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A fractal signal x(t) in biomedical engineering may be characterized by 1/ f noise, that is, the power spectrum density (PSD)
divergences at f = 0. According the Taqqu’s law, 1/ f noise has the properties of long-range dependence and heavy-tailed
probability density function (PDF). The contribution of this paper is to exhibit that the prediction error of a biomedical signal
of 1/ f noise type is long-range dependent (LRD). Thus, it is heavy-tailed and of 1/ f noise. Consequently, the variance of the
prediction error is usually large or may not exist, making predicting biomedical signals of 1/ f noise type difficult.

1. Introduction

Signals of 1/ f noise type are widely observed in biomedical
engineering, ranging from heart rate to DNA and protein,
see, for example, [1–37], just to cite a few. Predicting such a
type of signals is desired in the field [38–43]. A fundamental
issue in this regard is whether a biomedical signal of 1/ f
noise type to be predicted is predicable or not.

The predictability of signals of non-1/ f noise type is
well studied [44–48]. However, the predictability of 1/ f
noise is rarely reported, to our best knowledge. Since many
phenomena in biomedical engineering are characterized by
1/ f noise [1–37], the predictability issue of 1/ f noise is
worth investigating.

Note that minimizing the mean square error (MSE) of
prediction is a commonly used criterion in both theory and
practical techniques of prediction, see, for example, [49–
68]. Therefore, a sufficient condition for a biomedical signal
x(t) to be predictable is that the variance of its predication
error exists. If the variance of the predication error does not
exist, on the contrary, it may be difficult to be predicted if
not unpredictable. In the case of a signal being bandlimited,
the variance of its predication error is generally finite.
Consequently, it may be minimized and it is predictable.
However, that is not always the case for biomedical signals
of 1/ f noise type.

Let x(t) be a biomedical signal in the class of 1/ f noise.
Then, its PDF is heavy-tailed, and it is LRD, see, for example,
Adler et al. [69], Samorodnitsky and Taqqu [70], Mandelbrot
[71], Li and Zhao [72]. Due to that, here and below, the
terms, 1/ f noise, LRD random function, and heavy-tailed
random function are interchangeable.

Let p(x) be the PDF of a biomedical signal x(t) of 1/ f
noise type. Then, its variance is expressed by

Var[x(t)] =
∫∞
−∞

(
x − μx

)2
p(x)dx, (1)

where μx is the mean of x(t) if it exists. The term of heavy
tail in statistics implies that Var[x(t)] is large. Theoretically
speaking, in general, we cannot assume that Var[x(t)] always
exists [72]. In some cases, such as the Pareto distribution, the
Cauchy distribution, α-stable distributions [72], Var[x(t)]
may be infinite. That Var[x(t)] does not exist is particularly
true for signals in biomedical engineering and physiology,
see Bassingthwaighte et al. [33] for the interpretation of this
point of view.

Recall that a prediction error is a random function as we
shall soon mention below. Therefore, whether the prediction
error is of 1/ f noise, or equivalently, heavy-tailed, turns to be
a crucial issue we need studying. We aim at, in this research,
exhibiting that prediction error of 1/ f noise is heavy-tailed
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and accordingly is of 1/ f noise. Thus, generally speaking, the
variance of a prediction error of a biomedical signal x(t) of
1/ f noise type may not exist or large. That is a reason why
predicting biomedical signals of 1/ f noise type is difficult.

The rest of this paper is organized as follows. Heavy-
tailed prediction errors occurring in the prediction of
biomedical signals of 1/ f noise type are explained in
Section 2. Discussions are in Section 3, which is followed by
con-clusions.

2. Prediction Errors of 1/ f Noise Type

We use x(n) to represent a biomedical signal in the discrete
case for n ∈ N, where N is the set of natural numbers. Let
xN (n) be a given sample of x(n) for n = 0, 1, . . . ,N − 1.
Denote by xM(m) the predicted values of x(n) for m =
N ,N + 1,N + M − 1. Then, the prediction error denoted by
e(m) is given by

e(m) =
N+M−1∑
m=N

x(m)− xM(m). (2)

If one uses the given sample of x(n) for n = N ,N +
1, . . . , 2N −1 to obtain the predictions denoted by xM(m) for
m = 2N , 2N + 1, 2N + M − 1, the error is usually different
from (2), which implies that the error e(m) is a random
variable. Denote by p(e) the PDF of e(m). Then, its variance
is expressed by

Var[e(m)] =
N+M−1∑
m=N

(
e − μe

)2
p(e), (3)

where μe is the mean of e(m).
Let P be the operator of a predictor. Then,

xM(m) = PxN (n). (4)

A natural requirement in terms of P is that Var[e(m)] should
be minimized. Thus, the premise that Var[e(m)] can be
minimized is that it exists.

It is obviously seen that Var[e(m)] may be large if p(e)
is heavy tailed. In a certain cases, Var[e(m)] may not exist.
To explain the latter, we assume that e(m) follows a type of
heavy-tailed distribution called the Pareto distribution.

Denote by pPareto(e) the PDF of the Pareto distribution.
Then [73], it is in the form

pPareto(e) = aba

ea+1
, (5)

where e ≥ b, a > 0, and b > 0. The mean and variance of
e(m) are, respectively, expressed by

μe = ab

a− 1
,

Var(e) = ab2

(a− 1)2(a− 2)
.

(6)

The above exhibits that Var[e(m)] does not exist if a = 1 or
a = 2 and if e(m) follows the Pareto distribution.

Note that the situation that Var[e(m)] does not exist may
not occur if e(m) is light-tailed. Therefore, the question in
this regard is whether e(m) is heavy-tailed if a biomedical
signal x(n) is of 1/ f noise. The answer to that question is
affirmative. We explain it below.

Theorem 1. Let x(n) be a biomedical signal of 1/ f noise
type to be predicted. Then, its prediction error is heavy-tailed.
Consequently, it is of 1/ f noise.

Proof. Let rxx(k) be the autocorrelation function (ACF) of
x(n). Then,

rxx(k) = E[x(n)x(n + k)], (7)

where k is lag and E the mean operator. Let rMM(k) be the
ACF of xM(m). Then,

rMM(k) = E[xM(m)xM(m + k)]. (8)

Let ree(k) be the ACF of e(m). Then,

ree(k) = E[e(m)e(m + k)]. (9)

Note that

ree(k) = E[e(m)e(m + k)]

= E{[x(m)− xM(m)][x(m + k)− xM(m + k)]}
= E[x(m)x(m + k) + xM(m)xM(m + k)

−xM(m)x(m + k)− x(m)xM(m + k)]

= rxx(k) + rMM(k)− rMx(k)− rxM(k).

(10)

In the above expression, rMx(k) is the cross-correlation
between xM(m) and x(m). On the other side, rxM(k) is the
cross-correlation between x(m) and xM(m). Since rMx(k) =
rxM(k), we have

ree(k) = rxx(k) + rMM(k)− 2rxM(k). (11)

Recall that x(m) is 1/ f noise. Thus, it is heavy-tailed and
hence LRD. Consequently, for a constant c1 > 0, we have

rxx(k) ∼ c1k
−α (k −→ ∞) for 0 < α < 1. (12)

On the other hand, the predicted series xM(m) is LRD. Thus,
for a constant c2 > 0, the following holds:

rMM(k) ∼ c2k
−β (k −→ ∞) for 0 < β < 1. (13)

In (11), if rxM(k) is summable, that is, it decays faster than
rx(k) or rM(k), it may be ignored for k → ∞. In this case,
ree(k) is still non-summable. In fact, one has

ree(k) ∼

⎧⎪⎪⎨
⎪⎪⎩
c1k−α, 0 < α < β < 1,

c2k−β, 0 < β < α < 1,

(c1 + c2)k−β, α = β.

(k −→ ∞),

(14)
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On the other side, when rxM(k) is non-summable, re(k) is
non-summable too. In any case, we may write ree(k) by

ree(k) ∼ ck−γ (k −→ ∞) for 0 < γ < 1. (15)

Therefore, the prediction error e(m) is LRD. Its PDF p(e)
is heavy-tailed according to the Taqqu’s law. Following [72],
therefore, e(m) is a 1/ f noise. This completes the proof.

3. Discussions

The present result implies that cautions are needed for
dealing with predication errors of biomedical signals of 1/ f
noise type. In fact, if specific biomedical signals are in the
class of 1/ f noise, the variances of their prediction errors may
not exist or large [72]. Tucker and Garway-Heath used to
state that their prediction errors with either prediction model
they used are large [74]. The result in this paper may in a way
provide their research with an explanation.

Due to the fact that a biomedical signal may be of 1/ f
noise, PDF estimation is suggested as a preparatory stage
for prediction. As a matter of fact, if a PDF estimation of
biomedical signal is light-tailed, its variance of prediction
error exists. On the contrary, the variance of the prediction
error may not exist. In the latter case, special techniques have
to be considered [75–78]. For instance, weighting prediction
error may be a technique necessarily to be taken into account,
which is suggested in the domain of generalized functions
over the Schwartz distributions [79].

4. Conclusions

We have explained that the prediction error e(m) in pre-
dicting biomedical signals of 1/ f noise type is usually LRD.
This implies that its PDF p(e) is heavy-tailed and 1/ f noise.
Consequently, Var[e(m)] may in general be large. In some
cases [72], Var[e(m)] may not exist, making the prediction
of biomedical signals of 1/ f noise type difficult with the way
of minimizing Var[e(m)].
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