
The formation of specific cell types is dependent on 
interactions between various gene regulatory factors and 
DNA elements, and they cooperatively produce cell type– or 
tissue-specific expression of one or more key differentiation 
genes [1]. Reporter genes under the control of a regulatory 
gene element that is part of such a cell type–specific gene 
regulator network (GRN) have been used when the relations 
between specific genes and cell types are studied. Trans-
genic or knock-in mice that express LacZ or enhanced green 
fluorescent protein (EGFP) under the control of specific 
regulatory sequences have often been used to study cell type 
[2,3] or cell lineage formation [4]. Tissue electroporation is 
an effective way to introduce reporter constructs at a specific 
developmental time point or in a specific structure [5-10]. 
Electroporation in combination with a transposon system that 
integrates the reporter gene into the host cell genome enables 
establishment of tissue-specific cell lineages with a defined 

initiation time [11]. Furthermore, to achieve cell-specific and 
robust reporter gene expression, the transposon vector system 
can be combined with the Cre-LoxP recombination technique. 
Three essential components are needed for this to work: 1) 
An enhancer trap vector (trap vector) that drives expression 
of Cre recombinase from a gene- or cell type–specific regula-
tory element [12]. 2) A “donor” reporter gene construct with a 
transposon cassette that contains a strong ubiquitously active 
promoter, such as CAG [13], followed by a “floxed” STOP 
sequence [14]. 3) An episomal “helper” transposase vector 
that is ubiquitously expressed and catalyzes the integration 
of the “donor” reporter construct into the genome of electro-
porated cells. Only cells that drive specific Cre expression 
will remove the STOP sequence from the integrated reporter, 
establishing a lineage with robust and stable reporter gene 
expression that is defined by the gene or cell-type specificity.

In this work, we focused on chicken retinal horizontal 
cells (HCs) and their immediate progenitors. We aimed to 
develop a method for targeting the HCs to label them with a 
reporter and study their lineage. We also aimed to develop 
a method for directing gene expression to these cells. The 
HCs are of interest because their regulation of the cell cycle 
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deviates from that of other retinal cells [15-17], and HCs are 
candidates for being the “cell of origin” for retinoblastoma 
[18]. Chicken HCs express the homeodomain transcription 
factors Prox1 and Pax6, whereas the LIM/homeodomain 
transcription factors Lim1 (Lhx1) and Isl1 are expressed 
mutually in half of the HC population [19-21]. The genera-
tion of HCs and cone photoreceptors (PRs) overlaps, and cell 
lineage analysis in the zebrafish, mouse, and chicken suggests 
that they are derived from the same progenitor [22-24]. Otx2 
and members of the retinoid X receptor (RXR) gene family 
are important for PR development and are expressed by the 
suggested shared progenitor cells [25-27]. In the chicken 
retina, HCs are generated between embryonic day (E) 3 and 
8 in a central to peripheral wave-like manner [20,28]. The 
first PRs exit the cell cycle at about the same time as the HCs 
[28]; however, the opsins first appear several days later at 
E14–16 [29].

RXRγ expression has been identified in the retina of 
several species, such as the chicken, mouse, cow, human, 
frog, and zebrafish [26,27,30-33]. In the mouse, RXRγ is 
expressed in cones, transiently downregulated during S-opsin 
onset, and then reexpressed again [31]. In the RXRγ-null mice 
retina, S-opsin expression is upregulated, whereas M-opsin 
expression remains unchanged [31]. The signaling molecule 
retinoic acid (RA), important for embryonic eye development, 
acts via interactions with nuclear receptors, such as RXRγ 
[34]. In zebrafish, treatment with RA promotes differentiation 
of rods and L-opsin cones whereas RA inhibits the differen-
tiation of S-opsin cones [32]. Rat retinal cultures treated with 
RA also show an increase in rods [35].

We analyzed gene regulatory sequences for several 
genes that regulate HC formation and development. Regions 
were PCR amplified and inserted into a trap vector that was 
electroporated into the chicken retina for reporter expression 
analysis. We tested three trap vectors, HSP68-LacZ [36], 
ptkEGFP [37], and Stagia3 [12], that have previously been 
used for similar purposes. The Stagia3 vector was selected 
based on undetectable reporter gene expression in the absence 
of an enhancer element. An Otx2 regulatory sequence that 
has been shown to drive cell-specific expression in a similar 
system was tested [25]. Several different cell types showed 
expression, and a similar pattern was achieved with a 300 
bp element taken from the PAX6 gene (Pax6.300). A 208 bp 
sequence from the RXRγ gene (RXRγ208) gave specific GFP 
expression in cells located in the outer nuclear layer (ONL) 
and in the outer portion of the inner nuclear layer (INL) that 
expressed markers for PRs and HCs. The results support an 
ontogenetic relationship and a common GRN for PRs and 
HCs by identifying a regulatory sequence in the RXRγ gene 

that singles out and directs expression to these cell types. 
These findings highlight a new area of study of the GRN that 
drives formation of these cell types. In addition, the results 
present approaches to target expression of effector genes, 
such as regulators of cell fate or cell cycle progression, to 
these cells and their common progenitor.

METHODS

Animals: Fertilized White Leghorn chicken eggs were 
obtained from Ova Production (Vittinge, Sweden). Eggs 
were incubated at 37 °C in a humidified incubator (Grum-
bach, Asslar, Germany). Embryos were staged according 
to Hamburger and Hamilton’s method [38]. Animal experi-
ments were performed according to the guidelines given by 
the Association for Research in Vision and Ophthalmology 
and were approved by the local animal ethics committee in 
Uppsala, Sweden.

DNA constructs and PCR: The following trap vectors were 
used: Stagia3 [12] (kindly provided by C. L. Cepko and 
M. M. Emerson), Hsp68-LacZ [36] (kindly provided by A. 
Visel), and ptkEGFP [37] (kindly provided by M. E. Bronner). 
Stagia3 has a minimal TATA-box promoter coupled to the 
EGFP reporter gene, Hsp69-LacZ has a mouse Hsp68 
minimal promoter [39] coupled to the LacZ reporter gene, 
and ptkEGFP has a herpes simplex virus thymidine kinase 
promoter coupled to the EGFP reporter gene. The piggyBac 
“helper” construct, pBase, and the “donor” construct, 
pB-CAG-LoxP-STOP-LoxP-GFP-pB with a cytoplasmatic 
GFP [14] (kindly provided by A. Klar), were used for the 
piggyBac integration system.

To construct Stagia3-cytomegalovirus (CMV), the CMV 
enhancer was amplified with PCR (95 °C 1 min, 35 cycles 
of 95 °C 30 s, Tm-5 °C 30 s, 72 °C 1 min/1000 bp, followed 
by 72 °C 10 min) from pCIG-DV and inserted into the SalI/
EcoRI restriction sites of Stagia3. To construct Staria3-
CMV (Stop TAta Rfp Ires Ap version 3), red fluorescence 
protein (RFP) was amplified with PCR from pRFPRNAiC 
and replaced the GFP at the AgeI and BsrGI restriction sites 
of Stagia3-CMV. To construct Stacia3-CMV (Stop TAta 
Cre Ires Ap version 3), the Cre recombinase was amplified 
with PCR from pKK 735 iCre [40] (kindly provided by K. 
Kullander) and replaced GFP at the AgeI and BsrGI restric-
tion sites of Stagia3-CMV. To construct Stacia3-Pax6.300, a 
300 bp Pax6 sequence was amplified with PCR from chicken 
gDNA and inserted into the SalI/EcoRI restriction sites of 
Stacia3. To construct Stacia3-Otx2, the retina-specific Otx2 
enhancer element [25] was amplified from mouse gDNA 
with PCR and inserted into the SalI/EcoRI restriction sites of 
Stacia3. To construct Stacia3-RXRγ208, a 208 bp regulatory 
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sequence from the chicken RXRγ gene [41] was synthesized 
by Eurofins Genomics (Eurofins Genomics, Ebergsberg, 
Germany) and inserted into the Stacia3 construct at the SalI/
EcoRI restriction sites.

The following sequences were used: chicken Pax6: 
5′-TGC GGG ACT TTA CGG CTC TTT TCC CGA GCG 
TTT GTG TGC AAA TGA AGG GTC TCG TTA TTG CGC 
GAG CGG AGA GGG AGG CTT TAA TGA CGG GAG 
ATC TTT CCG CTC ATT GCC CTT TCA AAT ACA ATT 
GTA GAT CGA ACT CAG CCT TGT CAC GTT GAG GAG 
CAG TGC GTC CCT AAC ATC CAG GAC GTG CCT GTC 
GGC TCT CGG CGG ATT GCA TCC CAT CAC CCC CGG 
GGA ATG CAG CCC GCG TCG GGG CTG CGC GGG 
GCG CGG GAG GCG CAC GGC CCG AGC GGG GTC 
CCG AGT CGC GGT TAT-3′, mouse Otx2: 5′-CCG AGC 
CGC CAG TCA GCG AAG TTT TGT TTC CTT TCT ATC 
ATG CA GAA AAT TAA TCA GCC AGG ACG AGA AGC 
AGA GCT GAG CAC GAC GGC CTG TAA TTA AGG GAC 
GTG TGC CCC TCG GAT TAT CTC GTT AGT TTA TCA 
AGA AAA CAT TTA TTA TAA TTA ATT CTC GGA CGA 
GGT AAT TAT TAT TGA GCG AGG ACA CAG CAA CTG 
GTA GAT GGG CTT CTT GGA AGA AGG GGA AAA 
AAA ACC ACC AAG GAG GGG GGG CGA TCT GGA 
GGG GGA AGC GAC AGA TTG CAC GAA TTG ACC 
G-3′, chicken RXRγ: 5′-TAC AAG GAC TGG AGC CTC 
TCC CTA ACA CAA ACC CAC GTG TTC CCC AAA 
ACG AGT TGC CTG ATG CTT GCT TAT CTT GAG GGG 
GGG GGT TCT TTT GGA GGT GCT CGG TGT GCA TGT 
GTT GTG CAG CAC TAA GCA CTC ACT AAC CCA GAT 
CTG CTA AAA ATC AAT AAG GTA ATC CAC TTA CAG 
CCT GGG ACT GTG GCC TTT CGA AGG AGC T-3′. The 
following PCR primers were used: RFP Fwd (5′-ATG GCC 
TCC TCC-3′), RFP Rev (5′-TTA GGC GCC GGT-3′), Cre 
Fwd (5′-ATG GTG CCC AAG A-3′), Cre Rev (5′- CTATGC-
GGCCCCA-3′), CMV Fwd (5′-ACA TAA CTT A-3′), CMV 
Rev (5′-GATGACTAATA-3′), Pax6 Fwd (5′-ATA ACC GCG 
ACT CGG G-3′), Pax6 Rev (5′-TGC GGG ACT TTA CG-3′), 
Otx2 Fwd (5′-CGG TCA ATT CGT G-3′), Otx2 Rev (5′-CCG 
AGC CGC CAG T-3′). All PCR products were verified with 
sequencing (Eurofins Genomics).

Electroporation:

Retinal explants—Retinal explants were prepared as 
previously described [6]. Briefly, the eyes were enucleated, 
and the sclera and pigment epithelium were removed using 
fine forceps. Eyes were put in a cuvette containing 100 µl 
DNA solution (1 μg of each construct/10 μl 1X Dulbecco ś 
Phosphate Buffered Saline (DPBS) +MgCl2 +CaCl2). Five 
50 ms 15 V pulses were applied using an ECM 830 square 

wave evaporation system (BTX, Harvard Apparatus, 
Holliston, MA). After electroporation, the retinal explants 
were cultured in medium containing 1:1 DMEM:F12 
Nutrient mix, 10% fetal bovine serum, 10 U/ml penicillin-
streptomycin, 5 μg/ml insulin, and 2 mM L-glutamine for 24 
h at 37 °C, 5% CO2 on a rotator shaker with a constant speed 
of 50 rpm.

In ovo—For coelectroporation, DNA constructs with 
the same concentration (5 μg/μl) were mixed at the ratio of 
1:1:1 of helper:donor:Cre construct [42]. Fast Green (F7252, 
Sigma-Aldrich, St. Louis, MO) was added to the mix to help 
visualize the injection. Approximately 0.2 μl solution was 
injected into the subretinal space (≥stage 22) of the eye or 
into the optic vesicle (stage 12), and five 50 ms 12 V (stage 12) 
or 15 V (≥stage 22) pulses were applied using an ECM 830 
square wave evaporation system (BTX, Harvard Apparatus). 
After electroporation, the eggs were sealed with tape and put 
back into the incubator to allow for further development.

DF1-cells—Chicken fibroblast DF1-cells were electro-
porated using the Gene Pulser II (BioRad, Hercules, CA), 
set to 250 V and 250 μF. Ten micrograms of each construct 
at a 1:1:1:1 ratio of helper construct:donor construct:Cre 
recombinase construct:RFP control construct was used. The 
electroporated cells were cultured on coverslips in DMEM 
(D5671, Sigma-Adrich) containing 12% fetal bovine serum, 
2% L-glutamine, and 100 U/ml penicillin-streptomycin at 
37 °C and 5% CO2. Coverslips were put into the dish before 
seeding of electroporated cells. On day 3, 7, and 14 post-elec-
troporation, coverslips from the same dish of electroporated 
cells were removed and analyzed.

Tissue collection and immunohistochemistry: Retinal 
explants and enucleated eyes were fixed in 4% paraformal-
dehyde (PFA) in 1X PBS (10X; 80 g NaCl, 2 g KCl, 11.5 g 
Na2HPO4xH2O, 2 g KH2PO4, pH 7.4) at 4 °C for 15 min and 
cryoprotected in 30% sucrose in 1X PBS. The tissue was 
embedded in optimum cutting temperature (OCT) compound 
(NEG50, Richard-Allan Scientific, San Diego, CA), and 
10 μm sections were collected on Superfrost Plus slides 
(J1800AMNZ, Menzel-Gläser, Braunschweig, Germany). 
DF1-cells were fixed in 4% PFA at 4 °C for 15 min.

For immunohistochemistry, the retinal sections were 
rehydrated in 1X PBS for 15 min and incubated in blocking 
solution (1% fetal calf serum, 0.02% Thimerosal, and 0.2% 
Triton X-100 in 1X PBS) for 30 min. Primary and secondary 
antibodies were diluted in blocking solution and incubated on 
slides in a humidified chamber overnight at 4 °C and for 2 h 
at room temperature, respectively.
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Primary antibodies are listed in Table 1. A GFP antibody 
was used to stain retinal sections to allow for better image 
capturing; the GFP expressed from the vector was sufficient 
for all other analyses. Secondary antibodies were obtained 
from Invitrogen (Carlsbad, CA). ProLong Gold (P36935, Life 
Technologies, Eugene, OR) with 4',6-diamidino-2-phenylin-
dole (DAPI) was used to visualize the nuclei.

Cell counting: Retinas from electroporated animals were 
cryosectioned, and the GFP positive (+) cells were counted. 
GFP+ cells were allocated to the ONL, INL, or ganglion cell 
layer (GCL), based on their nuclear position. Four animals per 
time point were analyzed and used for cell counting. Distribu-
tion is presented as mean ± standard deviation (SD).

Image analysis: Images of whole retinas were captured using 
a Leica M165FC (Leica Microsystems, Wetzlar, Germany) 
stereomicroscope equipped with a Leica DFC495 camera. 
Images of sectioned retinas were captured using a Zeiss 
Axioplan 2 microscope equipped with an AxioCam C camera 
or a Zeiss LSM 510 Meta confocal microscope. Confocal 
images were acquired with laser line 633 nm using BP filter 
505–530 and a Plan-Apochromat 20x/0.8 or 63x/1.4 oil DIC 
objective lens. Figures were assembled in Adobe Photoshop 
CS4 (Adobe Systems Incorporated, San Jose, CA).

RESULTS

Analysis of minimal promoter activity: We tested the HSP68-
LacZ [36], ptkEGFP [37], and Stagia3 [12] trap vectors with 
electroporation of Hamburger and Hamilton stages 21–25 
(E3.5–4.5; Figure 1A) [38] whole retinal explants, a technique 
that allows for rapid screening of multiple vectors [6]. LacZ 

expression from the HSP68-LacZ vector was detected with 
immunohistochemistry for β-galactosidase, whereas GFP 
expression from ptkEGFP and Stagia3 was visualized with 
fluorescence microscopy (Figure 1B–E, n≥4).

The HSP68-LacZ trap vector has been used to visualize 
the expression pattern of human cis-regulatory elements 
in mice embryos [36]. The Hsp68 basal promoter does not 
have background expression in the mouse [43]; however, we 
detected LacZ expression in the chicken retina without any 
inserted enhancer (Figure 1B). The ptkEGFP trap vector 
also gave background expression (Figure 1C). Stagia3 [12] 
has been used for studies in the mouse and chicken retina 
[25]. Consistent with this previous work, we did not detect 
reporter gene expression in the absence of an enhancer 
element (Figure 1D). To confirm that Stagia3 could drive 
expression, the CMV enhancer was inserted. Stagia3-CMV 
produced robust GFP expression, thus verifying the function 
of Stagia3-CMV (Figure 1E).

Evaluation of the Cre-LoxP piggyBac transposon system in 
the developing chicken retina: To confirm that the reporter 
gene was integrated into the genome, we electroporated 
chicken fibroblast cells (DF1-cells) with the pBase “donor” 
vector, pB-CAG-LoxP-STOP-LoxP-GFP-pB, and Stacia3-
CMV, the modified Stagia3 vector with the CMV enhancer 
and EGFP replaced with the Cre recombinase sequence 
(Figure 2A,B). Stacia3-CMV gave strong ubiquitous Cre 
expression and was used as a positive control. Staria3-CMV, 
a modified Stagia3 vector with a CMV enhancer and EGFP 
replaced with an RFP sequence, was coelectroporated with 
the other constructs to serve as an electroporation control 

Table 1. List of primary antibodies.

Antibody Host Dilu-
tion

Company Catalog 
number

GFP Goat 1:4,000 Abcam ab5450
GFP Rabbit 1:4,000 Abcam ab28283
Isl1 Mouse 1:200 Developmental studies hybridoma bank 40.2D6
Lim1/2 Mouse 1:20 Developmental studies hybridoma bank 4F2-s
TrkA Rabbit 1:2,000 Gift from Louis Reichardt1 -
Visinin Mouse 1:1,000 Developmental studies hybridoma bank 7G4
β-galactosidase Rabbit 1:2,000 Bio-Rad Laboratories 4600–1505
GABA Rabbit 1:1,000 Sigma-Aldrich A2052
Red/green opsin Rabbit 1:2,000 Millipore AB5405
Rhodopsin Rabbit 1:500 Cosmo Bio Co Ltd LSL-LB-5555

1Lefcort F, Clary DO, Rusoff AC, Reichardt LF. Inhibition of the NT-3 receptor TrkC, early in chick em-
bryogenesis, results in severe reductions in multiple neuronal subpopulations in the dorsal root ganglia. J 
Neurosci. 1996;16(11):3704–13.
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(Figure 2B´). Three days post-electroporation, strong GFP 
and RFP signals were seen, but after 14 days, RFP was no 
longer detectable, while GFP remained strong in clone-like 
clusters of cells (Figure 2A). The result indicated that the RFP 
vector that was not integrated had been lost while the GFP 
vector was integrated and produced stable expression.

We confirmed the functionality of the Cre-LoxP 
piggyBac transposon system in the embryonic chicken retina. 
Stage 12 (E2) optic vesicles were electroporated in ovo with 
the constructs (Figure 2B´́ ) followed by analysis 6 days later 
at stage 34 (E8; Figure 2C, n = 4). The intact electroporated 
retinas showed a large area of GFP+ cells (Figure 2C), and 
immunohistochemical analysis showed clone-like clusters of 
GFP+ cells along the apicobasal axis of the retina (Figure 
2C). We also electroporated retinas at stage 22, 25, or 28 
(E3.5, 4.5, and 5.5) and analyzed them at stage 36, to confirm 
functionality (Figure 2D, n>4 for each stage).

Analysis of cis-regulatory elements of the Pax6, Otx2, 
and RXRγ genes: We used the ECR Browser (evolutionary 
conserved genomic regions), a tool especially designed 
for comparison of multiple vertebrate genomes [44] and 

the VISTA database [36] and searched the literature for 
relevant regulatory elements. We searched genes known to 
be expressed in HCs, such as Lim1, Prox1, and Pax6 [19]. 
Negative results, that is, conserved regulatory elements that 
did not produce detectable reporter gene expression in the 
chicken retina, are not reported.

A 300 bp conserved region located in close proximity 
to the transcription initiation site for the PAX6 gene was 
PCR amplified and cloned into the Stacia3 vector (Stacia3-
Pax6.300; Figure 3A,B). The Pax6.300 element was analyzed 
after in ovo electroporation of the stage 25 (E4.5) embryos 
(GFP expression driven by a specific gene sequence, 
enhancer, or promoter is referred to as gene::GFP). Analysis 
at stage 34 (E8), a time point when all the different cell types 
and layers in the retina have been established [28], showed 
GFP expression (Figure 3B, n = 4) in several cells located 
along the apicobasal axis of the stage 34 retina.

A conserved regulatory sequence of the Otx2 gene has 
been shown to direct expression to immature PR, HC, and 
some retinal ganglion cell progenitors [25]. We PCR ampli-
fied the 294 bp Otx2 sequence and cloned it into the Stacia3 

Figure 1. Evaluation of enhancer trap vectors. To test background expression from the enhancer trap vectors Hsp68-LacZ, ptkEGFP, or 
Stagia3, embryonic chicken retinas were electroporated, and reporter gene expression analyzed. A: Chicken embryonic development indi-
cated by days and stages, according to Hamburger and Hamilton [38]. Important time points in neurogenesis [28] are indicated by arrows. 
B–E: Diagrams of the trap vectors and fluorescence micrographs of the retinal explants electroporated at stages 22–25 and analyzed after 
24 h.
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vector (Stacia3-Otx2.294). In ovo electroporation of the stage 
25 (E4.5) embryos showed GFP expression in cells along the 
apicobasal axis upon analysis of the stage 34 retina (Figure 
3C, n = 4). Immunohistochemistry showed colocalization 
between the Otx2.294::GFP cells and markers for all cell 
types in the retina (data not shown); no evident cell speci-
ficity was seen. A 208 bp element from the RXRγ gene [41], 

previously shown to drive expression in the neural retina, was 
PCR amplified and inserted into the Stacia3 vector (Stacia3-
RXRγ208). In ovo electroporation of the stage 25 (E4.5) 
embryos showed RXRγ208::GFP cells that were mainly, but 
not exclusively, localized to the ONL and the outer part of the 
INL in the stage 34 retina (Figure 3D, n>4).

Figure 2. Evaluation of the Cre-LoxP piggyBac transposon system. A: Fluorescence micrographs of chicken fibroblast DF1-cells electropor-
ated with the piggyBac constructs and a red fluorescence protein (RFP) control, and analyzed 3, 7, or 14 days post-treatment. B :́ Diagram 
of the RFP-expressing control construct. B´ :́ Diagrams of the green fluorescent protein (GFP) reporter gene constructs used for integrations 
into the host cell genome. C: Micrographs of the whole retina and of the section from a stage 34 retina electroporated with the Stacia3-
cytomegalovirus (CMV), CAG-PBase, and pB-RAGE-green fluorescent protein (GFP) constructs in ovo at stage 12. Asterisk (*) indicates 
the optic nerve exit. D: Fluorescence micrographs of stage 36 retinas that were electroporated with the Cre-LoxP piggyBac constructs in 
ovo at stages 22, 25, and 28. St = stage, ONL = outer nuclear layer, INL = inner nuclear layer, GCL = ganglion cell layer.
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Figure 3. Assessment of the Pax6, Otx2, and RXRγ regulatory sequences in combination with the piggyBac integration system. A: An 
evolutionarily conserved sequence (indicated by the arrow) from the chicken PAX6 gene, positioned upstream of the transcription start 
[44]. Color-coded peaks correspond to sequences that are highly conserved between the species. The protein coding exons are blue, the 
conserved intronic regions are salmon, the 5′ untranslated regions (UTRs) are yellow, and the conserved upstream (intergenic) regions are 
red. The numbers underneath denote distance in base pairs. B–D: Diagrams of constructs and fluorescence micrographs of sectioned retinas 
electroporated at stage 25 with the Pax6.300, Otx2.294, or RXRγ208 driven Cre-LoxP piggyBac constructs and analyzed at stage 34. St = 
stage, ONL = outer nuclear layer, INL = inner nuclear layer, GCL = ganglion cell layer.
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The RXRγ208 element directs gene expression to the PRs 
and the HCs: We analyzed RXRγ208::GFP cells in seven 
flatmounted intact stage 40/44 (E14/18) retinas that had been 
electroporated at stage 22/25/28, and the results showed a 
“stars in the sky”-like pattern of GFP+ cells. A representative 
image of an E14 retina electroporated at stage 25 is shown 
in Figure 4A. Sections confirmed the scattered pattern with 
separate GFP+ cells mainly in the ONL and the horizontal 
cell layer (HCL; Figure 4B, n>4).

Next, we quantified the distribution of the RXRγ208::GFP 
cells in the different layers. GFP+ cells were allocated to the 
ONL, INL, or GCL, based on their nuclear position [45]. 
Retinas were electroporated at stages 22, 25, and 28. For stage 
22, 74±3.0% of the cells were localized to the ONL, 23±4.0% 
were localized to the INL, and a small proportion, 1.0±1.0%, 
were found in the GCL (Figure 4C, 603 cells counted, mean ± 
SD, n = 4). For stage 25, 79±4.0% was localized to the ONL, 
20±4.0% to the INL, and 0.5±0.5% to the GCL (Figure 4C, 
368 cells counted, mean ± SD, n = 4). For stage 28, 83±5.0% 
was localized to the ONL, 14±3.0% to the INL, and 2.0±2.0% 
to the GCL (Figure 4C, 560 cells counted, mean ± SD, n = 4). 
The fraction of RXRγ208::GFP cells located in the INL was 
further subdivided into the HCL and non-HCL cells, based on 
their nuclear position. For the retinas electroporated at stage 
22, 91±9.0% were located at HCL (131 cells counted, mean 
± SD, n = 4). For stage 25, 89±7.0% were located at the HCL 

(71 cells counted, mean ± SD, n = 4). For stage 28, 94±4.0% 
were located at the HCL (79 cells counted, mean ± SD, n = 4).

We noted that cells appeared in pairs with one PR and 
one HC or two PRs (Figure 3D and Figure 4D). This was 
further quantified, and PRs were considered to be a pair 
if their nuclei were located <10 µm apart, and a PR and an 
HC that were arranged in a line on the apicobasal axis were 
considered to be a pair. In the retinas electroporated at stages 
22–28 and analyzed ≥8 days later, 14±2.0% of all GFP+ cells 
were part of a PR pair, and 8.0±2.0% of all GFP+ cells were 
part of a pair consisting of a PR and an HC (513 cells counted, 
mean ± SD, n = 4). There was a significant difference in the 
number of cells involved in a PR pair compared to those 
involved in a PR and HC pair (p<0.01). The cells in a PR pair 
were not part of a PR and HC pair.

Most of the RXRγ208::GFP cells (about 99%) were 
present either in the ONL or in the outer part of the INL, 
suggesting that they were PRs and HCs. The PRs (cones and 
rods) were specifically identified by the Ca2+ binding protein 
visinin [29,46-48] (Figure 5A). In the retinas electroporated 
at stages 22–28 and analyzed ≥8 days later, 86±6.0% of the 
GFP+ cells in the ONL were visinin+ (167 cells counted, 
mean ± SD, n = 5). The chicken retina has three types of 
HCs (H1, H2, H3) that are distinguished by morphology 
and molecular markers [49]: axon-bearing subtype (H1) 

Figure 4. Activity of the RXRγ208 sequence produced specific reporter gene expression. A: Z-stacked confocal fluorescence micrograph 
of a flatmounted retina from a stage 40 embryo electroporated with the RXRγ208 Cre-LoxP piggyBac constructs in ovo at stage 25. B: 
Fluorescence micrograph of a retina from a stage 40 embryo electroporated with the RXRγ208 Cre-LoxP piggyBac constructs in ovo at stage 
28. C: Bar graph showing the distribution of green fluorescent protein–positive (GFP+) cells in sectioned retinas from embryos electroporated 
with the RXRγ208 Cre-LoxP piggyBac constructs in ovo at stages 22, 25, and 28 (mean ± standard deviation, SDSD, n = 4 per stage). D: 
Fluorescence micrograph of a retina showing a pair of photoreceptors (PRs; arrow heads) and a pair with a horizontal cell (HC) and a PR 
(arrows). St = stage, ONL = outer nuclear layer, INL = inner nuclear layer, GCL = ganglion cell layer.
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expressing Lim1, and two axon-less subtypes (H2 and H3) 
expressing Isl1 and the neurotransmitter γ-aminobutyric 
acid (GABA) or Isl1 and the neurotrophin receptor TrkA, 
respectively [20]. Immunohistochemistry showed colocal-
ization of the GFP and HC subtype markers (Figure 5B–D). 
There are 50% axon-bearing and 50% axon-less cells in the 
chicken retina [20]. In the retinas electroporated at stages 
22–28 and analyzed ≥8 days later, 70±21% of the GFP+ cells 
were Lim1+ axon-bearing H1 HCs (166 cells counted, mean 

± SD, n=8). The GFP+ cells located in the ONL were further 
analyzed regarding the different PR subtypes. The chicken 
retina consists of five different opsin-expressing cells: those 
expressing rhodopsin, red opsin, green opsin, blue opsin, or 
violet opsin [29]. Immunohistochemistry showed colocaliza-
tion of GFP and rhodopsin (Figure 5E), but no colocaliza-
tion with the marker for red or green opsin (Figure 5F) in 
the retinas electroporated at stage 22 and analyzed at E18. 

Figure 5. RXRγ208-activated expression in PRs and all three HC subtypes. A–D: Fluorescence micrographs of embryonic day 14 (E14) 
retinas showing green fluorescent protein–positive (GFP+) cells that colocalize with markers for photoreceptors (PRs), axon-bearing hori-
zontal cells (HCs; H1), and axon-less HCs (H2 and H3). E–F: Fluorescence micrographs of E18 retinas showing GFP+ cells colocalizing 
with rhodopsin but no colocalizing with the red or green opsin marker. G–H: Z-stacked confocal fluorescence micrographs of flatmounted 
retinas showing the presence of all three HC subtypes (H1, H2, H3) in the E14 and E18 embryos. Asterisk (*) denotes the axon terminal. I: 
Z-stacked confocal fluorescence micrographs of a flatmounted E18 retina showing the presence of PRs. J: Schematic model of the roles of 
RXRγ and Lim1 in photoreceptor and horizontal cell genesis. E = embryonic day; ONL = outer nuclear layer; INL = inner nuclear layer.
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Unfortunately, we were unable to find an antibody that could 
detect the blue or violet opsin.

The E14 (n = 4) and E18 (n = 3) retinas were flatmounted 
and analyzed with confocal microscopy. Based on previous 
morphological descriptions [50], the axon-bearing (H1) and 
the two axon-less subtypes, H2 with long, thin processes and 
H3 with thicker dendritic terminals, were identified (Figure 
5G,H). The PRs, with their distinct morphology [51], were 
easily distinguished (Figure 5I). Based on these results, and 
previous studies, a model of the expression and potential 
roles of RXRγ and Lim1 in PR and HC genesis is presented 
in Figure 5J.

Displaced RXRγ208::GFP cells in the GCL: A fraction of the 
RXRγ208::GFP cells (about 1%) were found in the GCL. The 
displacement of HCs and PRs has been previously described 
[52-55]. Retinal sections were stained with either Lim1 (which 
marks the H1 subtype) or visinin (which marks the PRs). 
Lim1 and visinin colocalized with the RXRγ208::GFP cells 
in the GCL (Figure 6A,B). Non-GFP-expressing Lim1+ cells 
(Figure 6B) and visinin+ cells were also noted in the GCL, 
consistent with normal development.

RXRγ208::GFP cells in the E14 retina after electroporation 
of the optic vesicle: Studies performed in quail [56] show 
RXRγ expression in the optic vesicle and neural tube during 
early embryogenesis. Stage 12 (E2) chicken optic vesicles 

were therefore electroporated in ovo, and the retinas were 
analyzed at E14. RXRγ208::GFP cells were seen in all retinal 
layers along the apicobasal axis (Figure 6C).

DISCUSSION

Combining the techniques of episomal vector gene-specific 
Cre expression and genomic integration using the piggyBac 
transposon system opens up possibilities for studies of gene 
expression–specific cell lineage tracing in the chicken [14,57]. 
In this work, we used an expression vector with a 208 bp gene 
regulatory sequence from the chicken RXRγ gene (RXRγ208) 
[41] to drive Cre expression. The vector was combined with a 
piggyBac “donor” vector containing a floxed STOP sequence 
followed by EGFP, as well as a piggyBac helper vector for 
efficient integration into the host cell genome. The vectors 
were introduced into the embryonic chicken retina with in 
ovo electroporation. Cells that drove Cre expression from 
the regulatory RXRγ208 sequence excised the floxed STOP 
sequence and expressed GFP. The approach generated a stable 
lineage with robust expression of GFP in retinal cells that 
had activated transcription from the RXRγ208 element. The 
results showed that GFP was expressed in cells that express 
HC or PR markers when electroporation was performed 
between stage 22 and stage 28. Electroporation of the stage 12 
optic cup gave multiple cell types in accordance with RXRγ 
gene expression.

Figure 6. Displaced cells and electroporation of a stage 12 optic vesicle. A–B: Fluorescence micrograph of a sectioned retina from an 
embryonic day 14 (E14) embryo electroporated with the RXRγ208 Cre-LoxP piggyBac constructs in ovo at stage 28, showing a displaced 
photoreceptor (PR; arrow) and a displaced horizontal cell (HC; arrow). C: Fluorescence micrograph of a sectioned retina from an E14 embryo 
electroporated with the RXRγ208 Cre-LoxP piggyBac constructs in ovo at stage 12.
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All retinal cells share a common progenitor [58], and 
through the expression or absence of specific genes, the final 
identity of the retinal cells is established. Recent studies 
have shown that PRs and HCs share an immediate progenitor 
[22-24]. The cells also share other features, such as their final 
cell number is not regulated by apoptosis [59,60] and they have 
been implicated to be involved in retinoblastoma [18,61,62]. 
In addition, Lim1-expressing HCs are able to undergo an 
S-phase and remain with a duplicated genome [16], as well 
as enter mitosis in the presence of DNA damage [63]. Studies 
that further address the development and behavior of these 
highly interesting cells need to be performed.

In this study, we focused on genes important for PR 
and HC differentiation in the chicken embryonic retina. To 
identify relevant regulatory elements, we tested sequences 
located close to the transcription initiation site. Although 
many were highly conserved during evolution, most of the 
sequences tested did not produce any detectable reporter gene 
expression in the early developing retina. This is expected 
as gene regulation is complex, and to drive expression, the 
selected sequences have to attract transcriptional activators. 
Transcriptional activation is often dependent on cooperative 
interactions between several cis-regulatory elements where 
a defined distance between the elements and the promoter 
is important. We used an episomal vector with a minimal 
promoter, and to activate expression, the introduced regu-
latory sequences must be able to recruit and activate the 
transcription initiation complex. Therefore, transcriptional 
activators that remodel the chromatin structure or factors 
that are chromatin context-dependent are less likely to work. 
Taken together, these factors highlight the difficulty of identi-
fying elements that drive cell-specific expression in episomal 
expression vectors, which was reflected in our results.

We tested three enhancer trap expression vectors: 
HSP68-LacZ, ptkEGFP, and Stagia3. The HSP68-LacZ vector 
has previously been successfully used in transgenic mice [36]. 
Our results showed that the HSP68-LacZ vector produced 
reporter background expression without any inserted regula-
tory sequence (Figure 1B), and therefore was not useful for 
our studies. A similar result has been seen in the chicken 
neural tube [64]. The leakage from the HSP68-LacZ minimal 
promoter may be explained by the fact that the construct was 
episomally located in the chicken but was integrated into 
the genome in the mouse studies. The ptkEGFP vector has 
been used for functional analysis of enhancers in the central 
nervous system (CNS) of chicken embryos [37]; however, this 
vector also produces background reporter gene expression in 
the neural retina (Figure 1C). The Stagia3 trap vector was 

constructed and tested to work episomally [12,25], and we did 
not detect any background expression (Figure 1D).

Electroporation of episomal expression vectors gives 
transient expression during a few days (Figure 2A) [57,65]. 
However, GFP has been detected after longer periods in 
post-mitotic neurons [8]. To achieve stable expression after 
electroporation, a donor unit with a strong CAG promoter 
was incorporated into the genome of the host cell. There 
are several such systems, including the piggyBac, tol2, and 
Sleeping Beauty among which the piggyBac system generates 
the highest efficiency in terms of stable gene integration [66]. 
Our results showed that the piggyBac system worked well in 
embryos of developmental stages ranging from stages 12 to 
28 (E2–5.5; Figure 2C,D). Dividing retinal progenitor cells 
and post-mitotic cells, such as stage 28 ganglion cells, could 
be targeted. The moth-derived piggyBac system is not species 
dependent, and it has been used in plants, insects, fish, birds, 
and mammals [42,67-70], making it a highly versatile tool.

We observed expression in the retina with regulatory 
sequences from the Pax6, Otx2, and RXRγ genes (Figure 
3). The transcription factor Pax6 is often considered the 
master regulator of eye formation and is expressed during 
early retinal development [71]. The expression remains and 
increases in differentiated HCs, amacrine cells, and retinal 
ganglion cells [19]. The Pax6 promoter and proximal elements 
have been extensively studied in the mouse [72-74]. A 
sequence upstream of the mouse P0 promoter drives expres-
sion to the HCs [74]. In contrast to the mouse Pax6 gene that 
has multiple transcripts, only one transcript has been found in 
the chicken. A 300 bp conserved sequence located proximal 
to the transcription initiation site of the chicken PAX6 gene 
drove expression in the neural retina, but without cell-type 
specificity (Figure 3A,B). The GFP+ cells were located all 
along the apicobasal axis of the retina, stretching from the 
ONL to the GCL.

The Otx2 gene is already expressed in the optic vesicle 
and is important for proper eye and retinal development 
[75-77]. We tested a 294 bp conserved sequence from the 
retinal transcription factor Otx2 [25] in combination with the 
piggyBac system, and it drove expression in retinal neurons, 
but not with a clear cell-type specificity (Figure 3C). The 
Otx2 gene has multiple promoters and enhancers that act at 
different times and cell types in a context-dependent fashion 
[78,79]. In contrast, Cre expression driven by a 208 bp 
gene regulatory sequence from the chicken RXRγ gene [41] 
produced stable GFP expression (RXRγ208::GFP) in PRs and 
HCs (Figure 4 and Figure 5). RXRγ is expressed in retinal 
progenitor cells during development, and its expression is 
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later restricted to the ONL in the chicken and cow retina 
[26,27] and to the ONL, INL, and GCL in the mouse [30].

The RXRγ208::GFP cells were sometimes seen in pairs 
with one PR and one HC or two PRs (Figure 4D). The results 
showed that the RXRγ208 sequence directed Cre expression 
to cells that generate PRs and HCs in a pattern that indicates 
the onset of the RXRγ208 element in a progenitor cell that 
gives rise to HCs and PRs. This result is consistent with 
previous data from chicken, zebrafish, and mouse showing 
that HCs and PRs are generated from a common progenitor 
cell [22-24] and that cone photoreceptors can be generated 
by symmetric terminal division of dedicated precursors in 
zebrafish [22]. We defined a pair of cells as two cells located 
close together at a maximum distance of 10 µm. Quantifica-
tion showed that about 14% of all GFP+ cells were part of a 
PR pair and about 8% of all GFP+ cells were part of a pair 
consisting of a PR and an HC. However, these numbers may 
not fully account for all the pairs generated because tangen-
tial movement of PRs and HCs that separate the cells has 
been reported [80,81]. To study the formation of pairs, live 
cell imaging may be the best option. However, this method 
is difficult to carry out in chicken embryos due to the dense 
pigmentation of the RPE.

The distribution of RXRγ208::GFP cells was approxi-
mately 80% in the ONL, 20% in the INL, and 1% in the GCL 
(Figure 4C). The numbers are in agreement with a study in 
zebrafish in which dedicated retinal progenitor cells gave rise 
to PRs and HCs or only PRs [22]. In addition, post-mitotic 
PRs that activate RXRγ208 will become GFP+ and increase 
the number of GFP+ cells in the ONL. Our result strengthens 
the hypothesis that some progenitors produce PRs and HCs, 
and some produce only PRs.

Immunohistochemistry with subtype markers and anal-
ysis of cell morphology using confocal microscopy showed 
that all three subtypes of HCs are represented among the 
RXRγ208::GFP cells (Figure 5), indicating that RXRγ208 
is activated in the progenitor for all three subtypes. This 
is consistent with a previous study that showed all three 
subtypes can be generated following labeling of retinal 
progenitor cells at E4 [81]. The ratio of GFP+ axon-bearing 
HCs was slightly higher than the normal ratio of 50% [20,81]. 
This could be due to the time point at which the reporter was 
integrated. A similar conclusion was reached based on results 
from a virus-mediated reporter transfer study in which the 
ratio of HC subtypes varied depending on developmental age 
[81].

Immunohistochemistry with PR subtype markers showed 
colocalization between GFP+ cells and rhodopsin (Figure 
5E), indicating that the RXRγ208 sequence drives expression 

in cells destined to become rods. This conclusion was further 
supported by the fact that the rods tend to have their nuclei 
localized in the part of the ONL that is toward the INL 
[82,83], and that treatment with the signaling molecule RA, 
which acts via nuclear receptors such as RXRγ, promotes rod 
differentiation [32,35]. No colocalization was detected with 
the red or green opsin marker (Figure 5F). Unfortunately, 
we were unable to find an antibody that stains the blue or 
violet opsin-expressing cells. However, based on the nuclear 
position of the GFP+ cells that were red or green negative, 
closer to the outer segments compared to the nuclei of rods 
[82,83], they may be blue or violet opsin-expressing cells. 
Which subtype of PR cell that is produced following activa-
tion of the RXRγ208 sequence used in this study may depend 
on the specific time point for the electroporation. In addi-
tion, the sequence investigated here may not fully reflect the 
endogenous expression pattern as other important sequences 
or factors may be needed to replicate the exact endogenous 
RXRγ expression. Our results showing that this RXRγ208 
element directs expression to the HCs and PRs opens up for 
further studies of the RXRγ gene and its regulation, as well 
as PR subtype specification.

We have summarized our results with previous studies 
in a model that displays the involvement of RXRγ and Lim1 
in PR and HC genesis (Figure 5J). Previous studies showed 
that RXRγ is expressed in the neural retina [26,27,30-33]. 
However, neither of the publications reported any colocal-
ization between RXRγ and HC markers. Therefore, our 
results add new insight into the role of RXRγ during retinal 
development.

When we electroporated the optic cup of the stage 12 (E2) 
embryos and analyzed the retinas after cell differentiation, 
we found RXRγ208::GFP cells spread out across the whole 
apicobasal axis of the retina representing several retinal cell 
types (Figure 6C). This is consistent with results showing 
expression of RXRγ in the optic cup neuroepithelium in quail 
[56] in multipotent retinal progenitors at a time well before 
cell type formation and neuronal differentiation [28].

By using the system described here, it is possible to 
detect cells that at some point during development expressed 
the gene of interest even if that gene is no longer actively 
transcribed, an advantage that will aid in the necessary 
work to characterize and better understand the expression 
and function of genes involved in development. In addition, 
the chicken embryo provides an easily accessible, and cost-
effective, model where regulatory sequences can be tested in 
a time-efficient manner. Electroporation of piggyBac trans-
posons enables integration and stable expression of reporter 
genes without the need to generate transgenic animals. It also 
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allows for site- and time-specific integration or expression, 
which may be important if the gene that needs to be investi-
gated causes gross malformations or is embryonically lethal. 
Electroporation of DNA constructs is a method that can be, 
and has been, applied to other model organisms, as well as 
other cell types. However, to target the retinal cells, the avail-
ability of the embryo poses a limiting factor, and the protocol 
presented here may have to be adjusted.

To conclude, it is possible to selectively target and trace 
PRs and HCs in the embryonic chicken retina by using the 
RXRγ208 element in combination with the piggyBac integra-
tion system and in ovo electroporation. The results confirm 
the hypothesis that HCs and PRs share a common progenitor. 
In addition, the technique opens up the possibility of specific 
expression of effector genes, such as regulators of cell fate 
or cell cycle progression, which will benefit further studies 
that address the behavior of the HCs, PRs, and their common 
progenitor. The genetic network governing the generation of 
PRs and HCs is far from fully understood, and in this study, 
we have added one more component.
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