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Abstract. We have partially purified myosin light 
chain kinase (MLCK) and myosin light chain phospha- 
tase (MLCP) from Dictyostelium discoideum. MLCK 
was purified 4,700-fold with a yield of *1 mg from 
350 g of cells. The enzyme is very acidic as suggested 
by its tight binding to DEAE. Dictyostelium MLCK 
has an apparent native molecular mass on HPLC 
G3000SW of ~30,000 D. Mg 2+ is required for enzyme 
activity. Ca 2+ inhibits activity and this inhibition is not 
relieved by calmodulin, cAMP or cGMP have no 
effect on enzyme activity. Dictyostelium MLCK is 
very specific for the 18,000-D light chain of Dictyo- 
stelium myosin and does not phosphorylate the light 
chain of several other myosins tested. Myosin purified 
from log-phase amebas of Dictyostelium has ~0.3 mol 
Pdmol 18,000-D light chain as assayed by glycerol-urea 
gel electrophoresis. Dictyostelium MLCK can phos- 
phorylate this myosin to a stoichiometry approaching 
1 mol P~/mol 18,000-D light chain. MLCP, which was 
partially purified, selectively removes phosphate from 

the 18,000-D light chain but not from the heavy chain 
of Dictyostelium myosin. Phosphatase-treated Dictyo- 
stelium myosin has ~<0.01 mol Pdmol 18,000-D light 
chain. Phosphatase-treated myosin could be rephos- 
phorylated to >/0.96 mol Pi/mol 18,000-D light chain 
by incubation with MLCK and ATE We found myosin 
thick filament assembly to be independent of the ex- 
tent of 18,000-D light-chain phosphorylation when 
measured as a function of ionic strength. However, 
actin-activated Mg2+-ATPase activity of Dictyostelium 
myosin was found to be directly related to the extent 
of phosphorylation of the 18,000-D light chain. MLCK- 
treated myosin moved in an in vitro motility assay 
(Sheetz, M. P., and J. A. Spudich, 1983, Nature 
(Lond.), 305:31-35) at ~1.4 lxm/s whereas phospha- 
tase-treated myosin moved only slowly or not at all. 
The effects of phosphatase treatment on the movement 
were fully reversed by subsequent treatment with 
MLCK. 

I 
N nonmuscle cells modulation of the degree and location 
in the cell of actin and myosin filament assembly as well 
as actin-myosin interaction may be critical for events 

such as cytokinesis, endocytosis, and chemotaxis (77). This 
is in contrast to the situation in muscle cells where more sta- 
ble arrays of actin and myosin filaments occur. One attractive 
system for the investigation of the molecular basis of filament 
assembly and actin-myosin interaction in nonmuscle cells is 
the slime mold Dictyostelium discoideum. It is possible to 
grow biochemical quantities of these cells, and there is an 
exciting potential for correlating changes in the biochemical 
properties of actin and myosin with well-documented motile 
and nonmotile stages in the life cycle of the organism (7), as 
well as with chemotaxis (71) and shape changes (68) of the 
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amebas in response to chemoattractants such as cAME For 
example, Malchow et al. (35) and Berlot et al. (6) have 
shown changes in myosin phosphorylation as a result of 
cAMP stimulation. Whereas Malchow et al. (35) suggested 
that at the onset of the chemotactic response to cAME myo- 
sin heavy chains exist in a phosphorylated state and are then 
rapidly dephosphorylated, the direct in vivo phosphorylation 
experiments of Berlot et al. (6) showed that stimulation of 
amebas with cAMP results in rapid phosphorylation of the 
myosin heavy chain as well as the myosin light chain. 

For Dictyostelium as well as for other nonmuscle cells and 
for vertebrate smooth muscle, the interaction of contractile 
proteins is regulated at least in part by a myosin-linked 
regulatory system that involves phosphorylation of the myo- 
sin molecule. Actin-linked regulatory systems may also be 
present in smooth muscle (36, 41, 65) and in Dictyostelium 
(42), but these are as yet poorly characterized. Myosin- 
linked regulation of actin-myosin interaction is reviewed by 
Adelstein and Eisenberg (2) and by Kendrick-Jones and 
Scholey (27). Regulation of enzymes by phosphorylation is 
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reviewed by Cohen (11) and by Krebs and Beavo (32). In the 
present report we compare Dictyostelium myosin with the 
following myosins in particular. (a) Vertebrate smooth mus- 
cle myosin is composed of two heavy chains of 200,000 D 
and two each of two light chains of 20,000 and 15,000 D. 
Phosphorylation of the 20,000-D light chain enhances the 
actin-activated Mg 2+ ATPase activity of the molecule (9, 63, 
64). (b) Acanthamoeba myosin I is a single-headed myosin 
consisting of a heavy chain of •150,000 D and possibly one 
each of two different light chains (38, 53, 54). Heavy-chain 
phosphorylation is required for actin-activated Mg 2+ ATP- 
ase activity (40). (c) Acanthamoeba myosin II consists of two 
heavy chains of 185,000 D and two pairs of light chains of 
17,500 and 17,000 D (39, 55). Phosphorylation of the heavy 
chains of Acanthamoeba myosin II inhibits actin-activated 
Mg 2+ ATPase activity (12). 

Investigations in our laboratory have emphasized regula- 
tion of the properties of purified Dictyostelium myosin by 
phosphorylation. Dictyostelium myosin is composed of two 
heavy chains of 210,000 D and two each of two light chains 
of 18,000 and 16,000 D (10). Myosin purified from amebas 
grown in [32p]phosphate has "-,0.3 mol Pi/mol 210,000-D 
heavy chain and '~0.1 mol PJmol 18,000-D light chain (33). 
There are at least two heavy-chain phosphorylation sites, one 
a serine residue and the other a threonine residue (Berlot, 
Devreotes, and Spudich, manuscript submitted for publica- 
tion). Both sites are in the carboxy-terminal half of the myo- 
sin tail (46, 48). With a partially purified Dictyostelium 
heavy chain kinase and bacterial alkaline phosphatase, it was 
possible to manipulate the extent of the heavy-chain phos- 
phorylation and demonstrate that phosphorylation inhibits 
thick filament assembly and actin-activated ATPase activity 
(33). Maruta et al. (37) have also observed that heavy-chain 
phosphorylation inhibits the actin-activated Mg 2+ ATPase 
activity of Dictyostelium myosin. 

Here we focus on light-chain phosphorylation of Dic- 
tyostelium myosin. We report the purification from log-phase 
amebas of a specific Dictyostelium myosin light chain kinase 
(MLCK) 1 and a specific myosin light chain phosphatase 
(MLCP). Properties of Dictyostelium myosin examined as 
a function of light-chain phosphorylation include actin-ac- 
tivated Mg 2+ ATPase activity, filament assembly, and myo- 
sin movement in an in vitro assay. An essential feature of our 
experiments is reversibility of phosphorylation. We have 
been able to dephosphorylate and then completely rephos- 
phorylate the 18,000-D light chain of intact Dictyostelium 
myosin. With reconstitution of phosphorylation we have ob- 
served concomitant reconstitution of properties identical to 
those of myosin previously treated with kinase alone. This 
argues that the effect that we see with phosphatase treatment 
is due to removal of phosphate only, and not an artifact result- 
ing from, for example, protease contamination of the phos- 
phatase preparation. 

Materials and Methods 

Materials 

Reagent-grade chemicals were obtained from the following sources: Amer- 

1. Abbreviations used in this paper: HAP, hydroxylapatite; HSS, high-speed 
supernatant; MLCK, myosin light chain kinase; MLCP, myosin light chain 
phosphatase; Teola, triethanolamine; TES, N-Tris (hydroxymethyl) methyl- 
2-aminoethyl sulfonic acid. 

sham Corp., Arlington Heights, IL ([T-32p]ATP catalog no. PBI0168 at 
10 mCi/ml in H20); J. T. Baker, Phillipsburg, NJ (KI); Bio-Rad Laborato- 
ries, Richmond, CA (Bio-G¢l A-0.5m agarose beads, Bio-Gel HT hydrox- 
ylapatite [HAP], Afli-Gel Blue 100-200 mesh and 75-150 gin, Bio-Gel 
A-Bm agarose beads 200-400 mesh); Calbiochem-Behring Corp., La Jolla, 
CA (ATE Aquacide III); Mallinckrodt, Inc., Los Angeles, CA (sodium 
pyrophosphate); Schwarz/Mann, Inc., Orangeburg, NY (ultrapure ammo- 
nium sulfate, ultrapure urea, sucrose); Sigma Chemical Co., St. Louis, MO 
(dithiothreitol [DTT], diisopropylfluorophosphate [DIFP], N-ct-p-tosyl-L- 
lysine chloromethyl ketone [TLCK], L-l-tosylamide-2-phenylethyl chloro- 
methyl ketone [TPCK], phenylmethylsulfonyl fluoride [PMSF] NAN3, tri- 
ethanolamine [Teola], Pipes, Tris, N-Tris[hydroxymethyl]-2-aminoethyl 
sulfonic acid [TES], BSA, p-nitro-phenyl phosphate); Whatman Chemical 
Separation Inc., Clifton, NJ (DEAE cellulose: DE-52); Varian Associates, 
Palo Alto, CA. (Toyo Soda column G3000SW, 60 cm in length). 

Me~o~ 
Growth of Cells. Stock cultures of Dictyostelium discoideum, strain Ax-3, 
were maintained as described (66). When "ol00 g of wet cells were desired, 
as for a myosin preparation or a MLCP preparation, cells were grown in 
6-liter flasks on a rotary shaker platform. Each flask contained 2 liters of 
HL-5 medium (prepared as described [66]). Flasks were inoculated to an 
OD~0 of 0.04 and harvested in late log-phase growth at an OD~o of 0.80. 
About 12 g of cells were obtained from each flask. 

When >100 g of Dictyostetium amebas was desired, as for an MLCK 
preparation, cells were grown in HL-5 medium in 5-gal carboys similar to 
those used in the laboratory of Edward D. Korn, National Institutes of 
Health, Bethesda, MD (31, 73), to grow Acanthamoeba. To achieve a Dic- 
tyostelium doubling time in carboys of 9-10 h, which is equivalent to that 
obtained in shaker flasks, we modified the Weihing and Korn procedure (73) 
as follows. First, we used a high air-flow rate of 80 ml/s maintained with 
a line regulator (no. 3478, Matheson Gas Products, Inc., Secaucus, NJ) with 
a range of 1-200 psi. Therefore all rubber tubing to glass tubing connections 
were wired together tightly. We did not use an air filter on the air outflow 
line inasmuch as this impeded air flow. Secondly, we used a minimal amount 
of antifoam and allowed the culture to foam somewhat. Excess foam exited 
through the air outflow line and was collected in a waste container. The HL- 
5 medium for Dictyostelium contains glucose, which was autoclaved 
separately for 15 min only and then added to the carboy at the time of inocu- 
lation. Carboys containing 13 liters of HL-5 medium were inoculated to an 
OD~o of 0.06-0.10 and harvested 35-40 h later at an ODt,~0 of 0.80. About 
80 g of cells was obtained from each carboy. Of the ~ dozen cultures 
grown in carboys, none was contaminated with bacteria or yeast. 

Preparation of Dictyostelium Myosin. Myosin was purified from 
amebas of Dictyostelium as described (10, 42), with modifications. 100 g 
of washed packed cells was resuspended in 2 vol/g (,,0200 ml) of 10 mM 
Tris, pH 7.5, 2 mM EDTA, 1 mM DTT, and40 mM sodium pyrophosphate. 
The resuspension was then combined with an equal volume (about 300 nil) 
of 10 mM Tris, pH 7.5, 2 mM EDTA, 1 mM DTT, 40 mM sodium 
pyrophosphate, 60% sucrose, 1 mM TLCK, 1 mM TPCK, and 1 mM 
PMSE Cells were then lysed by sonication at 0°C with constant stirring. 
A sonicator-cell disruptor (Heat Systems-Ultrasonics, Inc. Farmingdale, 
NY) operated at speed 7 and equipped with a medium-sized tip was used. 
100-ml batches of cells were sonicated for a total of 40 s with 10-s intervals 
of sonication followed by 10-s intervals of no sonication. After sonication, 
KCI was added from a 3 M stock to a concentration of 0.1 M. The cell lysate 
was clarified by centrifugation at 27,000 g for 30 rain, followed by ultracen- 
trifugation at 100,000 g for 2 h. Actomyosin was precipitaled by dialysis of 
the supernatant against 10 mM Pipes, pH 6.8, 0.5 mM DTT, 50 mM KC1, 
1 mM EDTA, 0.5 mM PMSE and 0.02 % azide. "o400-500 rag of precipitate 
was collected by centrifugation at 2%000 g for 30 min. 

For gel filtration chromatography, the actomyosin precipitate was solubi- 
lized in KI and ATP as follows. Pellets were resuspended to ,o30 ml with 
10 mM Teola, pH 7.5, 50 mM KC1. Next an equal volume of 10 mM Teola, 
pH 7.5, 1 mM EDTA, 1 mM UIT, 10 mM ATP, 10 mM MgCI~, and 1.2 
M KI was added and the sample was homogenized and then clarified at 
100,000 g for 30 min. The actomyosin was concentrated by ammonium sul- 
fate precipitation. The supernatant was brought to 50 mM in Teola, pH 7.5. 
Solid ammonium sulfate was added to 55% saturation. The precipitate was 
collected by centrifugation at 27,000 g for 30 rain. Pellets were brought to 
11 ml with 10 mM Teola, pH 7.5, and 50 mM KCI. Then U ml of 10 mM 
Teola pH 7.5, 1 mM EDTA, 1 mM DTT, 10 mM ATP, 10 mM MgCI2, and 
1.2 M KI were added, and the sample was homogenized and then clarified 
at 100,000 g for 60 rain. The resulting 9.5-ml column sample, containing 
,-o150 mg of protein, was applied to a 2.5 x 90-cm agarose A15m, 200-400 
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mesh column equilibrated with 10 mM TES, pH 7.5, 20 mM sodium 
pyrophosphate, 5 % sucrose, 1 mM DTT, 50 mM KCI, and 0.02 % azide and 
run at 60 cm of pressure. The column had been preloaded with 50-60 ml 
of 10 mM Teola, pH 7.5, 1 mM EDTA, 1 mM DTT, 0.6 M KI, 5 mM ATE 
and 5 mM MgC12. The myosin peak was located by assaying for ATPase 
activity. The fractions on the trailing edge of the peak were avoided in later 
pooling because they usually contained some degraded myosin. 

The myosin peak containing *10 nag of protein in 50 ml was separated 
from contaminating RNA on a column (9 x 2.8 cm) of DEAE-cellulose 
equilibrated with 100 ml of 10 mM TES, pH 7.5, 20 mM sodium 
pyrophosphate, 5 % sucrose, 1 mM DTT, and 0.02 % sodium azide, and run 
at 30 cm of pressure. When larger volumes of buffer were used in equilibra- 
tion, RNA did not bind well to the column, presumably because of bound 
pyrophosphate. Myosin was eluted from the column with 110 ml of 0.15 M 
KC1 in column buffer. 

The purified myosin was concentrated by polymerization as follows. The 
DEAE pool containing '~7 mg of protein in 22 ml was dialyzed against 
10 mM Pipes, pH 6.8, 0.5 mM DTT, 50 mM KCI, 1.0 mM EDTA, 0.5 mM 
PMSF, and 0.02% sodium azide. MgC12 was added to 1(3 mM and the solu- 
tion was kept at 0°C for 60 min. Filaments were collected by centrifugation 
at 100,000 g for 60 rain. The myosin pellets were homogenized gently in 
1-1.5 ml of 0.5 M KC1, 10 mM "Iris, pH 7.5, 1 mM EDTA, 1 mM DTT, 
and 0.02 % sodium azide, and clarified by centrifugation at 27,000 g for 
15 min. The clarified solution, which contained about 7-8 mg of myosin, 
was stored at 0°C. Aliquots were combined with an equal volume of glycerol 
and frozen at -4°C.  

Myosin isolated by this method generally had 0.3 mol P/mol 18,000-D 
light chain, as assayed by glycerol-urea gel electrophoresis (see below). One 
preparation had 0.7 mol E/mol 18,000-D light chain. 

Preparation of DictyosteUum Myosin Labeled In VJvo with 32p. Myo- 
sin was purified from amebas grown in [32P]phosphate according to Kucz- 
marski and Spudich (33). 

Preparation of Rabbit Skeletal Muscle Myosin. Myosin was prepared 
from rabbit skeletal muscle by the method of Kielley and Hardngton (30), 
stored as an ammonium sulfate pellet, and dialyzed into appropriate buffer 
before use. 

Assay for MLCK Activity. MLCK activity was assayed by incubating 
purified myosin and MLCK in 20 mM Tris, pH 7.5, 5 mM MgCI2, and 
0.75 mM ['/-32p]ATP, which had 500 cpm/pmol ATE Samples were mixed 
at 22°C in the following order: (a) stock 5x  or 10x Tris-Mg 2+ solution, 
(b) H20, (c) MLCK sample, (d) myosin, (e) 5x [y-32P]ATP stock. Total 
assay volume was 20 ~tl. Generally 8-14 Ixg of myosin was used per assay. 
The extent of 18,000-dalton light chain labeling under these conditions was 
directly related to MLCK concentration and the time of incubation up to 
"~20 rain. Samples were incubated for 10 min at 22°C and then the reaction 
was stopped by addition of 20 ~tl of SDS polyacrylamide gel sample buffer 
and incubated at 100°C for 4 rain. For a fast qualitative measure of phos- 
phorylation, 6 ~tl of each of the samples was run on a microslab gel, stained, 
destained, and dried on the same day. An autoradiogram was exposed over- 
night. Such autoradiograms can detect unambiguously as little as 0.025 
pmol 32P/pmol 18,000-D light chain. When such a band is cut out of the 
gel and counted in a scintillation counter, it is only 30 cpm above a back- 
ground of 30 cpm. For a quantitative measure of phosphorylation, the entire 
volume of each of the samples was run on a large slab gel. The 18,000-dalton 
light chain was cut from the gel that had been stained, destained, and dried, 
digested at 90°C in 30% peroxide for 10 h, and counted in a scintillation 
counter (Beckman Instruments, Inc., Palo Alto, CA). Alternatively, samples 
were cut from the gel and counted directly. Such samples had 70% of the 
counts of those digested in peroxide. 

[y-32P]ATP was purchased at 1 mCi/ml in 50% ethanol or at 10 mCi/ml 
in H20 and used within 1 wk. We discovered that, for the material pur- 
chased at 1 mCi/ml in 50% ethanol, no labeling of Dictyostelium myosin 
light chain occurred when the stock was over 2 wk old. The reason for this 
result remains unknown, but a thin-layer chromatograph of the 2-wk-old ['t- 
32p]ATP showed that it was not contaminated with labeled ADP, AMP, or 
adenosine. The kinase activity found in the 40-60% (NI-h)2SO4 cut of 
Dictyostelium high-speed supernatant (HSS) (see the 0-60% cut in Fig. 1) 
was not affected by the age of the ['¢-32p]ATP stock. 

For assay of 18,000-dalton light-chain phosphorylation by glycerol-urea 
gel electrophoresis, incubations were carded out using I mM ATP without 
[~-32P]ATP label, and were stopped by freezing in a dry ice-acetone bath 
and then stored at 4°C before further processing. 

Assay for MLCP Activity. The substrate, Dictyostelium myosin labeled 
with 32p on the 18,000-D light chain (132P]myosin), was prepared by in- 
cubating myosin with Dictyostelium MLCK and [~/-32p]ATP, as described 
below. 

Semiquantitative assay of myosin phosphatase activity was performed as 
follows. The assay was initiated by addition of [32p]myosin to pbosphatase 
in 25 mM Tris, pH 7.5, 5 mM MgCI2, and 1 mM CaC12. Generally ",~5 p.g 
of [3ZP]myosin was used per assay (total volume, 20 ~tl). Samples were in- 
cubated for 15 min at 22°C and then stopped by the addition of 20 ~tl of 
SDS PAGE sample buffer and incubation at 100°C for 4 min. 6 I.tl of each 
of the samples was run on a microslab gel, stained, destained, and dried 
on the same day. An autoradiogram was exposed overnight or for a shorter 
time period as appropriate. Autoradiograms were scanned with a scanning 
densitometer (model RFT; Transidyne General Corp., Ann Arbor, MI'), peak 
heights were measured, and relative percent MLCP activity was calculated. 

Quantitative assay of myosin phosphatase activity was performed as de- 
scribed above with the following modifications. ",,10 I.tg [32P]myosin were 
used per assay. The assay incubation was stopped by the addition of 30 ~l 
of ice-cold 25 % TCA and 2 mM potassium phosphate, incubated at 0°C for 
10 min, and centrifuged for 2 rain in an Eppendorf microfuge (Brinkmann 
Instrument Co., Westbury, NY). 40 p.l of the supernatant, which contained 
liberated [32p]ortbopbosphate, was counted in a Beckman scintillation 
counter. 

In practice, the semiquantitative assay was generally used for column 
fractions because it requires less [32p]myosin substrate per assay. Its disad- 
vantage is that it takes longer to process as compared with the quantitative 
assay. The quantitative method was used to assay each step of the prepara- 
tion to measure the degree of purification. By conserving [32P]myosin in 
this way, one preparation of •2.5 mg could be used for a complete myosin 
phospbatase purification. 

Assay for Alkaline Phosphatase Activity. Alkaline phosphatase was as- 
sayed using p-nitrophenyl phosphate as substrate. Assay conditions were 
50 mM Tris, pH 8, and 10 mM MgCl2 at 22°C for 30 min. Components 
were combined in the following order: (a) 10x Tris-MgCl2 mixture, (b) 
H20, (c) phosphatase sample, and (d) p-nitrophenyl phosphate. 200 Ixg of 
p-nitrophenyl phosphate was used in an assay volume of 100 I.tl. The reac- 
tion was stopped by adding 1 ml of 20 mM NaOH and the OD4~0 was read. 

Treatment of Dictyostelium Myosin with Kinase. 0.5-2.0 mg of Dictyo- 
stelium myosin was dialyzed against 20 mM Tris, pH 7.5, 5% sucrose, 
50 mM KCI, 1 mM DTT, and 0.02% azide. The myosin was incubated for 
1 h at 22°C with an appropriate amount ofDictyostelium MLCK (*0.1 mg 
of HAP peak pool/mg of myosin) under the conditions described above for 
the MLCK assay. The reaction was stopped by adding KCI to 0.5 M. The 
myosin was separated from kinase and [7-32p]ATP by gel filtration on a 0.7 
x 25-cm (10 ml) column of A-0.5m, 200-400 mesh, equilibrated with 
20 mM potassium phosphate, pH 7.5, 2 mM sodium pyrophosphate, 0.4 M 
KCI, l mM EDTA, 1 mM DTT, 0.02 % sodium azide, and 5 mM ATP, and 
run at 20 cm of pressure. The myosin peak was located by OD280 and then 
concentrated by polymerization and resuspended in an appropriate volume 
of storage buffer as described above for the purification of Dictyostelium 
myosin. The amount of myosin degradation, if any, was assessed by SDS 
gel electrophoresis. The extent of 18,000-D light-chain phosphorylation was 
measured with glycerol-urea gel electrophoresis. 

Treatment of Dictyosteliura Myosin with Phosphatase. 0.5-2.0 mg of 
Dictyostelium myosin was dialyzed against 20 mM Tris, pH 7.5, 5% su- 
crose, 50 mM KCI, 1 mM DTT, 0.02% azide. The myosin was incubated 
with Dictyostelium myosin pbosphatase (*0.1 mg of phosphatase prepara- 
tion/rag myosin) in 25 mM Tris, pH 7.5, 5 mM MgCl2, and 1 mM CaCl2 
for 2 h at 22°C. The reaction was stopped by adding KCI to 0.5 M. The 
myosin was separated from pbosphatase by chromatography on a 0.7 x 
25-cm column (10 ml) of A-0.5m, 200-400 mesh, equilibrated with 10 mM 
Tris, pH 7.5, 0.5 M KCI, 1 mM EDTA, 1 mM DTT, and 0.02% azide. The 
myosin peak was located by OD280 and then concentrated by polymeriza- 
tion and sedimentation. It was then resuspended in storage buffer as de- 
scribed above for the purification of Dictyostelium myosin. The degree of 
myosin degradation, if any, was assessed by SDS Gel electrophoresis, and 
the extent of 18,000-D light-chain dephosphorylation was measured by 
glycerol-urea gel clectrophoresis. 

In Vitro Motility Assay. The in vitro movement of Dictyostelium myosin 
was measured by the assay of Sheetz and Spudich (62), as described in detail 
by Sheetz, et al. (61). Bead samples were prepared using myosin at 25 and 
100 I.tg/~tl. 

Myosin ATPase Assay. Myosin ATPase activity was measured using ['t- 
32p]ATP as described by Clarke and Spudich (10). The Ca 2+ ATPase activ- 
ity of myosin was assayed in 1(3 mM Tris, pH 8.0, 10 mM CaClz, 0.6 M 
KCI, and 1 mM ATE Actin-activated myosin Mg 2+ ATPase activity was 
measured in 50 mM Tris, pH 8, 2.5 mM MgCI2, 0.1 mM CaCl2, 15 mM 
KCI, and 1 mM ATP with myosin concentration 0.06 mg/ml and actin con- 
centration 0-0.4 mg/ml. The actin-activated ATPase activity was calculated 
by subtracting the value for myosin alone. 
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Myosin Assembly Assay. Thick filament formation was measured as de- 
scribed by Kuczmarski and Spudich (33). 

HPLC Methods. We used a Waters HPLC system (Waters Associates, 
Milford, MA) equipped with a Toyo Soda 60-cm G300OSW gel filtration 
column (range of mol wt 1,000-300,000). The column was equilibrated with 
prefiltered buffer until a stable baseline was achieved. Samples were dia- 
lyzed against column buffer and clarified in a microfuge (Beckman Instru- 
ments, Inc., Fullerton, CA) before application. Column runs were done at 
22°C, but the column sample was stored at 0°C before application and frac- 
tions were placed at O°C immediately after collection. 

Biochemical Methods. Protein analysis was performed by the method 
of Bradford (8) with BSA as a standard. 

PAGE in SDS was carried out on slab gels with a Tris/glycine buffer (5, 
34) and the gels were stained with Coomassie Brilliant Blue R (20) and 
dried on a slab drying apparatus (Hoefer Scientific Instruments, San Fran- 
cisco, CA). 

Very dilute samples of protein (as for example, the HPLC fractions in 
Fig. 4) were precipitated with an equal volume of 10% TCA on ice for 
30 min. The precipitate was collected by centrifugation in an Eppendorf 
microfuge for 5 min. The pellets were then washed with 5 % TCA and again 
centrifuged in the microfuge for 5 min. For SDS PAGE, sample buffer con- 
raining 200 mM Tris, pH 8.8, was used. The amount of protein present in 
such samples was measured by densitometry of the gel. The bands were cut 
out and weighed, and compared with the weight of a scan of a known 
amount of protein. 

Glycerol-urea gel electrophoresis was performed by the method of Perrie 
and Perry (49), with modifications used in the laboratory of Robert S. Adel- 
stein (National Institutes of Health-James R. Sellers, personal communi- 
cation). Samples that had been frozen in a dry ice-acetone bath and then 
stored at -4°C before processing were freeze-dried in a Savant Instruments 
Speed-Vac (Hicksville, NY) at 22°C. Freshly prepared sample buffer con- 
raining urea was added directly to the freeze-dried samples. Gels were 
scanned with a scanning densitometer (Transidyne General Corp.), peaks 
were cut out and weighed and percent phosphorylation of 18,000-D light 
chain was calculated. 

Routine scanning densitometry of SDS polyacrylamide slab gels was per- 
formed using a scanning densitometer (Transidyne General Corp.). High- 
resolution densitometry was performed using a flatbed densitometer (Per- 
kin-Elmer Corp., Norwalk, CT) coupled to a VAX computer. The average 
density was calculated by an appropriate program and plotted. 

Autoradiograms of previously dried slab gels were made by exposing 
them to X-Omat AR x-ray film (Eastman Kodak Co., Rochester, NY) with 
a DuPont Cronex intensifying screen (DuPont Co., Wilmington, DE). Scan- 
ning densitometry of autoradiograms was performed using a scanning den- 
sitometer (Transidyne General Corp.). 

Resul t s  

Purification of  MLCK from Dictyostelium 

Steps in the Purification of MLCK: Preparation of HSS. 
'~350 g of amebas  of Dictyostelium discoideum was grown 
in four carboys. Cells  were harvested by centr ifugation in 
l-l i ter bottles in a centrifuge (Internat ional  Equipment  Co. ,  
Needham Heights, MA) at 18,000 g for 7 min.  The cells were 
immediate ly  placed on ice. They were washed in 10 m M  
Tris, pH 7.5, and again collected by centrifugation.  The cells 
were next combined  with 2 vol/g ( ~ 7 5 0  ml) 10 m M  Teola, 
pH 7.5, 0.4 m M  DTT, 30% sucrose, 40 m M  sodium pyro- 
phosphate, 1 m M  EDTA, 5 m M  EGTA, 0.02 % sodium azide, 
1 m M  P M S E  0.5 m M  TPCK,  and 1 m M  TLCK .  In some 
preparat ions 1 m M  DIFP  was also included.  Cells  were 
lysed by sonicat ion as described in Materials  and Methods 
for the purification of myosin.  The lysate was centr ifuged at 
50,000 g for 30 min.  The supernatant  was collected and 
diluted vol/vol with 10 m M  Teola, pH 7.5, 0.4 m M  DTT, 25 
m M  sodium pyrophosphate,  1 m M  EDTA, 5 m M  EGTA, and 
0.02 % sodium azide. In some preparat ions 1 m M  D I F P  was 
also included. Next this material  was clarified by centrifuga- 
t ion at 100,000 g for 1 h. The HSS was collected. 

Ammonium Sulfate Fractionation. After  the addit ion of 
Teola, pH 7.5, to 50 mM,  the HSS was fractionated with am- 
m o n i u m  sulfate. For  M L C K  assays, fractions were dialyzed 
against 10 m M  Tris, pH 7.5, 1 m M  EDTA, 1 m M  DTT, and 
0.02 % sodium azide. Dictyostelium M L C K  activity fraction- 
ated in 70-100% (NH4)2SO4 (Fig. 1). The 80-100% (NH4)2- 
SO4 cut, which consti tuted about  a 30-fold purif icat ion of  
M L C K  activity as compared with the HSS (Table I), con-  
rained '~1% of the total protein and ,~40% of the total M L C K  
activity. In contrast,  the 4 0 - 6 0 %  (NI'L)2SO4 cut (see the 
0 - 6 0 %  cut in Fig. 1) contains  kinase activity that phosphory- 
lates at least 100 different proteins. 

The amount  of enzyme present  in the 80-100% (NH4)2- 
SO4 cut is independent  of the phase of growth of Dic- 

Figure 1. (NH4)2SO4 frac- 
tionation of Dictyostelium 
MLCK. (A) SDS gel elec- 
trophoresis on 12 % polyacryl- 
amide of (NH4)2SO4 cuts of 
Dictyostelium HSS incubated 
together with [y-32p]ATP and 
Dictyostelium myosin and (B) 
corresponding autoradiogram. 
Myosin (14 Ixg) was incubated 
with 30 ~tg of each cut as de- 
scribed in Materials and Meth- 
ods. (a) Myosin only, (b) HSS 
only, (c) HSS and myosin, (d) 
0-60% + myosin, (e) 60-70% 
+ myosin, ( f )  70-80% + 
myosin, (g) 80-100% + myo- 
sin, (h) 100% (NH4)2504 su- 
pernatant + myosin. The posi- 
tions of Dictyostelium myosin 
heavy chain (210,000 D) and 
light chain (18,000 D) are indi- 
cated. 
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Table I. Purification of Dictyostelium MLCK 
Step Volume Protein concentration Total protein Total activity Specific activity Total-fold purification 

ml mg/ml rag prnol/min pmol/min/mg 

HSS 1,450 13.8 20,000 6,000 0.3 - 
(NI-L)2SO4 30.5 8.3 250 2,500 10 33 
DE-52 21.5 0.32 6.9 2,150 310 1,030 
HAP 3.0 0.31 0.9 1,280 1,420 4,700 

The starting material for this preparation was 350 g ofDictyostelium discoideum amebas. Samples were dialyzed into 10 mM Tris, plI 7.5, 5 mM EGTA, 1 mM 
EDTA, 1 mM DTT, 5% sucrose, and 0.01% sodium azide (DE-52 buffer) before quantitative assay of MLCK activity as described in Materials and Methods. 

tyostelium amoebae in HL-5 liquid medium. We found no 
difference in the pattern of fractionation of MLCK or in the 
amount of enzyme present in the 80-100% cut for cells grown 
to OD 0.5 (log-phase growth) as compared with OD 1.0 (sta- 
tionary phase) or OD 0.5 starved for 6 h in phosphate buffer 
(MKK2 buffer prepared as described by Dinauer et al. [19]) 
to induce the early stages of differentiation of Dictyostelium 
amebas to form slugs. 

For large MLCK preparations, the 80-100% (NH4)2SO4 

cut was routinely collected. The 70-80% cut was not col- 
lected because it contains many more proteins than the 80- 
100% cut, as judged by SDS PAGE (Fig. 1). The 80-100% 
cut was collected as follows. After addition of Teola, pH 7.5, 
to 50 mM, the HSS was made 70% in (NHahSO4. Solid 
ammonium sulfate was added in increments with constant 
slow stirring at 0°C. The sample was then centrifuged at 
27,000 g for 30 min. The 70% supernatant was then made 
80 % in ( N H 4 ) 2 5 0 4 .  Again the sample was centrifuged and 
the supernatant was then made 100% in (NI-L)2SO4. The 
sample was centrifuged and the 80-100% (NI-L)2SO4 pellet 
was homogenized gently in a small volume of 10 mM Tris, 

pH 7.5, 5 mM EGTA, 1 mM EDTA, I mM DTT, 5 % sucrose, 
0.02% sodium azide, 1 mM PMSE 0.25 mM TPCK, and 
0.5 mM TLCK, and dialyzed against the same solution. In 
some preparations 1 mM DIFP was also included. 

DEAE Chromatography. The 80-100% (NI"I4)2804 cut, 
which had been dialyzed as described above, was clarified 
by centrifugation at 100,000 g for 1 h and applied to a DEAE 
cellulose column as illustrated in Fig. 2 (left). A 30-fold 
purification and 90% recovery are achieved with this step 
(Table I) for two reasons. First, with the inclusion of 5 mM 
EGTA in the column buffer, most protein does not bind to 
the column, whereas MLCK does. Secondly, the enzyme 
binds tightly to DEAE, which suggests that it is very acidic. 
It elutes behind the main protein peak (Fig. 2, left) at "~0.13 
M KCI. A total fold purification of about 1,000 is achieved 
(Table I). The peak was pooled and dialyzed against 10 mM 
potassium phosphate, pH 7.5, 1 mM EDTA, 1 mM DTT, 5% 
sucrose, and 0.02 % sodium azide. 

HAP Chromatography. The pooled and dialyzed DEAE 
MLCK peak was applied to a HAP column (Fig. 2, right). 
Dictyostelium MLCK activity eluted on the leading edge of 
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Figure 2. (Left) DEAE chromatography of Dictyostelium MLCK. 250 mg of 80-100% cut of Dictyostelium HSS in 30 ml was applied 
to a 2 × 8-cm column (25 ml) of DEAE-cellulose (DE-52) preequilibrated with 10 mM Tris, pH 7.5, 5 mM EGTA, 1 mM EDTA, 1 mM 
DTT, 5 % sucrose, and 0.02% sodium azide. The column was run at 20 cm of pressure and eluted with a t50-ml linear 0-0.5 M KC1 gradient 
in column buffer. Fractions were dialyzed against column buffer without KCI and 8-~tl aliquots were assayed for MLCK activity as described 
in Materials and Methods. (Right) HAP chromatography of Dictyostelium MLCK. 7 mg of pooled DEAE peak in 21 ml was applied to 
a 4 x 0.8-cm column (2.5 ml) of HAP preequilibrated with 10 mM potassium phosphate, pH 7.5, 1 mM EDTA, 1 mM DTT, 5% sucrose, 
and 0.02% sodium azide. The column was run at 20 cm of pressure and eluted with a 50-ml linear 0.01-0.5 M potassium phosphate gradient 
in column buffer. Fractions were dialyzed against 10 mM Tris, pH 7.5, 5 mM EGTA, 1 mM EDTA, 1 mM DTT, 5 % sucrose, and 0.02 
sodium azide, and 8-I.tl aliquots were assayed for MLCK activity as described in Materials and Methods. 
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Figure 3. SDS gel electrophoresis 
on 15 % polyacrylamide of the pu- 
rification of Dictyostelium MLCK. 
15 I~g of protein was applied to 
each lane. (a) HSS, (b) 80-100% 
(NH4)2SO4 cut, (c) DEAE pool, 
(d) HAP peak fraction. Molecu- 
lar mass standards are shown 
on the right. (Arrow) 33,000-D 
doublet. 

the main protein peak at '~0.04 M potassium phosphate. A 
4.5-step fold purification with '~60% recovery of activity 
was achieved (Table I). An attempt to improve on this by 
making the phosphate gradient shallower was unsuccessful. 
The total fold purification of MLCK after HAP chro- 
matography was *4,700-fold. An SDS gel of the HAP peak 
fraction of  MLCK activity is compared in Fig. 3 with the 
HSS, 80-100% (NH4)2SO4 cut, and DEAE pool. The DEAE 
pool consists of at least 20 major bands, whereas the HAP 
peak fraction consists of  about six major bands. There is a 
single band of  "o50,000 daltons, a doublet at '~33,000 D, a 
single band at ~26,000 D and a doublet at ,~20,000 D. The 

peak of MLCK activity comigrated only with the 33,000-D 
doublet. 

An additional point of  interest is that the lower band of the 
33,000-D doublet, but not the upper band, is the only other 
protein besides the myosin light chain that is phosphorylated 
during the MLCK reaction. This phosphorylation also oc- 
curs when the MLCK preparation is incubated with ATP in 
the absence of myosin. 

HAP fractions were dialyzed (see legend to Fig. 2) and 
stored either at 0°C or in aliquots in liquid N2. 

Comments on the Purification Procedure. As described 
above, •1 mg of Dictyostelium MLCK can be isolated from 
350 g of  wet cells by 80-100% ammonium sulfate precipita- 
tion and chromatography on DEAE and HAP. The overall 
purification is "~4,700-fold (Table I). This material is rela- 
tively stable. In one experiment, HAP peak at 0.3 mg/ml 
stored at 0°C lost 35 % of its activity over a 5-d period. This 
material can also be stored in liquid N2 in which case less 
activity is lost. About 350 g of wet cells is necessary for a 
good MLCK preparation because it is important that protein 
concentration in the HAP peak be/>0.1 mg/ml. More dilute 
concentrations of enzyme lost activity rapidly and activity 
was not stable to storage in liquid N2. 

Because of the known sensitivity to proteolysis of MLCK 
purified from other sources, we took several precautions to 
avoid proteolysis during our purification. Amebas were 
lysed under conditions that minimize proteolysis (70). EGTA 
and EDTA were included in all buffers, except the HAP and 
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Figure 4. HPLC on G3000SW of Dictyostelium MLCK. An aliquot 
(62 tag in 200 lal) of HAP peak fraction 74 was dialyzed against 10 
mM Tris, pH 7.5, 2 mM EDTA, 1 mM DTT, and 0.1 M KC1 and 
then applied to a 60-cm HPLC gel filtration column, Toyo Soda 
G3000SW, mol wt range 1,000-300,000. The column was pre- 
equilibrated with the same buffer and run at 0.5 ml/min. 0.5-ml 
fractions were placed on ice as soon as they were collected. 10%tl 
aliquots were assayed immediately for MLCK activity, according 
to Materials and Methods. The remainder of each fraction was used 
for SDS polyacrylamide gel electrophoresis (see inset and Fig. 5). 
(Inset) MLCK activity peak fraction 13 consists of 30 % 33,000-mol 
wt doublet. Aliquots (0.5 ml) of HPLC G3000SW fractions were 
precipitated with TCA and analyzed by 15 % SDS PAGE. Upper gel 
scan: 15 I~g of HAP peak fraction. The same gel appears in Fig. 
3, lane d. Lower gel scan: 4 I.tg of MLCK activity peak fraction 
13. (Arrow) 33,000-mol wt doublet. Our most pure fraction of 
MLCK activity illustrated here consists of "~30% 33,000 mol wt 
doublet. Two other proteins are present in this fraction, both of tool 
wt <33,000, but neither of these comigrates with MLCK activity. 
(Note that the densitometer used for these gel scans does not resolve 
the two components of the 33,000-mol wt doublet). 

0.010 o 

- HPLC COLUMN 

0.005 ~ ~ ,~ ~ 2.0 

Z ' , ~  E 1.0 _ . ,  = ~ .  
~ • 

o ,. , ,, ,, 
0 

~ ~=~_ 0.4 
t~ z_ 

. - -  = 

' ~ o.12 " " / ~ D  t 
o oB 

/ t o = _ _ . . , ~ o ,  , , 
o.. 0 ~ 11 12 13 14 

FRACTION NUMBER 

Figure 5. Comigration ofDictyostelium MLCK activity and 33,000- 
D doublet with chromatography on HPLC G3000SW. Aliquots (0.5 
ml) from the experiment illustrated in Fig. 4 were precipitated with 
TCA, analyzed by 15 % SDS PAGE, and scanned with a very high 
resolution densitometer which was capable of resolving the two 
components of the 33,000-D doublet (see Materials and Methods). 
The upper panel shows MLCK activity (solid circles). The middle 
panel shows the amount of upper band (solid triangles) as compared 
with lower band (open triangles) of the 33,000-D doublet in each 
fraction. The lower panel (open squares) illustrates phosphoryla- 
tion of the lower band of the 33,000-D doublet which occurred dur- 
ing the MLCK assay. The extent of phosphorylation was deter- 
mined as described in Materials and Methods. 
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HPLC column buffers which had EDTA alone. The proteoly- 
sis inhibitors PMSF, TPLK, and TLCK were used routinely. 
DIFP was also used in some preparations. In one prepara- 
tion, the cells were split into two batches and DIFP was used 
in one batch and omitted from the second batch. The two 
batches were processed separately through the DEAE chro- 
matography step. No significant difference in the yield or 
properties of the MLCK activity was found. 

Properties of  Dictyostelium MLCK. To gain further in- 
formation about the molecular weight of the myosin light 
chain kinase, we analyzed the HAP pool by HPLC (Fig. 4). 
The Dictyostelium MLCK eluted as a single peak of activity 
with an apparent native molecular weight of ,~30,000 as 
compared with standards of mol wt 240,000 (13-phycoeryth- 
rin); 67,000 (BSA); 43,000 (ovalbumin); and 17,000 (myoglo- 
bin) run on the same column under identical conditions. As 
we found for the HAP column, the peak of MLCK activity 
on HPLC comigrates with a 33,000 doublet (Fig. 5). Interest- 
ingly, as we found for the HAP pool, the lower band of the 
33,000-D doublet, but not the upper band, is phosphorylated 
during the MLCK reaction (Fig. 5, lower panel). The in- 
crease in the specific activity of the two HPLC fractions with 
maximal activity (fractions 12 and 13) as compared with the 
column load was marginal (data not shown), probably be- 
cause of loss of enzyme activity as a result of the substantial 
dilution that occurred (from 0.3 mg/ml in the HAP pool to 
•0.01 mg/ml in fractions 12 and 13). In our most purified 
material, HPLC fraction 13, the 33,000-D doublet is ~30% 
of the total protein present (Fig. 4, inset). 

The effects of various ions and cyclic nucleotides on 
MLCK activity were examined. Assays for MLCK activity 
were generally carried out in I0 mM Tris, pH 7.5, 5 mM 
Mg 2÷, 1 mM ATP. Addition of 1-2 mM cAMP or cGMP 
had no effect on MLCK activity. KC1 inhibited MLCK activ- 
ity significantly. 50-100 mM KCI reduced activity to 50% as 
compared with samples without KC1. Mg 2+ was required 
for MLCK activity. Significant activity occurred when 2-10 
mM Mg 2+ was included with the buffer. Ca 2+ could not sub- 
stitute for the Mg 2÷ requirement. Samples having 1-10 mM 
Ca 2÷ in buffer that lacked Mg 2÷ had no measurable MLCK 
activity. When added to the usual assay buffer that included 
Mg :÷, 1 mM Ca ~÷ inhibited MLCK activity. 1-2 mM Ca 2÷ 
reduced MLCK activity to ~<50 % as compared with samples 
without Ca 2÷. This is illustrated in Fig. 6 (lanes d and e). 

Dictyostelium MLCK activity in 1 mM Ca 2÷ was not 
affected by the addition of calmodulin purified from either 
bovine brain (Fig. 6, lanes e and f )  or Dictyostelium (data 
not shown). In coatrast, gizzard smooth muscle light chain 
kinase was activated by calmodulin and 1 mM Ca 2÷ using 
either smooth muscle myosin (lane n) or rabbit skeletal mus- 
cle myosin (lane m) as substrate, as expected (3). 

Dictyostelium MLCK is specific for Dictyostelium myosin 
among other myosins tested. As illustrated in Fig. 6, Dictyo- 
stelium MLCK phosphorylated Dictyostelium myosin (lane 
d), but not rabbit skeletal muscle myosin (lane h), smooth 
muscle myosin isolated from turkey gizzard (lane j), or 
Acanthamoeba myosin II (data not shown). Histone and 
casein were not phosphorylated by the enzyme. 

Figure 6. Dictyostelium MLCK will phosphorylate Dictyostelium myosin but not skeletal or smooth muscle myosins, and the activity of 
the enzyme is not affected by the addition of calmodulin. SDS gel electrophoresis on (A) 12% polyacrylamide and (B) corresponding autora- 
diogram. Protein in 20-~tl assay: Dictyostelium myosin, turkey gizzard smooth muscle myosin or rabbit skeletal muscle myosin, 10 lag; 
Dictyostelium HAP peak MLCK, 0.35 ~tg; turkey gizzard smooth muscle MCLK, 0.15 lag; bovine brain calmodulin, 0.05 lag. Buffer: for 
Dictyostelium MLCK, 20 mM Tris, pH 7.5, 5 mM Mg 2+, 0.75 mM ATP; for smooth muscle MLCK, 20 mM Tris, pH 7.5, 4 mM MgCI2, 
1 mM DTT, 0.75 mM ATP. 1 mM Ca 2÷ was also included where indicated below. [~/-32P]ATP was 500 cpm/pmol ATP. Incubation was 
10 min at 22°C. Samples were processed as in Materials and Methods. (a) Dictyostelium MLCK alone, (b) Dictyostelium MLCK + 
calmodulin, (c) Dictyostelium myosin alone, (d) Dictyostelium myosin + Dictyostelium MLCK, (e) Dictyostelium myosin + Dictyostelium 
MCLK + CaClz, (f)  Dictyostetium myosin + Dictyostelium MLCK + CaC12 + calmodulin, (g) skeletal muscle myosin alone, (h) skele- 
tal muscle myosin + Dictyostelium MLCK, (i) smooth muscle myosin alone, (j) smooth muscle myosin + Dictyostelium MLCK, (k) 
smooth muscle MLCK + Ca -'+ + calmodulin, (I) Dictyostelium myosin + smooth muscle MLCK + Ca 2÷ + calmodulin, (m) skeletal 
muscle myosin + smooth muscle MLCK + Ca 2÷ + calmodulin, (n) smooth muscle myosin + smooth muscle MLCK + Ca 2÷ + 
calmodulin. 
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Figare 7. (Top left) Affi-Gel Blue chromatography of Dictyostelium myosin phosphatase. The 30-60% (NH4)2SO4 cut (1.9 g of protein; 
55 ml) of the Dictyostelium HSS was applied to a 2.2 × 18-cm column of Afli-Gel Blue 100-200 mesh, 75-150 Ixm run at 14 cm of pressure. 
The column was preequilibrated with 10 mM Tris, pH 7.5, 50 mM KCI, 1 mM EDTA, 1 mM DTT, and 0.02% sodium azide and developed 
with the same buffer. 6-txl aliquots of each fraction were assayed for myosin phosphatase activity and 10-p.l aliquots were assayed for alkaline 
phosphatase activity, as described in Materials and Methods. (Top right) Gel filtration on A-0.5m of Dictyostelium myosin phosphatase. 
The Afti-Gel Blue pool (,'~500 mg of protein concentrated into 6.5 ml as described in Results) was applied to a 70 x 2.5-cm column of 
agarose A-0.5m, 100-200 mesh, which was run at 30 cm of pressure. The column was preequilibrated with 20 mM Tris, pH 7.5, 0.5 M 
KCI, 1 mM EDTA, 1 mM DTT, and 0.02 % sodium azide and developed with the same buffer. 10-111 aliquots of each fraction were assayed 
for alkaline phosphatase activity and 6-I.tl aliquots of each fraction were assayed for myosin phosphatase activity, as described in Materials 
and Methods, after dialysis of fractions against 20 mM Tris, pH 7.5, 25 mM KCI, 1 mM EDTA, 1 mM DTT, and 0.02% sodium azide. 
(Bottom le.fO DEAE chromatography of Dictyostelium myosin phosphatase. The A-0.5m pool (17 mg of protein; 10 ml) was applied to a 
4.0 x 1.2-cm (4.5 ml) column of DEAE Sephadex (DE-52) run at 15 cm of pressure. The column was preequilibrated with 20 mM Tris, 
pH 7.5, 25 mM KC1, 1 mM EGTA, 1 mM DTT, and 0.02% sodium azide and developed with an 80-ml linear 0.025-0.75 M KC1 gradient 
in column buffer. 10-1xl aliquots of each fraction were assayed for myosin phosphatase activity and 40-ktl aliquots were assayed for alkaline 
phosphatase activity, as described in Materials and Methods. (Bottom right) HAP chromatography of Dictyostelium myosin phosphatase. 
The pooled DEAE peak (2 mg of protein; 6.5 ml) was applied to a 4.5 x 1.2-cm (5 ml) column of HAP run at 15 cm of pressure. The 
column was preequilibrated with 10 mM potassium phosphate, pH 7.5, 1 mM DTT, and 0.02% sodium azide and eluted with a 120-ml 
linear 0.01-0.4 M potassium phosphate gradient in column buffer. 50-I.tl aliquots of each fraction were assayed for alkaline phosphatase 
activity as described in Materials and Methods. 6-p.1 aliquots of each fraction were assayed for myosin phosphatase activity after dialysis 
of fractions against 20 mM Tris, pH 7.5, 25 mM KCi, 1 mM EDTA, 1 mM DTT, and 0.02% sodium azide. 

Stoichiometry of phosphorylation of Dictyostelium myosin 
with Dictyostelium MLCK is />0.96 mol PJmol 18,000-D 
light chain (described below). 

The residue on Dictyostelium myosin is 18,000-D light 
chain, which is phosphorylated in vivo and in vitro by Dictyo- 
stelium MLCK, is serine (E. R. Kuczmarski,  Northwestern 
University School of Medicine, personal communication; 

Berlot, Devreotes, and Spudich, manuscript submitted for 
publication). 

Purification of MLCP from Dictyostelium 
Steps in the Purification: Preparation of HSS. '~70 g of 
amebas of  Dictyostelium was harvested by centrifugation, 
washed, and again collected as described for the purification 
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Table II. Purification of Dictyostelium MLCP 

Step Volume Total protein Total activity Specific activity Total-fold purification 

ml mg pmol/min pmol/min/mg 

HSS 410 4,900 64,000 13 - 
30-60% cut 55 1,900 28,000 15 1.1 
Affi-Gel 110 520 16,000 31 2.4 
A-0 .5m 50 90 4,200 47 3.6 
DE-52 10 17 1,800 106 8.2 
HAP 6.5 2.0 870 430 33 

The starting material for this preparation was 70 gm of Dictyostelium discoideum amebas. Samples were dialyzed into 20 mM Tris, pH 7.5, 25 mM KCI, 1 mM 
EGTA, 1 mM DTT, 0.02% sodium azide (DE-52 buffer) and phosphatase activity was assayed quantitatively as described in Materials and Methods. 

of MLCK. The cells were next combined with 2 vol/g of 10 
mM Teola, pH 7.5, 40 mM sodium pyrophosphate, 30% su- 
crose, 0.4 mM DTT, 2 mM EDTA, i mM PMSF, 0.5 mM 
TPCK, and 1 mM TLCK. Cells were lysed by sonication as 
described in Materials and Methods for the purification of 
myosin. The lysate was centrifuged at 27,000 g for 30 min. 
The supernatant was collected and diluted vol/vol with 10 
mM Teola, pH 7.5, 25 mM sodium pyrophosphate, 0.4 mM 
DTT, and 2 mM EDTA. The diluted lysate was clarified by 
centrifugation at 100,000 g for 1 h. The HSS was retained. 

Ammonium Sulfate Fractionation. After addition of 
Teola, pH 7.5, to 50 mM, the HSS was made 30% in 
(NH4)2SO4 with constant stirring at 0°C. The sample was 
centrifuged at 27,000 g for 30 min and the 30% supernatant 
was retained. The supernatant was made 60 % in (NH4)2SO4 
and centrifuged, and the 30-60% (NH4)2SO4 pellets were 
retained. The pellets were homogenized gently into a mini- 
mal volume (total volume of pellets plus buffer 50-60 ml) of 
10 mM Tris, pH 7.5, 50 mM KCI, 1 mM EDTA, 1 mM DTT, 
and 0.02 % sodium azide and dialyzed against the same buf- 
fer. This step separates MLCP from Dictyostelium MLCK 
activity, which fractionates in 70-100% ( N H 4 ) 2 5 0 4  (as de- 
scribed above). 

Affi-Gel Blue Chromatography. The dialyzed 30-60% 
(NH4)2SO4 cut was clarified by centrifugation at 100,000 g 
for 1 h and the supernatant applied to an Affi-Gel Blue 
column as illustrated in Fig. 7 (top left). Dictyostelium myo- 
sin phosphatase activity eluted on the trailing edge of the 
run through, along with alkaline phosphatase activity. A 2.4- 
fold purification and 60 % recovery of activity were achieved 
with this step (Table II). This step separates light chain phos- 
phatase from heavy chain kinase activity, which binds to 
Atii-Gel Blue (E.R. Kuczmarski, Northwestern University 
School of Medicine, personal communication). 

A-O.5m Chromatography. The myosin phosphatase activ- 
ity peak from the Affi-Gel Blue column was pooled and 
brought to 50 mM in Teola, pH 7.5. Solid (NH4)2SO4 was 
added to 65 % in increments with continuous gentle stirring 
at 0°C and the precipitate was sedimented at 27,000 g for 30 
min. The pellet was homogenized gently with 20 mM Tris, 
pH 7.5, 0.5 M KC1, 1 mM EDTA, 1 mM DTT, and 0.02% 
sodium azide to a total volume of 6.5 ml. This sample was 
clarified by centrifugation at 27,000 g for 30 rain and loaded 
on an agarose A-0.5m column as illustrated in Fig. 7 (top 
right). Myosin phosphatase activity eluted as a single peak 
with a dissociation constant (Ko) of 0.36. Alkaline phospha- 
tase activity eluted as a much broader peak in the same re- 
gion and slightly behind the peak of myosin phosphatase ac- 

tivity. A 1.5-fold purification and 26% recovery of activity 
were achieved with this step (Table II). The peak was pooled 
and dialyzed against 20 mM Tris, pH 7.5, 25 mM KC1, 1 mM 
EDTA, 1 mM DTT, and 0.02 % azide. 

DEAE Chromatography. The dialyzed A-0.5m myosin 
phosphatase activity peak was chromatographed on DEAE 
cellulose (DE-52) as shown in Fig. 7 (bottom left). Myosin 
phosphatase activity binds to DEAE and elutes at 0.22 M 
KC1, on the trailing edge of the protein peak. Alkaline phos- 
phatase activity elutes slightly ahead of the myosin phospha- 
tase activity. A 2.2-fold purification and 43 % recovery of ac- 
tivity were achieved with this step (Table II). Fractions 
having myosin phosphatase activity were pooled and dia- 
lyzed against 10 mM potassium phosphate, pH 7.5, 1 mM 
EDTA, 1 mM DTT, and 0.02% sodium azide. 

HAP Chromatography. The final step in the purification 
of Dictyostelium myosin phosphatase was chromatography 
on HAP. The dialyzed activity peak from DEAE was chro- 
matographed as illustrated in Fig. 7 (bottom right). Myosin 
phosphatase activity bound to HAP and eluted with the main 
peak of protein at about 0.05 M potassium phosphate. The 
myosin phosphatase peak had very little alkaline phosphatase 
activity. A 4.2-fold purification and 48 % recovery of activity 
were achieved with this step (Table II). 

The Dictyostelium myosin phosphatase HAP peak was 
concentrated by dialysis against dry Aquacide III and then di- 
alyzed into 20 mM Tris, pH 7.5, 25 mM KCI, 1 mM EDTA, 
1 mM DTT, and 0.02 % sodium azide. 75 % of the protein and 
47 % of the phosphatase activity were recovered after this 
procedure. 

In summary, '~1.5 mg of partially purified Dictyostelium 
myosin phosphatase can be isolated from 70 g of wet cells 
by 30-60 % ammonium sulfate precipitation and chromatog- 
raphy on Affi-Gel Blue, A-0.5m, DEAE, and HAP. The 
overall purification is 33-fold (Table II). This material is sta- 
ble for at least 1 wk when stored at 0°C. The quantity of ma- 
terial obtained is adequate for dephosphorylating several mg 
of Dictyostelium myosin. 

Kinetic Properties of Dictyostelium Myosin Phospha- 
tase. Dictyostelium myosin phosphatase dephosphorylates 
Dictyostelium myosin such that ~<0.01 mol P~/mol 18,000-D 
light chain remains. In one experiment, purified myosin was 
incubated without or with 0.1 lag of phosphatase/~tg of myo- 
sin for 2 h at 22°C under standard buffer conditions. By scan- 
ning densitometry of glycerol-urea gels of the myosins, the 
phosphorylated sample had 0.7 mol P~/mol 18,000-D light 
chain, an amount higher than previously found (33), where- 
as the dephosphorylated sample had no detectable phos- 
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Figure 8. Dictyostelium myosin phosphatase removes 32p from the 
light chain but not from the heavy chain of Dictyostelium myosin 
purified from amebas grown in [32p]phosphate. 15 Ixg of myosin 
labeled in vivo as described in Materials and Methods was in- 
cubated together with either 3.5 ~tg of DEAE purified phosphatase 
(open symbols) or 2.0 p.g of HAP purified phosphatase (solid sym- 
bols) in 25 mM Tris, pH 7.5, 5 mM MgC12, and 1 mM CaCI~ at 
22°C for the times designated. To quantify phosphate remaining on 
either heavy chain or light chain, samples were run on SDS poly- 
acrylamide gels and an autoradiogram was developed. The auto- 
radiogram was scanned, the peaks were cut out and weighed, and 
the relative percent phosphorylation was calculated. 

phate. In a parallel experiment, using myosin previously la- 
beled in vitro with Dictyostelium M L C K  and ['/-32p]ATP, 
the phosphatase-treated sample had ~<0.01 mol P~/mol 
18,000-D light chain. 

The phosphatase preparation does not contain contaminat- 
ing proteases, as judged by the following data. First, no pro- 
teolysis of myosin occurred with phosphatase treatment as 
assessed by SDS PAGE (data not illustrated). Secondly, the 
phosphatase-treated myosin can be rephosphorylated by in- 
cubation with Dictyostelium MLCK and ATP, and the 
rephosphorylated myosin has properties similar to those of 
myosin treated with kinase only (see below). 

Dictyostelium myosin phosphatase appears to be a rela- 
tively specific enzyme in that it will remove serine phosphate 
from the light chain but not from the heavy chain of  Dic- 
tyostelium myosin. In the experiment illustrated in Fig. 8, in 
vivo labeled myosin having 32p on both the 210,000-D heavy 
chain and the 18,000-D light chain was incubated for various 
amounts of  time with Dictyostelium myosin phosphatase. Af- 
ter incubation for 1 h, none of the heavy chain phosphate was 
removed whereas '~70 % of the light chain phosphate was re- 
moved. After incubation for 2 h, ~ 5  % of the heavy chain 
phosphate was removed and 85 % of the light chain phosphate 
was removed. Later preparations of phosphatase removed all 
detectable light chain phosphate (see above). 

Effects of 18,000-D Light-Chain Phosphorylation 
and Dephosphorylation on the Properties of 
Dictyostelium Myosin 

We prepared Dictyostelium myosin, M L C K  and MLCP, and 
used the same protein preparations in all of  the following ex- 
periments, which examine effects of light-chain phosphory- 
lation and dephosphorylation on properties of myosin. 

Myosin-coated Bead Movement In Vitro. 0.5-2 mg of 

Dictyostetium myosin was treated with either Dictyostelium 
MLCK or Dictyostelium myosin phosphatase as described in 
Materials and Methods. The extent of phosphorylation of the 
18,000-D light chain of Dictyostelium myosin was related to 
the rate at which the myosin moved in an in vitro assay (61), 
as illustrated in Fig. 9. The untreated myosin, which had 0.33 
mol phosphate/mol 18,000-D light chain, moved at rates be- 
tween 0.8 and 1.2 ~tm/s (upper panel). After treatment with 
kinase, the myosin had 0.96 mol phosphate/mole 18,000-D 
light chain and moved more rapidly at rates between 1.1 and 
1.6 I~m/s (second panel). In both of these cases, the majority 
of the beads that settled onto the Nitella substratum moved 
(60-80 % of the beads moved in all cases except for dephos- 
phorylated myosin). In contrast, myosin that was treated with 
phosphatase and then bound to beads had ~<0.01 mol phos- 
phate/mol 18,000-D light chain and its rate of movement was 
zero for most of the beads (>99%) that settled onto the 
Nitella substratum. The few beads that moved (<1%) did so 
at a rate of 0.4-0.8 ~tm/s (third panel). Finally, it was possi- 
ble to rephosphorylate the phosphatase-treated myosin. Such 
myosin was found to move at rates equivalent to those for 
myosin that had been treated with kinase only. In one type 
of experiment, phosphatase-treated myosin was treated with 
MLCK and ATP while bound to beads. The movement of 
such kinase-treated myosin is illustrated in the lower panel. 
Alternatively, phosphatase-treated myosin was purified by 
gel filtration chromatography and then treated with MLCK 
and ATP before incubation with beads (lower panel). Both 
of these samples moved at rates of  0.9-1.7 Ima/s. 

Actin-activated Mg 2+ ATPase Activity. Extent of phos- 
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Figure 9. Movement of Dictyo- 
stelium myosin in vitro is related 
to the extent of phosphorylation 
of the 18,000-D light chain. Dic- 
tyostelium myosin was treated 
with Dictyostelium MLCK or 
Dictyostelium myosin phospha- 
tase and samples were assayed for 
movement as described in Mate- 
rials and Methods. The percent- 
age of the beads, or bead ag- 
gregates (61), that moved at each 
velocity shown is plotted, where 
n = total number of beads or 
bead aggregates that settled onto 
the Nitella substratum. Those 
beads that did not move are not 
plotted. (Top panel) Untreated 
myosin bound to beads (n = 15, 
67% moved). (Second panel, 
hatched) Myosin phosphorylated 
with kinase and then bound di- 

rectly to beads; (cross-hatched) myosin phosphorylated with ki- 
nase, purified by gel filtration, and then bound to beads; the total 
height for each bar shown represents the sum of the two data sets 
(n = 20, 75% moved). (Third panel) Myosin dephosphorylated 
with phosphatase and then bound directly to beads (n = 730, 0.9% 
moved). (Lower panel, cross-hatched) Myosin dephosphorylated 
with phosphatase, bound to beads, and subsequently rephos- 
phorylated with kinase while bound to beads; (hatched) myosin 
dephosphorylated with phosphatase, purified by gel filtration, 
rephosphorylated with kinase, and subsequently bound to beads; 
the total height for each bar shown represents the sum of the two 
data sets (n = 61, 72 % moved). 
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Figure 10. Actin-activated ATPase activity of Dictyostelium myosin 
is related to the extent of phosphorylation of the 18,000-D light 
chain. Dictyostelium myosin was treated with Dictyostelium MLCK 
or Dictyostelium phosphatase and actin-activated ATPase activity 
measured using rabbit skeletal muscle actin as described in Mate- 
rials and Methods. 

phorylation of the 18,000-D light chain of Dictyostelium 
myosin was found to be directly related to the actin-activated 
Mg 2÷ ATPase activity of the molecule. As shown in Fig. 10, 
samples of phosphatase-treated, untreated, and kinase- 
treated myosin were combined with various concentrations 
of actin and the actin-activated Mg 2÷ ATPase activity was 
measured. The actin-activated Mg 2÷ ATPase activity of the 
kinase-treated sample is four to five times that of the 
phosphatase-treated sample. The actin-activated Mg 2÷ ATP- 
ase activity of the untreated sample, which had 0.33 mol 
phosphate/mol 18,000-D light chain, was found to be inter- 
mediate between the values for the kinase-treated and phos- 
phatase-treated samples. 

Assembly. Under the conditions that we used, we did not 
observe a significant effect of phosphorylation of the 18,000- 
D light chain of Dictyostelium myosin on assembly of the 
molecule into thick filaments. Samples of Dictyostelium 
myosin that were untreated or treated with Dictyostelium 
MLCK or myosin phosphatase were assayed for filament as- 
sembly in 10 mM Tris, pH 7.4, 0.1 mM EDTA, and 0.1 mM 
DTT, with varying concentrations of KCI as illustrated in 
Fig. 11. The sample of phosphatase-treated myosin appeared 
to have a slightly higher degree of polymerization as com- 
pared with the other two samples, but the differences among 
the three samples were small. 

Discussion 

Dictyostelium MLCK 
We do not know whether the enzyme that we have purified 
is the only MLCK in Dictyostelium. We were persuaded to 
study this particular enzyme because of its striking spe- 
cificity for Dictyostelium 18,000-D light chain apparent very 
early in the purification with ammonium sulfate fraction- 
ation (Fig. 1). 

Dictyostelium MLCK differs from MCLK isolated to date 
from vertebrate smooth muscle (3, 69), vertebrate skeletal 
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Figure 11. Dictyostelium myosin thick filament formation as a func- 
tion of ionic strength is independent of the extent of phosphoryla- 
tion of the 18,000-D light chain. Dictyostelium myosin was treated 
with Dictyostelium MLCK or Dictyostelium phosphatase and thick 
filament assembly assayed as described in Materials and Methods. 
Buffer conditions: 10 mM Tris, pH 7.5, 0.1 mM EDTA, 0.1 mM 
DTT. Untreated myosin (half-solid circles), MLCK-treated myosin 
(solid circles), myosin phosphatase-treated myosin (open circles). 

muscle (44, 75), vertebrate cardiac muscle (74), and ver- 
tebrate nonmuscle sources such as brain (26), platelet (25), 
and BHK-21 (76). For example, smooth muscle MLCK, 
which has been studied most extensively, is a Ca2+/calmod - 
ulin-dependent enzyme of 130,000 mol wt (3, 69). In con- 
trast, for Dictyostelium MLCK we show here that a doublet 
of 33,000 mol wt appears to be important for activity, and 
this activity is not Ca2+/calmodulin dependent. An issue of 
importance is whether this Dictyostelium enzyme has suf- 
fered proteolysis during purification. In early attempts to pu- 
rify MLCK from skeletal muscle (52) and from platelets (18), 
for example, proteolyzed Ca2+/calmodulin-independent en- 
zymes were isolated. In later work MLCK-from skeletal 
muscle (44, 75) and platelets (15, 25) were shown to be larger 
Ca2+/calmodulin-dependent enzymes. Early attempts to pu- 
rify MLCK from chicken gizzard (16, 17) and from bovine 
brain (15) yielded Ca2+/calmodulin-dependent enzymes of 
105,000 D. The most recent work shows that MLCK from 
chicken gizzard (69) and bovine brain (26) are of 130,000 D. 
Further, Walsh et al. (72) have produced a Ca2+/calmodu - 
lin-independent enzyme of 80,000 D by limited proteolysis 
of Ca2÷/calmodulin-dependent turkey gizzard smooth mus- 
cle MLCK. Because Dictyostelium is a large phylogenetic 
distance from the vertebrate MLCKs that have been studied, 
it would not be surprising if it had distinctive properties. Fac- 
tors supporting the argument that the Dictyostelium MLCK 
that we have isolated is a distinctive enzyme and not a break- 
down product of a larger protein are as follows. First, we 
took a number of precautions to avoid proteolysis as de- 
scribed in Results. Secondly, our enzyme initially fraction- 
ates in 80-100% (NH4)2SO4, which is different from other 
MLCK, such as turkey gizzard smooth muscle MLCK (3), 
which fractionates in 40-60% ammonium sulfate. 

Myosin kinases purified thus far from sources other than 
vertebrate are notable in their diversity of properties, al- 
though none of them is like the Dictyostelium MLCK. A dis- 
tinctive light chain kinase has been purified from Limulus 
skeletal muscle. Limulus MLCK is a doublet of 39,000 and 
37,000 D and is Ca2+/calmodulin dependent (59). Phos- 
phorylation of Limulus myosin results in an increase in the 
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actin-activated Mg2+-ATPase activity of the myosin (58). 
Other myosin kinases purified from sources other than ver- 
tebrate are heavy chain kinases. Myosin I heavy chain kinase 
purified from amoebae ofAcanthamoeba castellanii (23) has 
a mol wt of 107,000 and is Ca2+/calmodulin independent. 
Two Acanthamoeba myosin II heavy chain kinases have also 
been partially purified (14, 31). From Dictyostelium, Maruta 
et al. (37) have partially purified an enzyme from growth- 
phase amebas that has an apparent mol wt of 70,000 and is 
Ca2+/calmodulin independent. In contrast, a second distinct 
myosin heavy chain kinase purified from amebas previously 
starved to induce aggregation has an apparent mol wt of 
70,000 and is inactivated by Ca2+/calmodulin. The partially 
purified Dictyostelium myosin heavy chain kinase of Kucz- 
marski and Spudich (33; and manuscript in preparation) has 
an apparent mol wt of 60,000. 

Dictyostelium MLCK appears to be very specific as com- 
pared with other MLCKs investigated so far. Myosins from 
vertebrate smooth muscle and skeletal muscle, and Acan- 
thamoeba myosin II were not phosphorylated by Dictyosteli- 
um MLCK. Further, we found that turkey gizzard smooth 
muscle MLCK will not phosphorylate Dictyostelium myo- 
sin. In contrast, turkey gizzard smooth muscle MLCK will 
partially phosphorylate vertebrate skeletal muscle myosin 
light chain (3). Acanthamoeba myosin I heavy chain kinase 
will also phosphorylate the 20,000-D light chain of smooth 
muscle myosin at what appears to be the same site that is 
phosphorylated by smooth muscle MLCK (24). 

For Dictyostelium myosin 18,000-D light chain, as for ver- 
tebrate smooth muscle myosin 20,000-D light chain (3), ver- 
tebrate skeletal muscle myosin 18,500-D dithionitrobenzoate 
light chain (50), and Acanthamoeba myosin I heavy chain, 
the residue that is phosphorylated is serine. For Dictyosteli- 
um myosin light chain this is the case both for the myosin 
purified from amebas grown in [32p]phosphate and for 
myosin labeled in vitro with purified Dictyostelium MLCK 
and [7-32p]ATP (E.R. Kuczmarski, Northwestern University 
School of Medicine, personal communication). In contrast, 
both serine and threonine phosphorylation of the heavy 
chain of Acanthamoeba myosin 1I (14) and Dictyostelium 
myosin has been measured in vivo and in vitro. Dictyosteli- 
um myosin purified by conventional methods from cells la- 
beled in vivo by growth in [32p]orthophosphate is labeled 
on the heavy chain at serine only (33). Myosin rapidly iso- 
lated from amebas by immunoprecipitation is labeled on the 
heavy chain at both serine and threonine (Berlot, C. H., and 
J. A. Spudich, unpublished observations). One partially 
purified heavy chain kinase from Dictyostelium is specific 
for threonine whereas another phosphorylates both threo- 
nine and serine (37; Kuczmarski, E. R., and J. A. Spudich, 
unpublished observations). 

It is not clear how Dictyostelium MLCK might be regu- 
lated in vivo. As described above we have not been able to 
show Ca 2÷ dependence, Ca2+/calmodulin dependence, or 
any effect of cAMP or cGMP on activity. We have prelimi- 
nary evidence that the lower band of the 33,000-D doublet 
is associated with the MLCK activity, and this polypeptide 
is either autophosphorylated or is phosphorylated by an- 
other kinase that contaminates our MLCK preparation. This 
phosphorylation could be part of a regulatory mechanism, 
but this remains to be determined. Acantharaoeba myosin I 

heavy chain kinase is apparently autophosphorylated (23), 
but the significance of this phosphorylation is also un- 
known. In the case of turkey gizzard smooth muscle MLCK 
(1, 13) and human platelet MLCK (26), phosphorylation by 
cAMP-dependent protein kinase can occur, and this is a 
regulatory mechanism for the enzymes. Phosphorylation 
decreases the affinity of the 130,000-D MLCK for Ca2+/ 
calmodulin, and thereby inhibits the activity of the enzyme. 

Dictyostelium MLCP 

Here we describe a myosin phosphatase that will preferen- 
tially remove phosphate from the light chain but not from the 
heavy chain of Dictyostelium myosin. With this enzyme we 
are able to manipulate the extent of myosin light chain phos- 
phorylation while leaving the extent of heavy chain phos- 
phorylation unaffected and constant. Although the phospha- 
tase preparation is impure, it is active without concomitant 
degradation of the Dictyostelium myosin, indicating that pro- 
tease contamination is not a problem. We found that myosin 
treated with phosphatase and then with Dictyostelium 
MLCK has properties identical to those of myosin treated 
with MLCK alone. 

Because our myosin phosphatase from Dictyostelium is as 
yet partially purified, we do not know whether it is similar 
to the MLCPs that have been purified from rabbit skeletal 
muscle and from turkey gizzard and chicken gizzard smooth 
muscle. The skeletal muscle enzyme purified by Morgan et 
al. (43) has a mol wt of 70,000. Two phosphatases have been 
purified from turkey gizzard smooth muscle by Pato and 
Adelstein (47). Phosphatase I consists of three polypeptides 
of mol wt 60,000, 55,000, and 38,000 and will also dephos- 
phorylate smooth muscle MLCK at about one-half the rate 
that it dephosphorylates isolated 26,000-D light chain. Phos- 
phatase II has a mol wt of 43,000. The phosphatase purified 
from chicken gizzard smooth muscle by Onishi et al. (45) 
consists of components of mol wt 67,000, 54,000, and 
34,000. 

Effects of Reversible Light Chain Phosphorylation 
on the Properties of Dictyostelium Myosin 

Comparison of the rates of movement of phosphorylated 
Dictyostelium myosin and myosin that had been dephosphor- 
ylated with Dictyostelium myosin phosphatase showed that 
light chain phosphorylation is important for myosin move- 
ment on actin. Moreover, we were able to rephosphorylate 
myosin that had previously been treated with phosphatase; 
such myosin moved at rates comparable to those of myosin 
treated with kinase alone. These results are consistent with 
those found for smooth muscle myosin and for Acan- 
thamoeba myosin I. Dephosphorylated smooth muscle myo- 
sin moves very poorly, if at all; when phosphorylated on the 
20,000-D light chain it moves at ,~0.4 gm/s (60). Phos- 
phorylated Acanthamoeba myosin I moves at a slower rate 
(0.06 p.m/s) and movement is again phosphorylation depen- 
dent (4). 

We did not observe an effect of phosphorylation of the 
18,000-D light chain of Dictyostelium myosin on thick fila- 
ment assembly. The conditions used were identical to those 
used by Kuczmarski and Spudich (33) who found that phos- 
phorylation of the heavy chain of Dictyostelium myosin in- 
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hibits thick filament assembly. There is an effect of light 
chain phosphorylation on myosin filament assembly in the 
cases of myosins from chicken gizzard (67) and from calf 
thymus or porcine plateiets (57). In these cases, myosin thick 
filaments remain intact at physiological ionic strength upon 
addition of ATP only if their regulatory light chains are phos- 
phorylated. 

The question of whether Dictyostelium myosin heavy 
chain phosphorylation, which occurs on the tail of the mole- 
cule, exerts its effect on the actin-activated ATPase activity 
of the heads of the molecule directly by a conformational 
change or indirectly by an effect on filament assembly is an 
important one. The answer is not yet clear because in their 
study of Dictyostelium myosin heavy chain phosphorylation, 
Kuczmarski and Spudich (33) measured actin-activated 
Mg 2÷ ATPase activity under conditions in which the un- 
phosphorylated myosin was polymerized but the phosphory- 
lated myosin was only partly polymerized. An additional 
complication is that for myosin in general there are in- 
sufficient data to make firm conclusions about the effects of 
myosin filament formation on actin-activated ATPase activ- 
ity. For example, Reisler (56) showed equivalence of kinetic 
properties of the actin-activated ATPase for short bipolar 
skeletal muscle myosin minifilaments as compared to the 
soluble myosin fragment HMM. In contrast, Kiehart and 
Pollard (28) found that a subset of monoclonal antibodies 
that bind to the tip of the tail of Acanthamoeba myosin II in- 
hibit filament formation, ATPase activity, and actomyosin 
contraction in cytoplasmic extracts. In kinetic experiments 
preformed Acanthamoeba myosin II filaments were disas- 
sembled by antibody and actin-activated ATPase activity was 
lost concomitantly (29). 

It is attractive to speculate that in Dictyostelium amebas 
changes in phosphorylation of myosin occur during motile 
events such as chemotaxis, leading to enhanced actin- 
activated Mg 2+ ATPase activity and myosin mobility. Prog- 
ress in correlating the state of Dictyostelium myosin phos- 
phorylation with changes in cell shape associated with 
chemotaxis has recently been made by Berlot et al. (6). They 
were able to specifically immunoprecipitate myosin from 
chemotactically competent amebas that had previously been 
labeled with [32p]orthophosphate and then stimulated with 
cAMP to induce cell shape changes. It was found that a tran- 
sient increase in phosphorylation of both the heavy chain and 
the 18,000-D light chain of myosin occurs and that the time 
courses of phosphorylation correlate with that of cell shape 
change and chemotaxis. 

In our experiments we have examined properties of myosin 
as a function of extent of light-chain phosphorylation, while 
keeping heavy-chain phosphorylation constant at ,o0.3 mol 
PJmol heavy chain. It will be interesting to examine possi- 
ble relationships between the heavy-chain phosphorylation 
and the light-chain phosphorylation in terms of effects on 
myosin function. For example, what would be the range of 
variation of motility and actin-activated Mg 2+ ATPase activ- 
ity of light-chain-dephosphorylated/heavy-chain-phosphor- 
ylated myosin as compared with light-chain-phosphorylated/ 
heavy-chain-dephosphorylated myosin? Data so far show 
that light-chain phosphorylation enhances actin-activated 
Mg 2+ ATPase five- to sixfold, and that heavy-chain dephos- 
phorylation enhances it about two-fold. Perhaps the corn- 

bined effects of light-chain phosphorylation and heavy-chain 
dephosphorylation are simply additive and one would expect 
therefore a 10-12-fold difference in actin-activated Mg 2+ 
ATPase activity. Alternatively, some cooperativity may exist 
between light chain and heavy chain sites and a more com- 
plex effect on actin-activated ATPase activity may occur. Per- 
sechini and Hartshorne (51), for example, have presented evi- 
dence suggesting that light-chain phosphorylation of both 
heads of smooth muscle myosin is required for the actin- 
activated ATPase activity of either head, and that phosphory- 
lation of the second head of the myosin molecule is nega- 
tively cooperative. Dictyostelium myosin may be more com- 
plicated because heavy-chain phosphorylation is a variable 
also. 

Now that we have available the enzymes necessary to 
quantitatively phosphorylate and dephosphorylate both the 
light and heavy chains of Dictyostelium myosin, we would 
like to determine the properties of myosin that is selectively 
phosphorylated at one site or the other or on both sites. Thor- 
ough studies of actin-activated ATPase activity, assembly, 
and movement in vitro as a function of site specific phos- 
phorylation should now be possible. We anticipate that such 
experiments will yield information about the regulation of 
myosin in general as well as of Dictyostelium myosin in par- 
ticular. 
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