., 2015). Kim et al.,
investigated the effect of different crosslinking techniques
on immortalized human corneal epithelial cells, human skin

fibroblasts, primary bovine corneal endothelial cells and
immortalized human retinal pigment epithelial cells (Kim et al.,
2014). The authors reported different toxicity levels with the
least toxic being with mononitroalcohols and glyceraldehide,
intermediate toxicity being with nitrodiol and nitrotriol, and
highest toxicity being with glutaraldehyde, paraformaldehyde,
genipin, and bronopol. Several studies have also defined the
critical concentration over which the agent induces cytotoxic
effect (Wang and Stegemann, 2011; Muzzarelli et al., 2015).
On the contrary, some studies suggest that crosslinking can
have a positive effect on cellular function. Raucci et al. (2015),
studies the effect of citric acid crosslinked cellulose containing
hydrogel on the osteogenic differentiation of MSCs. The authors
revealed enhanced hydrophilicity and roughness of the hydrogel
together with a stimulation of osteogenic differentiation as
demonstrated by enhanced expression of bone markers such as
osteopontin and osteocalcin. In addition to the direct effect of the
crosslinking on MSCs, the physical properties of the extracellular
matrix can regulate the response and phenotypes of the cells
(Kyle et al., 2019).

Despite many promising studies, to date, there is no gold
standard method for cross-linking 3D printed biomimetic
materials. In cases where multiple bioinks are used, tuning
the scaffold microstructure through crosslinking of multiple
biomaterials without affecting its properties will require
significant improvement in our 3D printing technology. In
tissues where biodegradation or regeneration is required, like for
example in 3D bioprinting of bone, the mechanical properties
of scaffolds are negatively correlated with their biodegradation
profile (Oryan et al., 2018). Finally, one major concern is the
potential inflammatory reaction following implantation. It is
shown that the cross-linking methods can induce an immune
reaction, initiate M1 macrophage response and inhibition of
M2 macrophage polarization, reduced cell infiltration, increased
proinflammatory cytokine expression and peri-implantation
fibrosis (Delgado et al., 2015), which should be carefully
considered and solutions devised.

POST-PRINTING

Following 3D printing, cell-laden scaffolds will require
incubation prior to implantation. This raises the question
of how the nutrients and wastes will be exchanged to support
the cells until implantation. For a thin construct, this can
be done through a static culture through diffusion; however,
functioning vasculature will be required for larger constructs.
Dynamic culturing can provide continuous infiltrating flow
of medium and/or compressive/tensile loading, which is most
beneficial for cartilage and bone tissue engineering (Butler
et al., 2009). In case the technology reaches the stage of creating
vasculature (Shahabipour et al., 2020), research would be needed
to determine if blood would be an adequate medium to facilitate
nutrients and waste exchange.

In addition to the nutrient supply, cells will require time
to attach onto the scaffold. It has been previously shown that
post-fabrication incubation for long periods can increase the
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mechanical strength of the construct due the function of the
cells and further tissue development (Butler et al., 2009). If
photopolymerization is used to harden the bioink, it is unknown
whether it can cause cytotoxicity due to the photoinitiators
and ultraviolet light. Visible light-sensitive photoinitiators are
reported to cause less cytotoxicity but this area is poorly explored
(Lim et al., 2016; Mondschein et al., 2017).

Future Directions and Conclusion
Three-dimensional bioprinting technology has achieved growing
popularity for its favorable potential. There is impressive progress
with the pertinent techniques supporting the view that in
the near future organ manufacturing will be a reality. Three-
dimensional bioprinting can find application in organ and graft
transplantation by overcoming the issues of immune rejection
and reducing the cost of grafts and could be used to establish
platforms for research and drug screening.

MSCs are one of the most popular cell type in tissue
engineering and are involved in more than half of the clinical
trials since 2000 (Yuan et al., 2019). These cells are most likely to
be the main component of 3D bioprinting. In order to preserve
and deliver MSCs advantages, it is essential to mimic there
in vivo microenvironment throughout the 3D biofabrication
process (Baker and Chen, 2012). In addition, the availability of
nutrients and oxygen remains high and similar to that in the body
(Melchels et al., 2010; Ashammakhi et al., 2020). This seems to
be the only way for the cells retain their phenotype, adhesion,
metabolism, and response signaling (Baker and Chen, 2012).

Despite the great progress we have seen in understanding
the biology of target tissues in humans, our knowledge is still
based on animal biology. Understanding MSC biology is also
crucial and it is in fact the most difficult challenge. This will
allow us to direct the efforts creating more physiologically
relevant structures. MSCs for example could be used in high
densities when creating biomimetic cartilage and bone tissues or
in lower densities as supporting cells in other applications. Before,
however, we are in a position to discuss such matters we would
have to decode our biology in health and disease in humans
raises significant ethical issues. Once 3D bioprinting reaches a
position of manufacturing complex biomimetic tissues, such as
organs and large grafts, an appropriate regulatory framework
will be required. Hints that this is imminent are shown in many
studies which produced complex grafts. Ethical issues include the

ownership of prototypes, the harvesting and type of cells and
biomaterials, research as well as commercialization of produced
constructs. Regulation in terms of safety is also needed including
the biocompatibility of bioinks, long-term safety of grafts and the
ex vivo manipulation of cells.

The optimal ex vivo conditions prior to printing should be
established. In our view, minimizing the ex vivo journey of the
cells is crucial. Harvesting and printing the cells in the same
sitting could only be done with knowledge of specific markers
for MSC, which we lack at present. This is feasible for other cell
types with, such as for example the hematopoietic stem cells,
which are currently used without manipulation in cancer patients
following whole body irradiation (Bazinet and Popradi, 2019).
For MSCs however, at present there is a lack of robust techniques
for cell isolation and purification that do not affect MSCs biology
and then cell preservation strategies. To this end, one of the
major drawbacks is the unavailability of reliable culture media, as
current research is merely based on animal derived sera. Serum
free media or the use of autologous serum can be an alternative
but further research is needed in this matter. In addition, the
identification of biomimetic matrices mimicking the native tissue
composition and allowing cellular growth and differentiation is
required. Finally, conditions under which the 3D constructs will
survive following printing potentiate dangers and can jeopardize
the whole process. A solution would include developing new
bioinks and bioprinters that allow high-resolution fabrication
process would diminish the need for post-fabrication culture.
Only addressing the aforementioned challenges will safeguard the
feasibility and safety of 3D bioprinting for regenerative medicine
applications.
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