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Abstract: Despite huge investments and major efforts to develop remedies for Alzheimer’s disease
(AD) in the past decades, AD remains incurable. While evidence for molecular and phenotypic
variability in AD have been accumulating, AD research still heavily relies on the search for AD-specific
genetic/protein biomarkers that are expected to exhibit repetitive patterns throughout all patients.
Thus, the classification of AD patients to different categories is expected to set the basis for the
development of therapies that will be beneficial for subpopulations of patients. Here we explore the
molecular heterogeneity among a large cohort of AD and non-demented brain samples, aiming to
address the question whether AD-specific molecular biomarkers can progress our understanding of
the disease and advance the development of anti-AD therapeutics. We studied 951 brain samples,
obtained from up to 17 brain regions of 85 AD patients and 22 non-demented subjects. Utilizing
an information-theoretic approach, we deciphered the brain sample-specific structures of altered
transcriptional networks. Our in-depth analysis revealed that 7 subnetworks were repetitive in
the 737 diseased and 214 non-demented brain samples. Each sample was characterized by a
subset consisting of ~1–3 subnetworks out of 7, generating 52 distinct altered transcriptional
signatures that characterized the 951 samples. We show that 30 different altered transcriptional
signatures characterized solely AD samples and were not found in any of the non-demented
samples. In contrast, the rest of the signatures characterized different subsets of sample types,
demonstrating the high molecular variability and complexity of gene expression in AD. Importantly,
different AD patients exhibiting similar expression levels of AD biomarkers harbored distinct altered
transcriptional networks. Our results emphasize the need to expand the biomarker-based stratification
to patient-specific transcriptional signature identification for improved AD diagnosis and for the
development of subclass-specific future treatment.
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Biomolecules 2020, 10, 503; doi:10.3390/biom10040503 www.mdpi.com/journal/biomolecules

http://www.mdpi.com/journal/biomolecules
http://www.mdpi.com
https://orcid.org/0000-0001-6943-7479
http://dx.doi.org/10.3390/biom10040503
http://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/2218-273X/10/4/503?type=check_update&version=2


Biomolecules 2020, 10, 503 2 of 22

1. Background

Alzheimer’s disease (AD) is the most common cause of dementia, characterized by progressive
cognitive decline and neurodegeneration. AD is defined pathologically by the presence of senile plaques
and neurofibrillary tangles (NFTs), particularly in the hippocampus and neocortex [1]. Definitive
AD pathology can only be determined by autopsy, since this neurologic manifestation is not readily
perceptible using current diagnostic technologies [2]. Nevertheless, research laboratories have been
investing large efforts to characterize molecular alterations in AD samples, aiming to deepen our
understanding of the disease, and to allow for better diagnosis and stratification of AD patients once
brain biopsies will become available.

According to the amyloid hypothesis [3], AD develops as a result of the hyper activation of two
proteolytic entities, the β and γ secretases, which both digest the amyloid precursor protein (APP).
This dual digestion results in increased production of the family of aggregative amyloidβ (Aβ) peptides,
which in turn cause neuronal death and underlie the development of AD. Nevertheless, a careful
analysis of familial AD (fAD)-causing mutations in the sequence of presenilin 1 (PS1), an aspartic
protease which possesses the activity of the γ secretase complex, unveils that many fAD-causing
mutations lead to loss of PS1 function [4,5], thereby contradicting the amyloid hypothesis.

In addition, a comparison of Aβ production levels in brains of individuals who either suffered
from fAD, sporadic AD (sAD) or were not demented, indicated that sAD patients and non-demented
individuals show no significant differences in Aβ production levels [6].

Moreover, different mutations in the sequence of PS1 resulted in dissimilar effects, as some
mutations increased and some decreased the levels of Aβ production [6].

Further complexity was recently demonstrated by a study showing intricate interactions between
APOE (apolipoprotein E, a protein which is involved in Aβ metabolism) genotypes and other common
genetic variants associated with AD. These interactions affect the absolute risk to develop the disorder
and the age at onset [7].

Together, these observations show that the amyloid hypothesis cannot explain all AD cases and
strongly suggest that distinct mechanisms underlie the manifestation of this devastating disease.
The existence of multiple mechanisms that underlie AD development limits our ability to perform
accurate patient diagnosis and develop efficient treatments for AD [8,9].

This understanding has spurred the implementation of high-throughput methods (i.e., genomics,
transcriptomics, etc.) and the invention of novel analytical tools for the characterization and diagnosis
of AD subtypes.

Recent advances in the development of quantitative tools for AD characterization include
multivariate statistical methods, such as clustering methods, principal component analysis [10–12],
Bayesian methods [13], and machine learning [14]. These methods usually detect dominant, statistically
significant groups of co-varying transcripts and proteins, which appear in large numbers of tested
brains/brain regions [12]. Hence, uncommon transcript expression patterns within the networks
and rare altered network structures that do not include any of the prevailing groups of co-varying
transcripts/proteins may be overlooked.

In clinics, pathologies bearing comparable mutations or biomarker expression levels would be
classified as similar. However, when dealing with complex multifactorial pathologies similar biomarker
expression levels in different patients may stem from different altered molecular processes [15], possibly
necessitating distinct, patient-specific diagnosis and treatment. This is specifically problematic in the
case of AD, which appears to be a syndrome rather than a single disease [16].

We explore the molecular data space of AD using information theory, aiming to find a way to
classify AD patients not only based on biomarker expression levels, but rather based on their complete
patient-specific transcriptional network structure.

A comprehensive classification approach that will enable improved diagnosis and patient
stratification may significantly advance the development of AD treatments. Without proper classification
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of patients, clinical trials may fail to recognize therapies that are beneficial to a sub-group of patients,
as the effect may be masked by non-responders included in the trial.

To identify patient-specific altered transcriptional networks we employ a thermodynamic-based
information theoretic method named surprisal analysis (SA). SA determines patterns of altered
molecular expression levels in a population of samples, and thereby identifies transcriptional
subnetworks that repeat themselves throughout the population [15,17]. A unique attribute of SA is
that each transcript can be influenced by several different subnetworks, in line with the non-linearity of
biological networks [15,17]. Several distinct subnetworks may operate in each AD/non-demented brain
tissue, together constituting a unique altered transcriptional network, or sample-specific transcriptional
signature. See the Results and Methods sections below, and [15,17] for more details.

We have recently demonstrated that similar to systems in chemistry and physics, the interpretation
of molecular alterations based on physico-chemical rules [18], e.g., through identification of the
altered subnetworks that deviate the system from the steady state, allows the prediction and rational
manipulation of biological phenotypes. Examples include predictions of spatial distributions of
aggressive brain tumor cells [19], direction of cell-cell movement [20], response of cells to drug
treatment [21], and predictions of patient-specific cancer drug combinations [17].

We study herein a large transcriptomic dataset consisting of 737 postmortem brain samples
obtained from up to 17 brain regions of 85 sporadic AD patients. Additionally, the dataset contained
214 control postmortem brain samples obtained from up to 17 brain regions of 22 elderly non-demented
brains. The dataset was generated and analyzed by Wang et al. [12], who looked for differences
and similarities between the various AD brain regions. The authors showed that gene expression
alterations in each brain region can be clustered into dozens and sometimes even hundreds of different
co-expression gene modules [12]. Thereafter, different AD brain regions were compared in order to
find overlapping or highly correlated biological modules.

We wished to complement the study by Wang et al. [12] by looking at the gene expression
alterations in the dataset from a different viewpoint: instead of searching for overlapping/highly
correlated molecular aberrations in different brain regions, we examine each brain sample and
each patient individually. We decode the patient-specific molecular network reorganization events
that occurred in each individual brain sample, namely the patient-specific altered transcriptional
signature. We show that 30 distinct altered transcriptional signatures characterize solely AD samples
and 22 additional altered transcriptional signatures characterize various subsets of sample types.
Importantly, we show that most of the AD-specific signatures are rare, each characterizing only 2 brain
tissues or less. We demonstrate how biomarker-based diagnosis may overlook AD patients harboring
distinct disease subtypes. Our results underscore the urgent need for unbiased, personalized AD
diagnostics as well as personalized remedies in the future.

2. Methods

2.1. Study Design and Participants

This study utilized a gene expression dataset from 951 postmortem brain samples that were
obtained from up to 17 brain regions of 107 subjects, deceased with varying AD-neuropathology
severities. The dataset was published previously [12]. Up to 17 different brain regions were sampled
in each patient: frontal pole (FP), occipital visual cortex (OVC), inferior temporal gyrus (ITG), middle
temporal gyrus (MTG), superior temporal gyrus (STG), posterior cingulate cortex (PCC), anterior
cingulate (AC), parahippocampal gyrus (PG), temporal pole (TP), precentral gyrus (PrG), inferior
frontal gyrus (IFG), dorsolateral prefrontal cortex (DPC), superior parietal lobule (SPL), prefrontal
cortex (PC), caudate nucleus (CN), hippocampus (Hi) and putamen (Pu). Each brain sample was
profiled for over 44,000 transcripts using Affymetrix Human Genome U133A and U133B arrays
(HG-U133A/B). Brain specimens that evidenced neuropathology other than that characteristic of AD
were excluded [12].
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2.2. Surprisal Analysis (SA)

To characterize patient variability, we utilized surprisal analysis. SA decomposes the expression
levels of the tested molecules into the expected expression levels at the steady state (i.e., the balanced,
unconstrained state), and the deviations thereof due to environmental or genomic constraints [22,23].
Any genetic defect or epigenetic perturbation that prevents the cells from reaching the most stable
state can be considered as a constraint. Each constraint significantly influences a subset of transcripts
in a similar way by causing the collective deviations of the transcript levels (up or down) from
their balanced levels. This group of co-varying transcripts is defined as an unbalanced process.
To decompose gene expression levels into the levels at the steady (balanced) state and deviation
thereof the following equation is utilized: ln Xi(k) = ln Xo

i (k) −
∑
α=1 Giαλα(k) [23,24]. Xi(k) is the

actual, experimentally measured expression level of gene i in sample k. Xo
i (k) is the expression levels

at the steady, unconstrained state. In cases where Xi(k) , X0
i , we assume that the expression level

of transcript i was altered due to constraints that operate on the system. The term
∑
α=1 Giαλα(k)

represents the sum of deviations in expression level of transcript i due to the various constraints,
or unbalanced processes that exist in the sample.

The unbalanced processes, or constraints, are indexed by α = 1,2,3 . . . . Several unbalanced
processes may operate in each sample, and each transcript can participate in several unbalanced
processes due to non-linearity of biological networks (contrary to clustering methods [15,25]). Singular
value decomposition (SVD) is used as a mathematical tool to determine the two sets of parameters
required in surprisal analysis to represent the unbalanced processes: (1) The Giα values (Table S1),
denoting the extent of the participation of each individual transcript i in the specific unbalanced process,
α. Transcripts with significant Giα values (Figure S1B) are considered to be affected by unbalanced
process α. All transcripts with significant Giα values are grouped into the unbalanced processes group
(Table S1). Each unbalanced process is further interpreted using the David database as described below
and shown in Table S2. Note that the weight Giα is independent of k. Hence, the structure (transcript
composition) of every process α remains constant. (2) The λα(k) values, denoting the amplitude of
each unbalanced process, in every sample k. The amplitude of an unbalanced process, α, determines
whether process α is active in patient/sample k, and to what extent (see Figure S8, Table S3).

In summary, the analysis uncovers the set of unbalanced processes that operate in the system,
including the transcripts which are affected by these constraints (= unbalanced processes) and have
thus deviated from their steady state levels.

Complete details regarding the mathematical analysis have been described elsewhere [15,23].

2.3. Signs of Giα, and λα(k)

The sign of Giα (Table S1) indicates the correlation or anti-correlation between transcripts in a
particular process. For example, consider unbalanced process 1 in patient k, for which λ1(k) > 0.
Transcripts 1, 2, and 3 were found to have different values, such as:Gtranscript1 = −0.01,Gtranscript2 = 0.01,
and Gtranscript3 = 0. This shows that in process 1 transcripts 1 and 2 are anti-correlated, i.e., deviate
from their balanced levels in opposite directions, while transcript 3 is unaffected by process α. Note
that each transcript can take part in several unbalanced processes.

The sign of λα(k) indicates the correlation or anti-correlation between the same processes in
different patients/samples. For example, if process α is assigned the values in samples 1, 2, and 3:
λα(sample 1) = 28, λα(sample 2) = 0, and λα(sample 3) = 39, it means that this process is active in
sample 1 and 3 in the same direction (i.e., the transcripts affected by this process deviate to the same
directions in samples 1 and 3), while it is not active in sample 2.

To find the actual change in expression level for each transcript i in every sample k we
calculate the product Giαλα(k), which can be positive (indicating upregulation) or negative (indicating
downregulation). Note that the product Giαλα(k) only denotes the change in expression level of
the transcript i that occurred due to unbalanced process α. To calculate the complete change in
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expression level, the sum of contributions of different unbalanced processes, α = 1, 2, 3 . . ., is calculated:∑
α Giαλα(k).

2.4. The Biological Meaning of Each Unbalanced Process

To assign a biological meaning to each unbalanced process, transcripts were categorized using
David software according to the Gene Ontology (GO) database. Some transcripts were involved in one
unbalanced process, whereas others participated in 2 or more unbalanced processes. Each unbalanced
process can include multiple (sometime overlapping) biological categories (Table S2).

2.5. Determination of the Number of Significant Unbalanced Processes

The number of significant constraints was determined as described previously [15,21]. Briefly,
the analysis of the 951 samples provided a 951 × 951 matrix of λα(k) values [23], such that every column
in the matrix contained 951 values of λα(k) for 951 samples, and corresponded to an unbalanced process
(Table S3). However, not all unbalanced processes are significant. Our goal was to determine how
many unbalanced processes were needed in order to reconstruct the experimental data, i.e., for which

value of n: ln Xi(k) ≈ −
n∑
α=0

Giαλα(k). To find n, we performed the following two steps:

(1) Processes with significant amplitudes were selected: To calculate threshold limits for λα(k)
values (presented in Figure S8) standard deviations in gene expression levels of the 100 most stable
transcripts in this dataset were calculated (e.g., those with the smallest standard deviations values).
Those fluctuations were considered as baseline fluctuations in the population of the patients which
were not influenced by the unbalanced processes. Using standard deviation values of these transcripts
the threshold limits were calculated as described previously [26]. The analysis revealed that from
α = 8 the λα(k) values become insignificant (i.e., do not exceed the noise threshold), suggesting that
7 unbalanced processes are enough to describe the dataset.

(2) Reproduction of the experimental data by the unbalanced processes was verified: To verify
that the number of processes identified in step 1 is correct, we plotted

∑n
α=1 Giαλα(k) against ln Xi(k)

for different transcripts and for different values of n, and examined the correlation between them as n
was increased. An unbalanced process, α = n, was considered significant if it improved the correlation
significantly relative to α = n− 1. Figure 4B shows that increasing n from 7 to 10 did not significantly
affect the correlation between the theoretical and experimental data for different samples.

2.6. Calculation of Barcodes

The barcodes presented in Table S4 were generated as described previously [17]. Briefly, barcodes
represent a sample-specific combination of active unbalanced processes. Barcodes were generated
using a custom python script. For each sample, λα(k) values (α = 1, 2, 3, . . . , 7) were normalized as
follows: If λα(k) > 24 (and is therefore significant according to calculation of threshold values), then it
was normalized to equal 1; if λα(k) < −24 (significant according to threshold values as well), then it
was normalized to equal −1; and if −24 < λα(k) < 24, then it was normalized to equal 0. Table S4 lists
52 unique barcodes that were calculated and found to repeat themselves in the 951 brain samples.
The results are shown graphically in Figures 5 and 6.

3. Results

3.1. A Large-scale Dataset was Selected for Study

We investigated a large-scale gene expression dataset containing 951 postmortem brain samples
that were obtained from up to 17 brain regions of 107 subjects, either with varying severities of AD
neuropathology or non-demented [12].
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All subjects ranged from 60 to 100 years of age. Of the 107 subjects, 22 were characterized as
non-demented. The remaining 85 AD-bearing subjects were divided into three categories according to
their pathological severity stage: possible, probable, or definite [12].

The total of 951 samples included 737 AD samples and 214 control, non-demented samples.
Each sample represented a specific brain region of a specific patient.

The complete list of samples, including sample-specific information such as subject ID, age,
pathological stage, and brain region, can be found in Table S3.

3.2. An Overview of Our Approach

We wished to explore the variability among the AD brain samples in the dataset, aiming to shed
light on AD patient characterization. The question we sought to address is whether different AD
patients can be identified based on specific molecular characteristics that repeat themselves throughout
the population.

The search for new biomarkers was defined as one of the central future goals to advance accurate
AD diagnostics and treatment [27–29]. Research/diagnostics routine in AD includes a search for
novel AD biomarkers (mutations, variants (e.g., ApoE)) or testing expression levels of known AD
biomarkers (e.g., amyloid-β (Aβ), Tau, ApoE, Bin1, etc.) (Figure 1A,B). These are searched for on
genomic, transcriptomic, or proteomic levels. Next, patient diagnosis and classification is performed
based on upregulated expression levels or mutations of the biomarkers discovered (Figure 1C).

Based on the high phenotypic variability recognized in AD (see Introduction), we postulated that
a finite set of AD-specific altered biomarkers may not suffice to define AD pathology. Therefore, rather
than selecting a few biomarkers for examination (Figure 1A), our approach employed high-throughput
profiling for every patient. Next, surprisal analysis (SA) was utilized to decipher the altered
transcriptional signatures in the patient population (Figure 1D; see detailed explanation in the
Methods section and references [15,23]). The analysis assumes that AD tissues are biological systems in
which the balanced homeostatic state has been disturbed due to genomic and/or environmental factors,
or constraints. Different combinations of genomic and/or environmental constraints can operate in
different brains, giving rise to variability in gene expression patterns within the patient population.
Every constraint can alter a part of the gene network structure in the AD brain, such that a specific
group of transcripts undergoes coordinated changes in expression levels, generating an unbalanced
process. In other words, an unbalanced process is the subnetwork that was altered due to the constraint.
SA discovers the unbalanced processes that repeat themselves in the entire population of patients
(Figure 1D) and then determines which of these processes have emerged in each and every AD sample
(Figure 1E). Figure 1 emphasizes the importance of deciphering the accurate transcriptional signature.
For example, consider biomarker B (Figure 1). In the traditional routine, mutation/overexpression of
this biomarker would be measured in order to diagnose AD patients. Patients 1 and 2 both overexpress
this biomarker and would thus be classified as similar (Figure 1B,C). SA, however, shows a broader
picture: patient 1 harbors 3 distinct unbalanced processes, highlighted in black, green, and yellow
(Figure 1E), while patient 2 harbors only the black unbalanced process (Figure 1E). In patient 1 the
upregulation of biomarker B is associated with 2 distinct unbalanced processes (black and green,
Figure 1E), while in patient 2 the upregulation of biomarker B is attributed only to the black process
(Figure 1E). Thus, despite similar expression levels of the biomarker, the AD tissues in these patients
differ and may therefore demand different diagnoses and different modalities of treatment (Figure 1F).

We suggest that in order to expand our understanding of the disease, the complete set of unbalanced
networks should be determined for every tissue. Deciphering the complete altered transcriptional
network in each AD sample/patient can be especially beneficial for personalized drug design in the
future, in which central proteins from distinct unbalanced networks can be targeted to reduce the
altered signaling flux (e.g., as recently suggested by us for the treatment of cancer [17]).
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of the biomarker B in patient 1 is associated with the black and green processes, whereas in patient 2 
it is upregulated due to only the black process (D–F). 
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Figure 1. An overview of the approach. (A) The common strategy today is to look for novel biomarkers
that would classify Alzheimer’s disease (AD) patients in a more accurate, patient-specific manner.
In the illustrated example, four AD biomarkers were tested (genes A–D). Based on the expression
levels of those markers (B) the patients are classified. Patients 1 and 2 in this example have similar
expression levels of biomarkers A and B, and therefore would be classified as molecularly similar
(C). We explore AD pathology in an unbiased manner (D–F). The workflow of our approach consists
of patient-specific “omic” profiling, followed by surprisal analysis (D), aiming to decipher not only
altered transcripts/proteins, but also the structure of the altered network, namely the patient-specific
altered transcriptional signature (E,F). This signature is composed of distinct unbalanced processes,
each resulting from a constraint that operates on the system (see main text). Overexpression of the
biomarker B in patient 1 is associated with the black and green processes, whereas in patient 2 it is
upregulated due to only the black process (D–F).
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3.3. 951 AD-related and Normal Brain Samples Harbor A Similar Balanced State Process

When we examined the reference (balanced) state and the transcripts that were found in this state,
we found that the reference state remained essentially the same across the AD and non-demented
samples (Figure 2), as indicated by the similar amplitudes across all 951 samples (λ0(k) represents the
amplitude (= importance) of the steady state, α = 0, in each sample k; see Methods).
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Figure 2. The studied 951 non-demented and AD-bearing brain samples harbor a similar steady state
process. The amplitudes, λ0(k), of the steady state for all samples are presented, demonstrating an
invariant amplitude across the 951 samples. The data is color-coded to show the different brain regions
(frontal pole (FP), occipital visual cortex (OVC), inferior temporal gyrus (ITG), middle temporal gyrus
(MTG), superior temporal gyrus (STG), posterior cingulate cortex (PCC), anterior cingulate (AC),
parahippocampal gyrus (PG), temporal pole (TP), precentral gyrus (PrG), inferior frontal gyrus (IFG),
dorsolateral prefrontal cortex (DPC), superior parietal lobule (SPL), prefrontal cortex (PC), caudate
nucleus (CN), hippocampus (Hi) and putamen (Pu)). The red box marks the error limits, which were
calculated for the steady state based on the expression values of the transcripts that were found to
participate in the steady state (Table S1) [26].

A subset of the transcripts comprising the steady state (i.e., transcripts with the highest steady
state weights, Gi0; see Methods, Table S1 and Figure S1A) were the most stable transcripts, as they did
not change their expression levels across different samples, and consequently, did not participate in
any of the unbalanced processes, denoted α=1, 2 . . . .

The steady state’s most stable transcripts were categorized to the basic homeostatic functions of
the cell such as protein translation, RNA synthesis, and ATP synthesis (Table S2; tab “steady state G0”).

Additional categories enriched in the steady state of the current dataset were related to
axonogenesis and neuron development, providing further characterization of the homeostatic functions
of the elderly AD and non-demented brains (Table S2).

3.4. Similar Gene Expression Levels may Overlook Differences between Individual Samples and Patients

We searched the dataset for the expression levels of a few known AD-associated gene biomarkers:
APOE (apolipoprotein E), BIN1 (Myc box-dependent-interacting protein 1), PTK2B (protein tyrosine
kinase 2 beta) and PLD3 (phospholipase D3). It has been shown that APOE and BIN1 are usually
upregulated, while PTK2B and PLD3 are downregulated in AD patients [28,30,31].

APOE is considered a major genetic risk factor for Alzheimer’s disease [32,33]. This biomarker is
usually tested at either genetic (e.g., gene variants of APOE [7]) or gene expression levels [11,30,33].
Although different APOE haplotypes may influence the expression patterns of APOE gene in a different
manner, it is usually the increased protein activity and/or induced expression of the APOE gene which
are linked to the increased risk to develop AD [11,33]. Thus, despite unavailability of the information
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regarding the APOE gene variants in this dataset, patient-specific expression levels of APOE may
provide interesting insights.

Figure 3 presents the expression levels of these four AD biomarkers in the 951 samples tested.Biomolecules 2020, 10, x FOR PEER REVIEW 9 of 21 
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Figure 3. Expression levels of known AD biomarkers vary significantly in different AD patients and
most samples do not “behave” as expected in terms of these biomarkers. Four known AD biomarkers
were selected for the demonstration of the concept: APOE, BIN1, PLD3, and PTK2B. The figure shows
a histogram of expression levels for each of the biomarkers. In each graph, the gray box denotes the
number of definite AD samples in the boxed area, including their percentage out of the total definite
AD patients in the dataset. Only 36 definite AD samples (10%), significantly overexpress APOE; only 8
definite AD samples (2%) significantly overexpress BIN1; only 19 definite AD samples (6%) demonstrate
significant downregulation of PLD3; and only 40 definite AD samples (12%) demonstrate significant
downregulation of PTK2B.

All four biomarkers demonstrated varying degrees of expression in the different samples,
as expected. It is important, however, to note that only 10% and 2% of the definite AD brain samples
demonstrated significant upregulation of APOE and BIN1, respectively (Figure 3; the number and
percentage of definite AD samples in the gray area is denoted). Additionally, only 6% and 12%
of the definite AD brain samples demonstrated significant downregulation of PLD3 and PTK2B,
respectively (Figure 3). Hence, most of the brain samples did not “behave” as expected in terms of these
four biomarkers, suggesting that biomarker-based identification of AD patients may lack important
patient-specific information, a notion that may have significant implications on future personalized
AD diagnosis and therapy.

3.5. The 951 AD and Normal Brain Samples can be Characterized by Seven Unbalanced Processes

We deciphered the complete set of unbalanced processes that emerged in the dataset and in each
individual sample.

Using SA and error analysis (described in the Methods and [15]), we found that seven unbalanced
processes repeated themselves across the 951 AD and non-demented samples (Figure 4A shows
zoom-in images on selected transcripts in some of the unbalanced processes; the full data regarding
the unbalanced processes can be found in Table S1). These seven processes sufficed to reproduce the
experimental gene expression data obtained from those samples (Methods and Figure 4B), signifying
that SA analysis achieved considerable compaction of the data.
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Figure 4. Seven unbalanced processes were identified in the 951 samples tested, underlying the
disparities in biomarker expression levels in different samples. (A) Zoomed in images of four of the
seven unbalanced processes identified in the dataset: 1,3, 5, and 6. For each process, the deviations in
expression levels of nine transcripts are shown, demonstrating how different unbalanced processes can
affect the expression levels of the same transcripts, sometimes in opposite directions. The complete
information regarding the seven unbalanced processes and the transcripts affected by them can be
found in Table S1. (B) R2 values of selected samples were calculated by plotting the natural logarithm
of the experimental data ln(Xi(k)) vs.

∑
Giαλα(k) for different values of α. The value of R2 approaches

1 as more unbalanced processes are added to the calculation. Mathematically, 951 unbalanced processes
are calculated for each patient. However, not all of them are significant. The figure shows that the R2

plots representing different patients reach a plateau after seven processes, suggesting that the first seven
unbalanced processes are necessary to reproduce the experimental data, while the rest of the processes
represent random noise in the system. Six selected brain samples are shown. The gray box highlights
that the addition of the unbalanced process α > 7 had no significant effect on the R2 value for these
samples. (C) Fold change in expression level of the four AD biomarkers in three selected samples—the
selected samples demonstrate similar deviations in expression levels of these biomarkers. (D) The
samples were found to harbor different sets of active unbalanced processes. Hence, similar transcript
expression levels can arise from distinct altered transcriptional signatures, possibly demanding different
modes of treatment as well.
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Each sample in the dataset was characterized by a small subset of these seven unbalanced processes,
typically 1-3 processes. We inspected, for example, three samples obtained from three different AD
patients: sample 919 (GSM2234520), which was obtained from the Pu of subject 1006 (diagnosed
possible AD); sample 944 (GSM2234550), which was obtained from Pu of subject 66 (diagnosed definite
AD); and sample 141 (GSM2233767), obtained from the ITG of subject 616 (diagnosed possible AD). In
all three samples, APOE and BIN1 biomarkers were upregulated relative to their median expression
levels (Figure 4C). However, SA revealed that the samples were biologically different: sample 919 was
characterized by a combination of processes 1, 3, and 6; sample 944 was characterized by processes 1
and 6; and sample 141 harbored only process 5 (Figure 4D). In samples 919 and 944, the upregulation of
APOE was associated with process 1, while in sample 141 it was associated with process 5 (Figure 4A,D).
The upregulation of BIN1 was associated with process 6 in samples 919 and 944, whereas in sample
141 the upregulation of BIN1 was associated with process 5 (Figure 4A,D).

PTK2B and PLD3 were both downregulated relative to their median expression levels in samples
919 and 944 (Figure 4C). However, PLD3 downregulation was associated with processes 1 and 3 in
sample 919, and with only one process—process 1—in sample 944 (Figure 4A,D).

Hence, we show that samples from the same/different brain regions may seem very similar in
terms of their transcriptional expression, but nevertheless still differ from one another. Therefore,
a comprehensive examination of the complete altered transcriptional signature is required.

In general, all four selected biomarkers were each found to participate in a few distinct unbalanced
processes: APOE was found to participate in unbalanced processes 1, 2, 4, and 5; BIN1 in unbalanced
processes 4, 5, and 6; PLD3 in unbalanced processes 1,2, 3, 5, 6, and 7; and PTK2B in unbalanced processes
1, 5, and 7 (Table S1, Figure 4A exemplifies this point by showing the simultaneous participation of
those transcripts in several processes harbored by the samples 141, 919, and 944). Hence, measuring
the expression levels of a few transcripts in each patient may not suffice, as the deviations in expression
levels of the different biomarkers can arise due to different active unbalanced processes in every
sample. AD patients can have similar expression levels of AD biomarkers, while harboring different
transcriptional signatures (i.e., different sets of active unbalanced processes, as exemplified above),
and thus different AD molecular phenotypes. Therefore, an in-depth evaluation of the sample-specific
altered transcriptional network is essential in order to adequately comprehend the molecular variability
among AD patients and samples.

3.6. Validation of the Robustness of the Analysis

We validated the robustness of our findings by several means.
First, we examined whether the seven unbalanced processes that were identified in the 951

samples were relevant in a smaller subset in which 50 random patients out of 107, constituting together
451 samples, were selected. The weights of the transcripts (Giα) and the amplitudes of the unbalanced
processes (λα(k)) identified in the small dataset were compared to those identified in the full dataset.
For each unbalanced process α, the weights of the transcripts from the smaller dataset were highly
correlated with the weights of the transcripts from the full dataset (Figure S2A). Hence, the unbalanced
processes that were found in the small dataset match those found in the full dataset. The amplitudes of
the unbalanced processes (λα(k)) were found to highly correlate as well (Figure S2B).

To validate that the dataset of 951 was not over fitted we divided the original dataset into two
halves and analyzed each subset separately. The analysis yielded the same results: the same unbalanced
processes appeared in two separate datasets when those subsets were analyzed independently and
then compared to either the original dataset (Figures S3 and S4) or one to another (Figure S5).

Next, we asked whether we could identify the same unbalanced processes and the patient-specific
amplitudes by analyzing only a subset (~half) of the transcripts. We analyzed 22,351 transcripts
(instead of ~44,000 transcripts) in 951 samples and found that those transcripts were assigned to the
same unbalanced processes. The amplitudes and the weights of the transcripts which were identified
in the original dataset highly correlated with the amplitudes and the weights of the transcripts which
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were identified in the smaller dataset showing that a smaller number of genes can characterize the AD
dataset in a similar manner (Figure S6). This result can be explained by the existence of regulatory
mechanisms in the cells that limit the change in the expression levels of molecules, i.e., molecules in
the cells are not free to vary independently, but rather are dependent on the expression levels of other
molecules. It is for this reason that the addition/subtraction of the input transcripts in the analysis does
not significantly change the weights of the transcripts and thus the nature and the composition of the
unbalanced processes.

The fact that independent analyses of sub-datasets (containing either part of the samples or part of
the transcripts) yield essentially the same results as analysis of the full dataset, suggests that the dataset
selected for study is large enough to yield creditable information regarding the altered transcriptional
signatures in the AD samples tested.

An additional issue for validation was the number of normal samples vs. the number of AD
samples. The dataset tested contained 22 non-demented subjects (214 samples) and 85 AD subjects
(737 samples). To verify that the difference in the number of samples did not affect our results,
we performed a separate analysis of only the AD samples. We show in Figure S7 that the same
unbalanced processes were identified in this analysis, suggesting that the normal samples and their
amount do not influence the conclusions of the analysis.

3.7. The Unbalanced Processes Identified by SA Capture Known AD-related Biological Characteristics

To verify whether the division of the transcripts into unbalanced processes by SA corroborated
with previous knowledge regarding the biological activity of the transcripts in AD, we utilized the
David database [34], as described above for the steady state process, to assign a biological meaning to
each unbalanced process (Table S2).

Unbalanced process 1, the most dominant process in the dataset, appearing in 170 samples out of
951, was found to be especially dominant in CN, Hi, and Pu brain regions (Figure S8; unbalanced process
1 was assigned a negative amplitude in CN, Hi, and Pu. See the Methods section for an explanation on
how the signs of Giα and λα(k) should be interpreted). Transcripts affected by unbalanced process
1 were found to participate in multiple enriched biological categories, including downregulation
of memory, the ability to learn, and in proliferative functions of the cell (Table S2). Certain other
regions of AD-related brains and non-demented tissues were found to harbor this process as well
(Figure S8). Similar percentages of AD and non-demented tissues were found to harbor this process
(Figure 5A). Additionally, the majority (>70%) of the non-demented tissue samples harboring process
1, were obtained from people who were over 80 years old, suggesting that this process is generally
related to aging.

Another biological feature associated with unbalanced process 1 was dysregulation of intracellular
calcium signaling, mainly in Hi, Pu, and CN brain regions (Table S2; tab “process 1 G1 > 0.01”).
Calcium modulates many neural processes including synaptic plasticity and apoptosis. Disruption of
calcium regulation in the endoplasmic reticulum mediates the most significant signal transduction
cascades that are associated with aging and AD [35,36]. Process 1 was found to be associated with
downregulation of transcripts involved in calcium ion transport, calcium ion-regulated exocytosis of
neurotransmitter and positive regulation of calcium ion-dependent exocytosis. Moreover, signaling
pathways such as negative regulation of apoptosis and the mitogen-activated protein kinase (MAPK)
pathway which are known to be up-regulated in cancer and to play a central anti-apoptotic role in
tumor progression, were found to be downregulated in process 1 in Hi, Pu, and CN brain regions
(Table S2; tab “process 1 G1 > 0.01”), in accordance with their reported role in learning and memory
formation [37].

Brain regions with positive λ1(k) values (Figure S8, Table S3; 145 samples originating from
42 subjects), were characterized by another group of downregulated transcripts which were similarly
involved in signal transduction, positive regulation of apoptotic cell clearance, and nervous system
development (Table S2; tab “process 1 G1 < −0.01”). This result demonstrates that although the
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transcripts associated with unbalanced process 1 deviate to opposite directions in patients with positive
λ1(k) values vs. those with negative λ1(k) values (upregulated transcripts in the patients with positive
λ1(k) values are downregulated in the patients with negative λ1(k) values, and vice versa), in both
cases they eventually represent a similar AD/aging phenotype characterized by induced apoptosis,
reduced proliferative signaling, and attenuated neurological processes.

Process 2 was found to be dominant in a group of 135 AD and non-demented brain samples
(with negative λ2(k) values; originating from 47 subjects). These samples originated from multiple
brain regions including FP, OVG, ITG, and more (Figure S8, Table S3). This process included (but was
not limited to) downregulated transcripts involved in small GTPase mediated signal transduction,
intracellular signal transduction, synaptic transmission, learning, and phosphorylation (Table S2;
tab “process 2 G2 > 0.01”).

The biological interpretation of the other unbalanced processes (indexed 3–7) can be found in
Table S2.

Biomolecules 2020, 10, x FOR PEER REVIEW 13 of 21 

transcripts associated with unbalanced process 1 deviate to opposite directions in patients with 
positive ( )1 kλ  values vs. those with negative ( )1 kλ  values (upregulated transcripts in the patients 

with positive ( )1 kλ  values are downregulated in the patients with negative ( )1 kλ  values, and vice 

versa), in both cases they eventually represent a similar AD/aging phenotype characterized by 
induced apoptosis, reduced proliferative signaling, and attenuated neurological processes.  

Process 2 was found to be dominant in a group of 135 AD and non-demented brain samples 
(with negative ( )2 kλ values; originating from 47 subjects). These samples originated from multiple 

brain regions including FP, OVG, ITG, and more (Figure S8, Table S3). This process included (but 
was not limited to) downregulated transcripts involved in small GTPase mediated signal 
transduction, intracellular signal transduction, synaptic transmission, learning, and phosphorylation 
(Table S2; tab “process 2 G2 > 0.01”).  

The biological interpretation of the other unbalanced processes (indexed 3–7) can be found in 
Table S2. 

 
Figure 5. The altered transcriptional signature of every individual sample can be represented by a 
sample-specific barcode. (A) Frequency of expression of the different unbalanced processes in non-
demented vs. AD samples. The graph shows that the seven unbalanced processes identified by 
surprisal analysis (SA) are each active in a similar percentage of non-demented vs. AD-bearing 
samples, and none can distinguish between the types of samples. (B) Sample-specific barcodes enable 
characterization of the complete altered transcriptional signature in every sample. The barcodes that 
characterize the three samples from Figure 4 are exemplified here. The sample-specific barcodes 
denote which unbalanced processes are active in the sample, including the sign of the amplitude. 

3.8. Exploring Sample-Specific Transcriptional Signatures  

Figure 5. The altered transcriptional signature of every individual sample can be represented by
a sample-specific barcode. (A) Frequency of expression of the different unbalanced processes in
non-demented vs. AD samples. The graph shows that the seven unbalanced processes identified
by surprisal analysis (SA) are each active in a similar percentage of non-demented vs. AD-bearing
samples, and none can distinguish between the types of samples. (B) Sample-specific barcodes enable
characterization of the complete altered transcriptional signature in every sample. The barcodes that
characterize the three samples from Figure 4 are exemplified here. The sample-specific barcodes denote
which unbalanced processes are active in the sample, including the sign of the amplitude.
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3.8. Exploring Sample-Specific Transcriptional Signatures

We asked whether specific unbalanced processes could distinguish between AD and non-demented
tissues and therefore constitute extended AD-associated biomarkers. Should such unbalanced processes
exist, i.e., such that appear in the AD tissues and not in the non-demented tissues, or vice versa,
these processes may be utilized to identify AD patients once a technology to obtain brain biopsies,
or non-invasive brain diagnostic techniques, such as liquid biopsies [38], will be developed.

Interestingly, the three most dominant unbalanced processes (indexed 1, 2, and 3; Table S1, Table S3,
and Figure S8) could not distinguish between AD and non-demented brain samples, as they appeared
in similar percentages of normal and demented samples (Figure 5A). The remaining unbalanced
processes, indexed 4–7, each appeared in a small number of samples (less than 3% of the samples) and
were therefore not considered as distinguishing processes (Figure 5A).

As mentioned above, every individual sample harbored a specific set of ~1-3 active unbalanced
processes, namely an altered transcriptional network signature (Table S3). We hypothesized that the
complete 951 sample-specific transcriptional signatures may provide the ability to identify demented
vs. non-demented samples.

Using SA parameters, namely the amplitudes of the unbalanced processes that were calculated
for each brain sample (λα(k); Figure S8, Table S3), brain sample-specific transcriptional signatures for
each AD and non-demented brain sample, k, were identified [15] (see Methods).

To simplify the representation of the sample-specific sets of unbalanced processes, we
computationally transformed the sample-specific combinations of unbalanced processes into
personalized schematic barcodes (Figure 5B, Table S4, and Methods). The sample-specific barcodes of
samples 919, 944, and 141 (discussed above and shown in Figure 4D) are shown in Figure 5B.

In total, we found 52 unique subsets of 1-3 unbalanced processes (out of seven) that repeated
themselves across the 951 samples (737 diseased samples and 214 non-demented samples). The null
barcode, indexed #1, represented samples which did not include any active unbalanced processes,
but rather only the steady state process (Table S4, tab “list of 52 barcodes”).

Thirty of the barcodes characterized only AD samples, but not normal, non-demented samples
(Table S4). Importantly, rare altered network structures that appeared in a very small number of
samples were not overlooked. We found that 21 of the 30 barcodes each characterized only 2 AD
brain samples or less (we define these barcodes as rare; Table S4). Interestingly, we noted a high
correlation between the rarity of the barcode and its specificity to AD samples (i.e., the majority of the
rare barcodes are AD-specific; Table S4), emphasizing that AD samples are highly heterogeneous in
terms of their altered transcriptional networks, each sample being highly unique.

3.9. Different Brain Regions in the Same Patient may Harbor Distinct Transcriptional Signatures

Interestingly, we found that the brain of each AD patient can harbor several barcodes,
each representing a different region in the brain, unraveling an additional layer of complexity
existing in AD disease (Figure 6A, an example for subject 111 is shown; the complete information for
all subjects in the dataset is presented in Table S4, tab “Sample-specific barcodes”, summarizing the
barcodes’ appearances in each brain region and pathological condition). Thus, similar to cancer, AD
pathology can be characterized as an intra-brain heterogeneous disease.

Although brains of many AD patients harbored multiple barcodes per brain, most of those
barcodes (in ~60% patients) were assembled from the same 2–3 unbalanced processes that repeated
themselves in different barcodes, i.e., different combinations. For example, the brain of AD patient 786
was characterized by six different barcodes (Table S4). However, those barcodes were assembled from
only three unbalanced processes (processes 1, 2, and 3). The brain of patient 869 was characterized
by five distinct barcodes, which were assembled from different combinations of processes 1, 2, and 7
(See Table S4 for more examples).
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found to characterize six different brain regions in this subject. The complete information for subject
111 as well as for the entire dataset can be found in Table S4. (B) In general, we found that every brain
region was characterized by several distinct barcodes of unbalanced processes. The complete and
detailed information can be found in Table S4.

These results suggest that highly variable inter- and intra-heterogeneous gene expression datasets
can eventually be compacted to a few unbalanced processes per patient. Reorganization of the highly
heterogeneous datasets into simple combinations of ~2–3 diseased processes per sample can simplify
the diagnostics of AD and guide personalized treatment in the future [17]. We hypothesize that
targeting several proteins involved in distinct unbalanced processes [17] can serve as an effective
personalized AD treatment.

Figure 6B demonstrates the intra-region heterogeneity in each brain region. We analyzed the
significance of each barcode in each brain region by calculating the ratio between AD vs. non-demented
samples that harbored the specific barcode in that brain region. To achieve significant results, only the
barcodes characterizing at least 10% of the diseased or non-demented samples were included in the
computation (Figure S9). Using this criterion, it became evident, for example, that barcode 2 was
enriched mostly in Hi, CN, PG, PCC, and Pu of AD patients (Figure S9). This barcode included only
process 1 (Table S4) and was characterized by reduced expression of the transcripts involved in brain
functions and cancer growth (Table S2, tab “Process 1 G1 > 0.01”) and induced expression of transcripts
involved, for example, in immune response and negative regulation of protein serine/threonine kinase
activity (Table S2, tab “Process 1 G1 < −0.01”).

Importantly, however, additional barcodes may appear in the same brain region (e.g., barcode
26 in CN (Figure S9).

Moreover, the same barcode can be found in other brain regions of non-demented tissues.
For example, barcode 2 characterized mostly non-demented tissues in AC (Figure S9).

We also found that certain barcodes (see for example #10, 50, and 52 in Figure S9) characterized
both AD and non-demented samples.

While there are a few brain regions known to be more relevant to AD pathology [12,39,40], recent
studies have shown that additional brain regions undergo changes as well, in some cases resulting
from non-pathological effects of the cells [39,40]. SA analysis reveals that transcriptional alterations
can occur in all 17 brain regions tested (Table S4; tab “sample-specific barcodes”). The nature and role
of these alterations merit further investigation, which is out of the scope of this study.
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3.10. A Spectrum of Distinct Barcodes Characterizes the Brain Samples in the Dataset

We mapped the different barcodes identified by SA based on their frequency of expression in the
different sample types—non-demented, possible AD, probable AD, and definite AD (Figure 7).
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Figure 7. A spectrum of barcodes characterizes the 951 samples in the dataset, suggesting that we
shift our conception of the molecular events in AD. The table presents the 52 barcodes identified
in the dataset of 951 samples. For each barcode its frequency of expression in every sample type is
shown. For example, blocks of barcodes characterizing solely one type of sample are evident (A, B,
C, and D). However, the majority of the barcodes each characterize more than one type of sample,
in different sub-combinations, suggesting that our conception of AD pathology should be shifted
from biomarker-based characterization to multi-modal characterization, integrating, for example,
biochemical and behavioral examinations.
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Some “blocks” of barcodes representing solely one type of sample were visible, e.g., barcode
42 characterizes only normal samples (Figure 7A), barcodes 6, 16, and 18 characterize only probable AD
samples (Figure 7C), and barcodes 9, 11, 37, 43, and 45 only definite AD (Figure 7D). However, the map
is complex, because it shows that a spectrum of barcodes, each characterizing a certain subset of the
sample types, was identified by SA. For example, barcode 4 characterizes non-demented samples,
possible, and probable AD equally, while not characterizing any definite AD samples (Figure 7).
Barcodes 32, 39, and 47 characterize possible and definite AD samples with an equal frequency
(Figure 7). Barcodes 23, 34, and 36 characterize possible and probable AD samples (Figure 7). Various
barcodes each characterize all types of samples, e.g., 46, 30, 25, 10, and more (Figure 7).

To conclude, our attempts to find commonalities among AD patients were unsuccessful, underscoring
an important conclusion: AD appears to be a highly variable disease, characterized by multiple
molecular aberrations. Our data demonstrate that the molecular picture in AD is of high complexity.
This may also be partly since these samples were obtained from the brains of elderly subjects,
and therefore harbor transcriptional alterations related to the aging process.

We suggest that our conception of AD pathology should shift from biomarker-based
characterization to multi-modal characterization, possibly integrating biochemical and behavioral
examinations. Once a method to accurately diagnose AD patients is developed, it will be vital to
replace the search for commonalities among AD patients, with the identification of the differences
between them, in order to eventually tailor the treatment to the specific patient.

4. Discussion

Various clinical fields such as oncology [41], cardiology [42], and neurology [43,44] have refocused
their efforts from a traditional “one-size-fit-all approach” to explore more personalized-based
approaches. Accordingly, the classification of disease subtypes is currently a key challenge.
One approach to define such subtypes is based on the translation of “omic” profiles from multiple
patients into useful personalized information that will allow accurate patient classification and support
a future transition to precision medicine.

In this study we implemented an unbiased information-theoretic approach to explore the
heterogeneity among a population of AD patients. The approach we presented herein allows
characterizing the altered transcriptional network structure of each patient individually. We have
recently demonstrated, using cancer models, the validity of the network signatures identified by SA by
designing potent patient-specific targeted drug combinations based on these networks [17,21]. We have
shown that in several cancer types the SA-based therapy induced higher rates of cell death than the
clinically prescribed therapy [17].

Here we utilized SA to study 951 AD and non-demented samples. We found that all samples,
AD as well as non-demented, shared an invariant steady state process (Figure 2). A robust, invariant
steady state was previously found in cancer vs. normal samples in several studies [15,22,45]. In our
recent studies, the steady state transcripts of normal and cancer tissues were assigned to biological
categories similar to those described herein [22,45]. The finding that AD and non-demented tissues
share a similar balanced state is significant, because it suggests that in order to characterize AD
heterogeneity, only unbalanced processes should be examined, while transcripts that participate in the
steady state can be disregarded. This notion reduces the scope of transcripts that should be tested and
may simplify AD research, diagnosis, and eventually treatment.

AD genotypes (such as the combinations of APOE variants) are commonly tested and linked
to the risk for Alzheimer’s disease. However, it is the gene products (transcripts and proteins) that
are eventually responsible for the manifestation of AD phenotype. Thus, relating gene expression
levels of known AD biomarkers to molecular variability of AD patients can provide important insights
regarding patient classification. Here we demonstrated that similar transcript expression levels of
AD biomarkers can emanate from different sets of unbalanced processes. This observation suggests
that in order to achieve comprehensive AD molecular characterization, relationships of a certain
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biomarker with other measured transcripts (obtained through calculation of unbalanced processes)
should be examined.

We found that the heterogeneous collection of samples could be compacted and described by seven
transcriptional unbalanced processes. Each brain sample was characterized by a sample-specific set of
0-3 unbalanced processes out of seven. This sample-specific combination provides an individualized
transcriptional signature (= barcode) for every tested sample.

The finding that ~40% of the samples were not characterized by any of the unbalanced processes
is interesting, because it suggests that transcriptomic evaluation of AD samples may not suffice to
uncover the molecular processes gone awry in all cases of AD. In the future, when large datasets
consisting of multiple samples, profiled simultaneously by transcriptomics, proteomics, and genomics,
will be available, it will be important to integrate the transcriptional signatures with the proteomic
signatures in AD, potentially allowing higher accuracy in the diagnosis, more precise categorization,
and personalized treatment of AD patients.

Analysis of intra-brain heterogeneity revealed that AD brains can harbor different barcodes
in distinct brain regions, resembling intra-tumor heterogeneity in cancer [46]. However, although
different AD signatures were found in distinct brain regions of a certain patient, in the majority of
the cases those signatures were assembled from different combinations of the same few unbalanced
processes (3 or less). This suggests that not only a sample from a certain brain region, but also the
entire brain can be characterized by a few unbalanced processes which may provide guidance on how
personalized treatment should be designed.

In total, we found that 52 unique signatures recurred across 951 different AD/non-demented
samples. Thirty of them were unique to diseased samples (Table S4). Our findings show that no single
barcode can be used to diagnose all cases of AD. Rather, the barcodes that we found suggest that AD
can be viewed as a collection of different AD subtypes, each molecularly distinct.

We show herein that many of the AD samples are rare in terms of the altered transcriptional
network, or barcode, that they harbor, i.e., many transcriptional signatures are shared by only two
samples or less. Additionally, although certain diseased barcodes appeared with higher probability
in certain brain regions (e.g., barcode 2 in CN, PCC, and PG; Figure S9), many other barcodes could
appear in the same brain regions of various patients (Figure 6).

This points to an important message we wish to convey—when inspecting AD patients and
attempting to treat them in an individualized manner, instead of searching for the commonalities
among the patients (e.g., in the form of biomarkers), it may be more effective to search for the differences
among them. Knowledge of what differentiates a specific subgroup of patients from other subgroups
may grant us the knowledge of how to correctly tailor the treatment to the patients that suffer from
this type of the disease.

Accumulating data have shown that certain brain regions play important roles in AD pathology,
and that the progression of the disease to different regions in the brain may characterize different stages
of the disease [12,39,40]. However, our focus in this study was to identify the sample-specific altered
transcriptional signature at the time of sampling. This is because our interest was in highlighting
the molecular differences between the samples, which may merit personalized treatment regimes.
The evolutionary aspect was out of the scope of our study and is an issue for further research.

The dataset studied herein contained only sporadic cases of AD. In the future, when large datasets
of familial AD samples will be available, it may be insightful to perform a comparative study between
sporadic and familial AD. For example, it would be interesting to check whether the distribution of
barcodes remains similar or not, or whether there are transcriptional signatures specific to familial cases
and vice versa. The comparison between sporadic and familial cases of AD is particularly important as
mouse AD models were engineered to express fAD-causing mutated human genes. Such comparison
will provide insights into the relevance of these models to the study of sporadic cases which constitute
the vast majority of AD cases.
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To conclude, we suggest that our conception of AD pathology should be shifted, to view AD as a
disease that can be characterized by various distinct molecular alterations. We believe that a strategy
which combines advanced computational and biochemical characterization as well as behavioral
examination will pave the way for the development of novel patient-specific diagnoses and remedies
for one of the most prevalent and devastating maladies of the 21st century.

5. Conclusions

In this study we present an information-theoretic approach that allows translating large-scale
heterogeneous molecular-level information from 951 non-demented and AD-bearing tissues into seven
altered transcription sub-networks, named unbalanced processes. Those seven unbalanced processes
constructed 52 distinct transcriptional signatures, which were repetitive across the 951 brain tissues.
We found that many of the AD-specific transcriptional signatures were rare, and appeared only in two
brain samples or less. We show that biomarker-based diagnostics may classify molecularly distinct
AD tissues as similar. Thereby, we propose that the AD research community should adopt a new
viewpoint on AD pathology, recognizing the high complexity and molecular variability of the disease,
and understanding that it is the differences between the patients that we should be searching for, rather
than the commonalities among them.
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