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 The bHLH transcription factor Hand1 (Heart and neural crest-derived transcript-1) has a 

fundamental role in cardiovascular development; however, the molecular mechanisms have 

not been elucidated. In this paper we identify Thymosin  β 4 ( T β 4 / Tmsb4x ), which encodes 

an actin monomer-binding protein implicated in cell migration and angiogenesis, as a direct 

target of Hand1. We demonstrate that Hand1 binds an upstream regulatory region proximal 

to the promoter of T β 4 at consensus Thing1 and E-Box sites and identify both activation and 

repression of T β 4 by Hand1, through direct binding within either non-canonical or canonical 

E-boxes, providing new insight into gene regulation by bHLH transcription factors. Hand1-

mediated activation of T β 4 is essential for yolk sac vasculogenesis and embryonic survival, and 

administration of synthetic TB4 partially rescues yolk sac capillary plexus formation in Hand1-null 

embryos. Thus, we identify an  in vivo  downstream target of Hand1 and reveal impaired yolk sac 

vasculogenesis as a primary cause of early embryonic lethality following loss of this critical 

bHLH factor.         
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 H
and1 (Heart and neural crest-derived transcript-1) is a class 
B bHLH factor, critical for the development of three embryo-
logically distinct lineages: trophoblast of the placenta, 

extraembryonic mesoderm derivatives and cardiomyocytes of the 
left  ventricle and outfl ow tract myocardium.  Hand1 -null embryos 
arrest in development at around embryonic day 8.0 (E8.0) because 
of extraembryonic defects 1 – 3 . Trophoblast giant cells, responsible for 
establishing the implantation chamber by invasion into the mater-
nal decidua, fail to diff erentiate from trophoblast precursors of the 
ecto-placental cone 1 , and the visceral yolk sac lacks defi ned vascula-
ture and shows extensive haemorrhaging 1,3 . Tetraploid aggregation 
experiments rescued extraembryonic defects, enabling develop-
ment to E10.5, when chimeric embryos died presenting with cardiac 
anomalies such as abnormal looping and impaired specifi cation of 
the ventricular myocardium 1 . However, given the potential contribu-
tion from both placental and / or yolk sac defects, the primary cause 
of lethality of  Hand1  mutant embryos has not been determined and, 
moreover, despite previous identifi cation of diff erential expression 
of vascular genes downstream of Hand1 4 , there is no insight into 
how Hand1 might function in these lineages at the level of direct 
downstream targets. 

 To gain mechanistic insight into Hand1 function during deve-
lopment, we screened for potential target genes of Hand1 using 
representational diff erence analysis between pools of mRNA from 
 in vitro- diff erentiated wild-type and  Hand1 -null embryoid bodies 
(EBs) 5 . A number of genes implicated in cell motility and guidance 
were identifi ed as being diff erentially expressed in the absence of 
 Hand1 . One such gene, the actin monomer-binding protein, thy-
mosin  β 4 ( T β 4 / Tmsb4x ), was downregulated in the  Hand1 -null 
background, and both temporally and spatially coexpressed with 
 Hand1 in vivo , notably in the left  ventricle and outfl ow tract of the 
developing heart at mid-gestation and appropriately mis-expressed 
in  Hand1 -null embryos. TB4 ,  the predominant mammalian isoform 
of the  β -thymosin family, sequesters monomeric actin (G-actin), 
which is then de-sequestered by profi lin to induce rapid fi lament 
(F-actin) polymerization. Th is process underlies the formation of 
fi lamentous structures such as lamellipodia to mediate cell move-
ment. Specifi cally, TB4 has been shown to promote the migration of 
endothelial and other vasculogenic precursor cells and as such is an 
important regulator of the closely related processes of vasculogenesis 
and angiogenesis 6 – 10 . 

 Here, we validate  T β 4  as a legitimate downstream target of 
Hand1 and investigate the functional role of the Hand1 – T β 4 path-
way during embryogenesis. Reporter gene co-transfection experi-
ments, electrophoretic mobility shift  assays (EMSAs) and chromatin 
immunoprecipitation (ChIP) confi rm that Hand1 directly binds to 
upstream sequences proximal to the  T β 4  promoter to confer com-
plex transcriptional regulation, seemingly activating and repressing 
transcription at diff erent consensus binding sites. We reveal how 
ectopic administration of TB4 rescues vascular diff erentiation in 
 Hand1 -null embryonic stem cells and defective yolk sac vasculo-
genesis in  Hand1 -null embryos to prolong survival. Th us, we are 
able to defi ne an early essential role for Hand1 in regulating yolk sac 
vessel development with  T β 4  as a downstream mediator of Hand1 
vascular function.  

 Results  
    T b 4  is bound by Hand1 at conserved E-box and Th ing1 sites   .   To 
validate  T β 4  as a legitimate downstream Hand1 target, we performed 
a range of transcriptional reporter and DNA-binding assays. Th e 
functional  T β 4  promoter has previously been identifi ed as residing 
between residues     −    278 and     +    410, relative to the ATG 11 . We identifi ed 
two upstream putative Hand1-binding sites, a canonical E-Box 
site, CACATG (consensus CANNTG; nucleotide positions     −    1913 
to     −    1908) for the binding of bHLH / E-factor heterodimers and a 
degenerate E-Box, TCTCTG (nucleotide positions     −    1691 to     −    1686), 

which matches the preferred binding site of HAND1 / E-factor 
heterodimers (consensus NCTCTG 12 ;  Fig. 1a ). Th ese binding 
sites are conserved throughout mammals, such as human, 
rhesus and dog, but not throughout chicken or lower vertebrates 
species such as frog and zebrafi sh, consistent with the evolution 
of the chorioallantoic and yolk sac placenta ( Fig. 1b ;  http://www.
ecrbrowser.dcode.org/ ). An 870-bp fragment (    −    2002 to     −    1132) 
containing E-boxes was placed upstream of a luciferase reporter and 
minimal promoter and we established point mutation constructs 
in which single residues within half-sites, previously identifi ed as 
critical for Hand1 or E-Factor binding (Th ing1 mutants 1 and 2; 
E-Box mutant 1) or as an alternate core residue for E-Factor binding to 
determine specifi city (E-box mutant 2) 12 , were individually mutated 
( Fig. 1c ). Accordingly, NIH-3T3 cells, co-transfected with the  T β 4   
luciferase construct and full-length  Hand1  cDNA, were assayed for 
luciferase activity. Hand1 was shown to induce a 10-fold activation 
of  T β 4  expression ( Fig. 1d ,  P     <    0.001). Activation was completely 
abolished by point mutation of the Th ing1 box, selectively at the 
half-site of Hand1 binding ( P     <    0.01;  Fig. 1d ), suggesting that  T β 4  
is a direct target of Hand1, with activation occurring, primarily, at 
the Th ing 1 box. In contrast, point mutations in the E-box resulted 
in increased transcriptional activity (2.6-fold increase for the E-box 
mutant 1, relative to wild type), indicative of an additional level of 
transcriptional control, whereby Hand1 / E-factor binding at this site 
can repress transcription ( Fig. 1d ). Mutation of the Hand1-binding 
half-site within the canonical E-box to an alternate core E-box 
residue resulted in the greatest increase in transcriptional activity 
( Fig. 1d ), indicating a high degree of specifi city for Hand1 binding 
of the specifi c E-Box within the  T β 4  upstream region. To examine 
the ability of Hand1 to bind to the  T β 4  regulatory sequence, EMSAs 
were performed using 26-bp double-stranded oligonucleotides 
corresponding to the E-box and Th ing1 sites, along with 10 fl anking 
nucleotides on either side.  In vitro- translated Hand1, as a test for 
homodimer binding, was shown to shift  the migration of both 
binding site oligos ( Fig. 1e ). Th e greater intensity of the shift ed 
E-box oligo implies stronger binding at the E-box compared with 
the Th ing1 box ( Fig. 1e ). We then investigated binding of  in vitro-
 translated Hand1 in combination with  in vitro- translated E-factor 
(E12) at the E-box and revealed a resulting band shift  comparable 
to that for an optimal Th ing1 box (CGTCTG) 12  positive control 
( Fig. 1f ). Th is was supported by additional EMSAs with  in vitro -
translated tethered Hand1-E-Factor to further investigate hetero-
dimer binding, which again showed stronger binding at the E-box 
(ITF2  ;  Fig. 1g ). Signifi cantly, binding was virtually undetectable 
when oligonucleotides containing half-site point mutations were 
used ( Fig. 1e ) and excess cold (unlabelled) of either half-site mutant 
was unable to compete away binding relative to that competed by 
cold wild-type oligonucleotide ( Fig. 1f,g ). 

 Collectively,  in vitro  DNA-binding analyses not only confer 
direct binding at specifi c sites within the  T β 4  proximal 5 ′  region 
to Hand1, but for the fi rst time provide evidence for binding within 
either the preferred Th ing1 box or the canonical E-Box, which in 
turn results in Hand1-mediated diff erential eff ects (activation 
through the Th ing1 box and repression through the E-box) on  T β 4  
transcription.   

   T b 4  is a direct  in vivo  target of Hand1   .   Defi nitive  in vivo  bind-
ing of Hand1 to the  T β 4  promoter was demonstrated by ChIP from 
both EBs and whole embryos. Chromatin from 14-day diff erenti-
ated wild-type EBs was immunoprecipitated using a polyclonal 
 α -Hand1 antibody and the binding of Hand1 to the  T β 4  regulatory 
sequence was ascertained by PCR using several primer sets across 
this region ( Fig. 2a,b ). Chromatin from  Hand1 -null EBs was used 
in parallel as a control for antibody specifi city and all PCR products 
were validated by sequencing. Th ese experiments not only confi rm 
that Hand1 can be induced to bind and regulate  T β 4  transcription 
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 in vitro  but also show that binding occurred  in vivo  with EB dif-
ferentiation. We next sought to extend these studies to verify that 
the same direct interaction occurred in the developing embryo. 
Interestingly, the T β 4 proximal upstream regions were immuno-
precipitated using the Hand1 antibody from whole E8.5 embryos 
but either failed to be immunoprecipitated, in the case of the region 
containing the Th ing1 box, or only relatively weakly (15-fold less by 
means of scanning densitometry), in the case of the region contain-
ing the E-box from E11.5 embryos ( Fig. 2b ), providing additional 
insight into the temporal control of Hand1-mediated regulation of 
 T β 4  expression. Western analysis on E8.5 wild-type and  Hand1 -null 
embryos confi rmed the specifi city of the Hand1 antibody used in 
ChIP experiments ( Fig. 2c ), which was independently further verifi ed 
by our inability to ChIP from  Hand1 -null EBs.   

  Th e Hand1 – T b 4 pathway regulates vasculogenesis in EBs   .   Trans-
criptional and DNA-binding assays identifi ed  T β 4  as a direct target 
of the transcription factor, Hand1. We sought to establish the func-
tional signifi cance of the Hand1 – T β 4 pathway  in vivo , by determin-
ing the role of  T β 4  in Hand1-dependent developmental processes. 
Given the requirement for T β 4 in coronary vasculogenesis and angio-
genesis, we investigated whether reduced levels of TB4 contribute to 

vascular defects in  Hand1 -null embryos. Initially, we made use of 
 Hand1 -null EBs as a surrogate model for vasculogenesis 13,14 .  Hand1 -
null EBs were morphologically indistinct from wild-type EBs and 
able to undergo diff erentiation into complex cell types, such as beat-
ing cardiomyocytes, and primitive morphogenesis, including vesicle 
formation and cavitation. We fi rst investigated the relative expres-
sion of  Hand1  and  T β 4  over a time course of EB diff erentiation. As 
wild-type EBs were diff erentiated in fl oating culture, expression of 
 Hand1 , fi rst apparent at day 4, became upregulated and reached a 
peak of expression at day 8.  T β 4  expression was fi rst detected aft er 
6 days of diff erentiation. Signifi cant upregulation of  T β 4 , followed 
immediately aft er  Hand1  expression, reached peak level (10 days of 
diff erentiation). Th e lag between the onset of  Hand1  expression and 
upregulation of  T β 4  likely refl ects the earlier expression of  Hand1  
in EB cell lineages that do not express  T β 4  (for example, defi nitive 
mesoderm). Appropriate succession of  T β 4  relative to  Hand1  in EB 
diff erentiation is consistent with the notion that  T β 4  is a bona fi de 
 Hand1  target ( Fig. 3a ). Real-time quantitative reverse transcription 
(qRT) – PCR, over the equivalent time course of both wild-type R1 
and  Hand1 -null (6.13) EB diff erentiation, confi rmed appropriate 
downregulation of  T β 4  expression in  Hand1 -null EBs ( Fig. 3b – d ), 
although  T β 4  levels were not completely ablated, suggesting that, 

                 Figure 1    |         Hand1 is a transcriptional regulator of T � 4. A consensus E-box (CACATG, in red) and Thing1 box (TCTCTG, in blue) are found within a 

regulatory region upstream of the  T β 4  promoter ( a ). Sequence alignment reveals that the Hand1-binding sites proximal to the  T β 4  promoter are conserved 

in mammals. Evolutionarily conserved regions are indicated by coloured peaks and represent at least 100   bp of sequence and 70 %  identity; 

red peaks represent upstream intergenic regions; yellow peaks represent untranslated regions; blue peak is the fi rst exon of T β 4 and the salmon region 

is the intronic sequence ( http://www.ecrbrowser.dcode.org/ ; ( b )). Schematic to illustrate point mutations introduced into the respective half-sites of 

E-box and Thing1 box; numbers refer to the nucleotide location of each point mutation relative to the ATG of T β 4 ( c ). An 870-bp fragment containing 

the regulatory sequences was placed upstream of a luciferase reporter to assay for transcriptional activity. Luciferase reporter assays indicate a 10-fold 

activation of a T β 4 reporter construct by Hand1 ( *  *  *  P     <    0.001, Student ’ s  t -test) ( d ). Electrophoretic mobility shift assays demonstrate binding of Hand1 

to both the E-box and Thing1 boxes within the T β 4 proximal regulatory sequence, which is abolished by point mutation of E-box residues and severely 

diminished by point mutation of the Thing1 box ( e ). EMSA binding of Hand1 and E12 to the E-box within the T β 4 proximal regulatory sequence compared 

with an optimal Thing1 Box 12  ( f ). Binding of E-box and Thing1 boxes by a tethered Hand1-E-factor (Hand1 – ITF2) heterodimer is not competed away by 

mutant oligonucleotides (as depicted in ( c )) containing a point mutation in the half sequence for either E-factor or Hand1 binding ( g ); IVT controls of 

empty vector alone are shown in the left-hand lanes for each of  e  –  g . Error bars in  d  are s.e.m. of  n     =    mean of three separate transfection experiments, 

with triplicate wells for each treatment per experiment. IVT,  in vitro -translated; RLU, relative light units.  
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during diff erentiation of the embryo proper,  Hand1  is not the only 
factor regulating  T β 4  gene expression. We then examined expres-
sion levels of key vascular genes in  Hand1 -null EBs and observed 
reduced expression of both endothelial (TIE-2; to 4.1 % ;  Fig. 3e ) 
and smooth muscle ( α -smooth muscle actin;  α -SMA; to 62.7 % ) 
cell markers ( Fig. 3f ). To determine the extent to which the loss of 
T β 4, downstream of Hand1, accounted for the reduced expression 
of these specifi c vascular markers, EBs were cultured in the presence 
of 100-ng   ml     −    1  synthetic TB4 from day 4 of diff erentiation until col-
lection at day 14. Addition of TB4 to the culture medium was suf-
fi cient to restore endothelial diff erentiation, represented by TIE-2 
levels, the more severely downregulated marker in the  Hand1 -null 
situation ( Fig. 3e ).  α -SMA levels, which were modestly diminished 
in the absence of  Hand1 , were signifi cantly elevated (2.2- to 4.5-
fold) beyond control levels, not only in  Hand1 -null EBs but also 
in  Hand1 -heterozygous and wild-type EBs ( Fig. 3f ), implying that 
TB4 is a potent regulator of embryonic smooth muscle cell diff eren-
tiation. However, as smooth muscle protein levels were not greatly 
reduced in the  Hand1 -null background, it is possible that, in this 
context, TB4 functions in smooth muscle diff erentiation in a parallel 
pathway independent of Hand1.   

  Th e Hand1 – T � 4 pathway regulates yolk sac vasculogenesis   .   We 
next investigated the implications of these fi ndings by addressing 
the role of the Hand1 – T β 4 pathway in the development of the yolk 
sac vasculature proper. As  Hand1  was shown to be expressed in the 
mesodermal layer of the visceral yolk sac 3,4 , as a contributory fac-
tor to the haemorrhagic yolk sac phenotype reported in  Hand1 -null 

embryos, we fi rst examined the developing yolk sac vasculature as 
a potential lineage for  Hand1  –  T β 4  coexpression.  In situ  hybridiza-
tion revealed  T β 4  expression in the blood islands of the yolk sac 
at E8.5 ( Supplementary Fig. S1a ) and in developing vessels at E9.5 
and E10.5 ( Supplementary Fig. S1b – d ). Whole-mount immunofl u-
orescence, on wild-type embryos, revealed T β 4 coexpression with 
Hand1 throughout the yolk sac mesoderm at E8.5 ( Fig. 4a,b)  and 
in endothelial cells at E8.5 (not shown) and E9.5 ( Fig. 4c ). T β 4 was 
not expressed in smooth muscle cells, as revealed at E9.5 ( Supple-
mentary Fig. S2a – d ). Hand1 follows an equivalent pattern of expres-
sion at E9.5, exclusively localized within the platelet / endothelial cell 
adhesion molecule (PECAM)    +     endothelium ( Fig. 4d,e ) and absent 
from the smooth muscle layer of the developing yolk sac vasculature 
( Fig. 4f,g ). Interestingly, Hand1 subcellular localization changes from 
exclusively nuclear at E8.5 to perinuclear at E9.5 (as confi rmed by 
immunostaining with three independent  α -Hand1 polyclonal anti-
bodies), with increasing endothelial cell diff erentiation ( Fig. 4a,b,d 
and e ), and is downregulated on vascular maturation ( Supplementary 
Fig. S2e – h ).   

  Rescue of  Hand1  vascular defects by synthetic TB4   .   Importantly, 
TB4 was signifi cantly downregulated (9.03-fold,  P     ≤    0.01) in  Hand1 -
null yolk sacs to levels equivalent to background (no primary /
 secondary antibody-alone controls; not shown), as determined by 
immunostaining ( Fig. 5a – f ) and ImageJ analysis for quantifi cation 
( Fig. 5g ). Subsequent immunohistochemistry on  Hand1 -mutant 
embryos indicated a lack of vascular plexus formation in the yolk 

     Figure 2    |         Hand1 binds to a region proximal to the T � 4 promoter  in vivo . 
Regions of the T β 4 sequence containing either the E-box (F1 – R1; forward 

(F) and reverse (R) primer sequences are underlined with arrowhead for 

orientation) or the Thing1 box (F2 – R2 primer sequences as indicated) 

were PCR-amplifi ed using indicated primers ( a ). Chromatin containing 

the E-box and the Thing1 box was individually immunoprecipitated from 

wild-type (WT) embryoid bodies but not from  Hand1 -null embryoid 

bodies as confi rmation of antibody specifi city ( b ). Hand1 binds to the 

T β 4 promoter in the E8.5 embryo but only weakly at the E-box of the 

promoter at E11.5. A 469-bp product containing both binding sites (F1 – F3 

primer sequences as indicated) could be amplifi ed from both EBs and E8.5 

embryos under PCR conditions of reduced stringency. Lanes 1, 2 and 3 refer 

to input, no antibody control and Hand1 antibody, respectively. Specifi city 

of the antibody used for ChIP was confi rmed by western blot analysis of 

E8.5 WT (    +     /     +    ) and  Hand1 -null (    −     /     −    ) embryos ( c ); black arrowhead 

highlights specifi c Hand1 band; ns, nonspecifi c.  

       Figure 3    |         Hand1 regulates vascular differentiation in embryoid bodies. 
 T β 4  and Hand1 levels were visualized by northern blotting ( a ) and 

quantifi ed relative to  Gapdh  levels ( b ). Real-time qRT – PCR was used 

to measure  Hand1  ( c ) or  T β 4  expression ( d ) during a time course of 

differentiation in wild-type (R1) and  Hand1 -null (6.13) EBs. T β 4 levels are 

signifi cantly downregulated in a  Hand1 -null background (day 6,  *  P     ≤    0.05; 

days 8 – 16,  *  *  P     ≤    0.01; Student ’ s  t -test) ( d ). Western blot analysis showed 

that vascular markers, both endothelial ( e ) and smooth muscle ( f ), are 

diminished in  Hand1 -null embryoid bodies (EBs), as quantifi ed by scanning 

densitometry, normalized against GAPDH. Expression levels of these 

markers, TIE-2 ( e ) and  α -SMA ( f ), are restored by supplementing the 

culture medium with synthetic TB4 (    +    T β 4). Error bars in  c  and  d  represent 

s.e.m., where  n     =    mean of three samples per time point. AU, arbitrary units.  
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sacs of mutant embryos as compared with heterozygous littermates 
at E8.5 ( Fig. 6a,b ). Such defects in yolk sac vasculogenesis coin-
cided, as previously reported 1 , with an arrest in embryonic develop-
ment. In contrast, wild-type and heterozygous littermate embryos 
had appropriately turned and developed within a yolk sac con-
taining a well-organized capillary plexus composed of PECAM    +     
endothelial cells arranged in the characteristic honeycomb pattern 
( Fig. 6a ). Intraperitoneal injection of pregnant female mice with 
TB4 (6   mg   kg     −    1 ) was performed to determine whether defective 
vasculogenesis in  Hand1 -null yolk sacs could be rescued by TB4. 
 Hand1 -null embryos treated with TB4 were recovered at E8.5 in 
which yolk sacs displayed an appropriately formed capillary net-
work (PECAM immunohistochemistry,  Fig. 6c – f ) and in which the 
embryo had developed beyond the primitive arrested head fold and 
body axis stage of the conventional mutants. Appropriate uptake of 
TB4 in the yolk sac vasculature was confi rmed by enzyme-linked 
immunosorbent assay (ELISA) on treated yolk sac tissue, which 
revealed a signifi cant fi vefold elevation in TB4 levels ( Fig. 6g ). In 
addition, real-time qRT – PCR revealed that reduced  T β 4  expression 
in  Hand1  mutant yolk sacs was elevated beyond the level observed 
in control  Hand1  heterozygotes aft er administration of synthetic 
TB4 ( Fig. 6h ); this not only further confi rmed appropriate localiza-
tion of TB4 treatment to the developing yolk sac  in utero , but also 
suggested an autoregulatory eff ect of TB4 on its own gene expres-
sion. In two independent  Hand1 -null lines (conventional targeted 
 Hand1  allele and a tTA knock-in to the  Hand1  locus), the mutant 
phenotype at E8.5 is virtually 100 %  penetrant 1,15 , as confi rmed in 
all vehicle-treated mutants examined in this study, suggesting that 

TB4-rescued mutants do not simply represent  Hand1  mutants pre-
senting with a less-severe phenotype. Th erefore, we conclude that 
TB4 is suffi  cient to rescue vasculogenic defects in the embryonic 
yolk sac that arise because of an absence of  Hand1 . Conventional 
 Hand1  mutants were rarely observed at E9.5 ( n     =    1 from 5 litters / 49 
embryos, expected number    =    12.5; 25 % ) and those that could be 
isolated displayed gross phenotypical defects compared with hetero-
zygous littermates ( Fig. 6i ), leading to resorption ( Fig. 6j ); however, 
TB4-rescued  Hand1  mutants were recovered, but had evidently 
arrested in development by this stage ( Fig. 6k ). At E9.5, TB4-rescued 
 Hand1 -null embryos were recovered with 16 – 18 somite pairs, com-
pared with 17 – 23 in wild-type / heterozygous littermates (based on 
 n     =    6 litters), representing a clear progression in development beyond 
the 8 – 12 somite pairs observed at E8.5. Th e E9.5  ‘ rescued ’  embryos 
lacked large, blood-fi lled, vitelline vessels and the accompanying 
highly organized meshwork of secondary smaller vessels apparent 
in wild-type yolk sac at the equivalent stage ( Fig. 6l – r ). Th is sug-
gests that T β 4 rescued early yolk sac vasculogenesis at E8.5 but was 
insuffi  cient to rescue angiogenic remodelling of the primary vascular 
plexus at E9.5 to ensure continued embryonic growth and survival. 

 Real-time qRT – PCR on E8.5 yolk sacs from  Hand1  hetero-
zygous and homozygous mutants confi rmed  ‘ rescue ’  of vascular 
gene expression during yolk sac vessel development aft er treatment 
with synthetic TB4 ( Fig. 7 ). Elevated levels of  Vegf ,  Flt1  and  Pecam  
expression in  Hand1 -null yolk sacs, consistent with that observed 
previously 4 , were returned to control levels aft er TB4 treatment 
( Fig. 7a ). Western analysis on lysates from E8.5 yolk sacs for PECAM 
expression confi rmed the real-time qRT – PCR data. PECAM protein 

      Figure 4    |         TB4 and Hand1 are coexpressed in the developing yolk sac. TB4 is coexpressed with Hand1 in the yolk sac mesoderm at E8.5 as determined 

by immunostaining with epifl uoresence ( a ) and confocal microscopy ( b ). White arrowheads in  a  (merged, bottom panel) highlight T β 4 and Hand1 

double-positive cells. TB4 is expressed in endothelial cells of yolk sac capillaries at E9.5 ( c ), as detected by coexpression with PECAM ( c ; panel 4). Hand1 

is expressed in yolk sac PECAM    +     endothelial cells and becomes localized to perinuclear regions with differentiation of the endothelium ( d ,  e ); white 

arrowheads highlight clusters of Hand1    +     / PECAM    +     endothelial cells in  d  (merged bottom panel) with a higher magnifi cation view of costained cells 

within the plexus in  e . Hand1 is not expressed in smooth muscle cells at E9.5, as indicated by mutually exclusive localization of Hand1    +     cells and those 

stained for  α -smooth muscle actin ( α SMA;  f ,  g ); white arrowheads highlight  α SMA    +     cells lining the Hand1    +     vascular endothelium at low ( f ) and high 

magnifi cation ( g ). Each top panel label ( a – g ) refers to the subsequent set of four vertical panels. Scale bars indicate 20    μ m ( a ); 10    μ m ( b ); and 

50    μ m ( c  –  g ).  
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was elevated in the  Hand1 -null background, but returned to con-
trol levels as observed in heterozygous littermates aft er TB4 treat-
ment ( Fig. 7b ). Th e expression data suggest that vascular genes 
and proteins, such as PECAM, are mis-regulated in a  Hand1 -null 
background, with compensatory increases occurring in yolk sac 
endothelial cells in the absence of appropriate remodelling and 
plexus formation. 

 Genes encoding members of upstream TGF β -signalling path-
ways,  Tgf β 1  and  Tgf β rII , with associated expression of either  Smad5  
and  Endoglin  ( Fig. 7c ), which, at this comparatively early stage, are 

indicative of endothelial cell proliferation and migration, or  Smad2  
( Fig. 7c ), which functions in endothelial cell diff erentiation dur-
ing vasculogenesis (reviewed by Gaengel  et al.  16 ), were also rescued 
to the levels observed in control  Hand1  heterozygous yolk sacs. In 
addition, expression of  Notch1 ,  2  and  4  ( Fig. 7d ) was also reduced 
to control levels aft er administration of TB4, suggesting appropriate 
modulation of VEGF-signalling and vascular patterning (reviewed 
by Roca and Adams 17 ). Consistent with the TB4-mediated  ‘ res-
cue ’  being restricted to vasculogenesis at E8.5, we did not observe 
changes in expression of genes encoding members of the platelet-
derived growth factor (PDGF)-B – PDGFR β  pathway, known to 
have a key role in mural cell recruitment during angiogenesis. 16     

 Discussion 
 During development, the yolk sac gives rise to blood and the earli-
est vessels, and functions as the developmental circulatory system 
to sustain early embryonic life. Th e initial requirement for complex 
yolk sac vasculature is then superseded by the placenta, which takes 
over the supply of maternally derived nutrients and oxygen to the 
rapidly developing fetus. Th e bHLH transcription factor Hand1 is 
fundamentally required for development of both the yolk sac and 
trophoblast cells of the placenta and, at later stages, in cardiac loop-
ing morphogenesis and ventricular specifi cation of the embryo 
proper. However, to date, as both placentation 1  and extraembryonic 
mesoderm / yolk sac defects 3,4  contribute towards the phenotype 
of  Hand1 -null embryos, it has not been possible to determine the 
individual contribution of each component or which is primarily 
responsible for the early embryonic lethality. Moreover, the molecu-
lar target genes for Hand1 and downstream eff ectors, which orches-
trate these essential embryonic events, have not been defi ned. 

 Here, we identify  Th ymosin  β 4  as a bona fi de target of Hand1 
and defi ne a specifi c physiological role for the Hand1 – T β 4 axis 
in regulating yolk sac vasculogenesis. Yolk sac vessel anomalies in 
 Hand1 -null embryos manifest at an earlier stage (E8.5) than almost 
all other reported yolk sac mutants, in which defective angiogenesis 
and vascular remodelling (PDGF receptors 18 , Neuropilin-1 19 , Ets-
related factor, TEL 20 , LBP-1a 21 ,  α -5 β 1 integrin 13 ) or smooth muscle 
cell recruitment (Erk – 5 (ref.  22 )) is evident between E9.0 – 10.0. We 
report the fi rst rescue of extraembryonic vascular defects in any 
context to date, such that administration of synthetic TB4 during 
pregnancy is suffi  cient to restore vasculogenesis to  Hand1 -null 
embryonic yolk sacs. Th e fact that TB4 treatment enabled the recov-
ery of  Hand1 -null mutants as late as E9.5 implicates impaired yolk 
sac vasculogenesis as a contributing factor to the early lethality in 
 Hand1 -null embryos. However, failure of development beyond E9.5 
in  ‘ rescued ’  mutants suggests an absolute requirement for  Hand1  
in other critical aspects of embryonic development, such that TB4-
treated embryos likely die because of a combination of abnormal 
trophoblast / placenta formation and failed later-stage yolk sac 
remodelling. A recent study targeting  Hand1  specifi cally in extra-
embryonic mesoderm 23  resulted in lethality at stages equivalent to 
those previously reported for systemic  Hand1  knockouts 3,4 . Loss of 
 Hand1  in extraembryonic mesoderm suggests that the role of Hand1 
in the yolk sac anlage is critical for embryonic viability and may rep-
resent the primary cause of lethality in  Hand1 -null mutants. 

 Yolk sac defects in  Hand1 -null mutants have previously been 
attributed to impaired remodelling of the vascular plexus and defec-
tive recruitment of smooth muscle cells to the endothelial network 4 . 
Th ese events occur aft er vasculogenesis, and are indicative of the 
fact that  Hand1  mutants in this earlier study survived to a more 
advanced stage (E9.5), as compared with our null embryos (E8.5), 
having been generated by distinct targeting to derive an alternate 
mutant allele and maintained on a diff erent genetic background 4 . 
Precedent for allele-specifi c targeting generating phenotypes with a 
diff erent stage of onset and varying severity exists for a number of 
genes, including the cardiac transcription factor Gata4 24,25 , whereby 

    Figure 5    |         TB4 is downregulated in  Hand1 -null yolk sacs. Hand1 and TB4 

are coexpressed in the developing vasculature of the yolk sac at E8.5 in 

wild-type (    +     /     +    ) embryos ( a ,  c ) but not in  Hand1 -null yolk sacs (    −     /     −    ) ( e ). 

TB4 expression is found in the cytoplasm of wild-type embryos as revealed 

by counterstaining nuclear DNA with  bis -benzamide ( b ,  d ), but is not 

detected in  Hand1 -null yolk sacs ( f ). TB4 is evident in the remodelling 

vascular plexus ( c ; highlighted by white arrowheads) in wild-type yolk 

sacs but signifi cantly downregulated in  Hand1 -null yolk sacs ( e  –  g ). Images 

were captured at equivalent light intensity and fi lter settings and levels of 

TB4 were detected in  Hand1 -null yolk sacs as equivalent to background as 

determined by ImageJ scans of six regions of yolk sac vasculature across 

two wild-type and two  Hand1 -null yolk sacs ( g ). Error bars are s.e.m., where 

 n     =    mean ImageJ fl uorescence across six regions of yolk sac vasculature 

per genotype.  *  *  P     ≤    0.01 (Student ’ s t-test). Scale bar in  a , 40    μ m ( a – f ). 

AU, arbitrary units.  
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the variation is likely due to genetic modifi er or off -target eff ects. 
Impaired angiogenesis was associated with an upregulation in  Vegf , 
 Ang1  and  Ephrin B2  at E9.5 but without insight into the functional 
downstream pathway(s) or any direct eff ects on gene expression 4 . 
Consistent with these later-stage fi ndings, we observed an upregula-
tion in components of the  Vegf ,  Tgf β   and  Notch  pathways in  Hand1 -
null yolk sacs at E8.5, suggesting that Hand1 may also be required 
for suppression of specifi c cohorts of vascular genes at earlier stages. 
Importantly, whereas mis-expression of these factors may underlie 
defective angiogenesis and mural cell recruitment at E9.5 4 , each of 
these specifi c pathways is also critical for endothelial cell migra-
tion, proliferation and diff erentiation during vasculogenesis 16  and 
their mis-expression can account for the earlier  Hand1 -null yolk sac 
pheno type we observe at E8.5. 

 At a biochemical level, we reveal that  T β 4  is a direct target of 
Hand1 and demonstrate the ability of this transcription factor to 
both activate and repress transcription of TB4 by binding at alternate 
E-box sites closely positioned within proximal sequences upstream 
of the functional promoter 11 . Our ChIP data suggest binding of the 
Th ing1 degenerate E-box in the  T β 4  proximal regulatory region at 

E8.5 to cause activation of  T β 4 , and, subsequently at E11.5, a rela-
tively stronger binding of Hand1 to the E-box than to the Th ing1 
box within the same  T β 4  upstream element to mediate repression 
of  T β 4 . It was previously proposed that the inhibitory activity of 
HAND1 may be attributed to multiple mechanisms, such as its 
ability to function as a co-repressor, the presence of a repression 
domain and its ability to sequester E-factors in an inactive com-
plex 26 . In this study, point mutation of the  T β 4  proximal E-box led 
to increased transcriptional activity, supporting the possibility that 
Hand1 represses, at least in the case of  T β 4 , by direct DNA binding 
rather than limiting the availability of other bHLH factors through 
sequestration. Interestingly, a point mutation specifi cally in the 
predicted Hand1-binding half-site of the Th ing1 box, but not the 
E-factor-binding half, abolished transcriptional activation. Th is is 
the fi rst example, of which we are aware, regarding the signifi cance 
of half-site binding in the context of bHLH heterodimer formation. 
However, in light of our EMSA data ( Fig. 1e – g ), which revealed an 
equivalent reduction in DNA binding for point mutants of either 
the Hand1 or E-Factor half-site within the Th ing1 box, further stud-
ies are required to determine putative DNA-binding independent 

          Figure 6    |         TB4 rescues defective yolk sac vasculogenesis in  Hand1 -null mutants. Whole-mount immunohistochemistry was performed on Hand1-null 

embryos and heterozygote littermate controls at E8.5 ( a  –  f ) and E9.5 ( i  –  r ) using PECAM ( a – f ;  i – n ) and  α SMA ( o – r ) antibodies to visualize the yolk sac 

capillaries and smooth muscle, respectively. A lack of appropriate capillary plexus formation (vasculogenesis) is evident in Hand1-null embryos ( b ,  e ), 

compared with heterozygous littermates at E8.5 ( a ,  d ). Intraperitoneal (i.p.) injection of pregnant females with TB4 rescued the yolk sac vasculogenic 

defects and an appropriately formed vascular plexus is observed at E8.5 ( c ,  f ). ELISA revealed a signifi cant fi vefold increase in yolk sac TB4 levels 2   h after 

injection (6   mg   kg     −    1 , i.p.) of pregnant females ( g ); error bars are s.e.m., where  n     =    mean protein concentration from six yolk sacs per treatment.  *  *  *  P     <    0.001 

(Student ’ s  t -test). TB4 concentration returns to control (uninjected or 2   h PBS) level by 48   h after injection, consistent with a mean terminal half-life of 

1.8 – 2.1   h (human Phase IA study, RegeneRx). qRT – PCR revealed that diminished  T β 4  expression in  Hand1  mutant yolk sacs was elevated to beyond the 

level observed in control  Hand1  heterozygotes after administration of synthetic TB4 ( h ). Angiogenic remodelling ( i ,  l ) and smooth muscle recruitment 

( o ,  q ) occurred in heterozygous embryos by E9.5 but T β 4 – rescued embryos arrested in development before undergoing these processes ( k ,  n ,  p ,  r ). 

Hand1-null embryos are seldom recovered at E9.5. An embryo collected at this stage presented with a primitive, avascular yolk sac and was observed to 

undergo resorption ( j ,  m ). TB4 injection had no effect on the yolk sac vasculature of wild-type or heterozygous embryos and hence is not shown. Scale 

bars indicate 150    μ m ( a – c ); 100    μ m ( d – f ); 250    μ m ( i – k ); 150    μ m ( l – n ); 250    μ m ( o – r ). AU, arbitrary units; ys, yolk sac.  
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mechanisms that might underlie the diff erential transcriptional 
regulation by Hand1. 

 Th ese data, collectively, are consistent with previous results that 
show that HAND1 can function as a negative or positive regula-
tor of transcription 26,27 . Evidence of vascular gene repression by 
Hand1 and the seemingly contradictory lack of vasculogenesis in 
 Hand1 -null embryos, suggest that attempts to compensate for the 
loss of  Hand1  with elevated vascular signalling contributes to the 
impaired vasculogenesis phenotype in mutants. Th erefore, Hand1, 
through activation and repression of  T β 4 , seems to contribute to 
the fi ne-tuning of the vasculogenic response in the yolk sac in a 
coordinated manner to ensure appropriate temporal and spatial 
regulation of vessel development. Provascular genes are repressed 
at times when vessel formation is not desired and transcriptional 
activation occurs with the onset of vasculogenesis. With specifi c 
reference to the ChIP data presented, we speculate that, in the case 

of TB4, such Hand1-induced temporal regulation at critical stages, 
between E8.5 and E11.5, may be mediated by a shift  in binding 
from the E-box to the Th ing1 box. Th is remains to be fully proven. 

 We herein implicate TB4 in the process of yolk sac vasculogen-
esis, downstream of Hand1. TB4 has recently been recognized for its 
ability to promote coronary vessel development and angiogenesis, 
both in the embryo and in the adult through neovascularization to 
promote cardiac repair 28,29 . Direct parallels can be drawn between 
development of the yolk sac, coronary and gut vasculature, which 
diff er from the vasculogenesis that occurs in most other tissues. In 
all three cases, vascular precursors arise from a mesoderm-derived 
epithelium, the yolk sac mesothelium 18 , the epicardium 28,30,31  and 
the serosal mesothelium 32 . It may be that the provasculogenic role 
of T β 4 is restricted to targeting mesothelial tissues specifi cally for 
the induction of new vessel formation. Notably, both the epicar-
dium and serosal mesothelium retain vasculogenic potential in 
the adult 28,33 , which, in the case of the epicardium, can be induced 
by T β 4 28 . Given the signifi cant therapeutic potential of T β 4 in the 
cardiac setting 6,34  and its current use in clinical trials for conditions 
such as venous stasis and diabetic foot ulcers, epidermolysis bullosa 
and third-degree skin burns ( http://www.regenerx.com/wt/page/
clinical_trials ), all of which require restoration of the subepidermal 
vascular bed, an understanding of the molecular pathways within 
which T β 4 signals is vital, although it is currently lacking. Upstream 
regulation of  T β 4  has not previously been demonstrated and the 
identifi cation of Hand1 in this context is signifi cant. It remains a 
possibility that Hand1 additionally regulates  T β 4  expression at later 
embryonic stages, perhaps at time points when T β 4 is required 
for coronary vasculogenesis. Similarly, very little is known regard-
ing the developmental genes and key signalling pathways that are 
downstream of Hand1 / T β 4. We reveal mis-expression of a number 
of provascular genes and their rescue by T β 4, implicating T β 4 in 
pathways that directly or indirectly regulate endothelial cell pro-
liferation, migration and diff erentiation. However, it remains to be 
determined whether Hand1 – T β 4 functions to regulate additional 
factors in vascular development and how these molecular cues may 
be used during neovascularization and adult cardiac repair.   

 Methods  
  Plasmids   .   Th e T β 4 luciferase reporter construct consisting of an 870-bp product, 
corresponding to a regulatory region upstream of the  T β 4  promoter (    −    2002 
to     −    1132, relative to ATG), was PCR-amplifi ed from mouse cDNA with the intro-
duction of  Kpn I (5 ′ ) and  Bgl II (3 ′ ) sites. Th e cut product was ligated into  Kpn I /
  Bgl II-digested pGL2-Basic. For deletion constructs, the promoter fragment was 
digested with  Xmn I /  Bgl II ( Δ  E-box, 770   bp) or  Dra I /  Bgl II ( Δ  Th ing1 box, 460   bp) 
and ligated into  Sma I /  Bgl II-digested pGL2-Basic. Point mutation constructs were 

       Figure 7    |         TB4 restores appropriate vasculogenic gene and protein 
expression in the  Hand1 -null yolk sac. Real-time qRT – PCR on E8.5 

yolk sacs demonstrated the mis-expression of vascular genes in  Hand1  

homozygous mutant yolk sacs (    −     /     −    ) compared with heterozygous 

yolk sacs (    +     /     −    ) and their restoration after treatment with synthetic 

TB4. Elevated levels of  Vegf ,  Flt1  and  Pecam  expression in  Hand1 -null yolk 

sacs were returned to control levels after TB4 treatment ( a ). Differential 

expression of  Pecam  was confi rmed at the protein level by western blotting 

with  α -PECAM on lysates from E8.5  Hand1 -heterozygous and  Hand1 -

null yolk sacs treated with either vehicle (    −    TB4) or TB4 (    +    TB4): TB4 

treatment restored elevated PECAM levels in  Hand1  mutants to control 

levels as determined in heterozygous littermates ( b ). Genes implicated in 

vasculogenic endothelial cell proliferation, migration and differentiation 

( Tgf β 1, Tgf β rII, Smad5 ,  Endoglin  and  Smad2 ) were also rescued to the control 

levels observed in  Hand1  heterozygous yolk sacs ( c ). Elevated expression 

of  Notch1 ,  2  and  4  in mutants was also reduced to control levels after 

administration of TB4, to restore appropriate VEGF signalling and vascular 

patterning ( d ). Error bars are s.e.m., where  n     =    mean of three separate 

qRT – PCR experiments on three pooled yolk sacs carried out in triplicate. 

 *  *  P     <    0.01;  *  *  *  P     <    0.001 (Student ’ s  t -test).  
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created from the full-length reporter construct by site-directed mutagenesis, using 
 QuickChange XL  ( Stratagene ) and appropriate oligonucleotides to introduce 
the E-box or Th ing1-box mutations illustrated in  Figure 1 . pcDNA3Hand1 was 
constructed by ligating an  Nde I(fi lled in) /  Xho I fragment of full-length Hand1 into 
pcDNA3 and the tethered heterodimer Hand1 – ITF2 was constructed by ligating 
a  Bgl I /  Hin dIII fragment of Hand1 and  Pst I /  Xba I fragment of ITF2 separated by a 
peptide tether [GT(G 3 -S 7 ) 4 GGGT] 2  

35  into pCMVFlag.   

  Bioinformatics   .   An ensemble ( http://www.ensembl.org/index.html ) reference 
sequence, Tmsb4x [NM_021278], chrX: 163643026-163646250, containing the 
murine upstream regulatory region of T β 4 ( – 2002 to     −    1132, relative to ATG), was 
entered into the Evolutionary Conserved Regions (ECR) browser at  http://www.
ecrbrowser.dcode.org/ . Th e mouse sequence was used as a base against alignments 
with sequenced genomes from six species. Th e graphical output was a smooth 
conservation plot based on ECRs of 100 nucleotides and 70 %  identity.   

  Mouse strain   .   Th e  Hand1 -null mouse strain used in this study was generated 
by homologous recombination in embryonic stem cells using a gene targeting 
construct derived from a 129sv genomic library with a 5 ′  arm (5.7   kb  Bam HI /  Kpn I 
fragment) and 3 ′  arm (2.6   kb  Xho I /  Not I fragment) fl anking a neomyocin resistance 
cassette to replace from 0.3   kb upstream of exon I of the  Hand1  gene to 0.4   kb 
downstream of the translation stop codon in exon 2. Th e targeting generated a 
functionally null allele in male chimera mice, which was transmitted through 
the germ line 1 . Experiments on animals were carried out under UK Home Offi  ce 
Project Licenses PPL 70 / 6086 and PPL 70 / 6946 in accordance with the UK 
Animals (Scientifi c Procedures) Act 1986.   

  T � 4 rescue in  Hand1 -null embryos   .   Timed matings were established between 
 Hand1 -null heterozygous mice. Eighteen pregnant females were injected intraperi-
toneally with 6   mg   kg     −    1   TB4  ( RegeneRx ) in 0.1   ml PBS and 12 with vehicle at E4.5 
and E6.5 (E8.5 and E9.5 for collection only). Embryos were collected at E8.5 or 
E9.5 and prepared for immunohistochemistry or qRT – PCR analysis.   

  Western blotting   .   Western blotting was performed using standard methods with 
antibodies against  TIE-2 and PECAM  (both from  Santa Cruz , diluted 1:200), 
 SM α A  (1:1000) and  Hand1  (1:500, both from  Sigma ), and   β -tubulin  and  GAPDH  
(both from  Chemicon , diluted 1:1000). Scanning densitometry was performed and 
signal quantifi ed using ImageJ.   

  EMSAs   .   EMSAs were carried out essentially as described previously 12 . Briefl y, 
 in vitro- translated Hand1, E12 and tethered Hand1 – ITF2 heterodimer were incubated 
with  32 P-labelled oligonucleotide in binding buff er at room temperature for 30   min. 
Unlabelled oligonucleotide (50-fold excess) was used in the competition binding 
assays. Binding reactions were run on a 6 %  tris-borate-EDTA polyacrylamide gel, 
which was dried and subjected to autoradiography.   

  Culture of fl oating EBs   .   Embryonic stem cell lines (wild-type     +     /     +    ; hetero-
zygous     +     /     −    ; homozygous     −     /     −    ) were maintained in culture, as previously 
described. 36  Cells at approximately 80 %  confl uence were trypsinized and collected 
in leukaemia inhibitory factor-free diff erentiation medium. Cells ( ~ 10 6 ) were 
transferred to 100   mm non-coated bacteriological plates and maintained in fl oating 
culture for 16 days, with daily feeding. For TB4 rescue experiments, TB4 was added 
to the culture medium at 100   ng   ml     −    1  aft er the fourth day of diff erentiation until 
collection. EBs were collected at various time points, washed twice in PBS and snap-
frozen. Poly(A) RNA was isolated using the  Micro-Fast Track 2.0 kit  ( Invitrogen ) 
and protein extraction was performed using RIPA buff er and a standard protocol.   

  Reporter transactivation assays   .   NIH-3T3 cells, cultured under standard condi-
tions, were transfected using  Eff ectene reagent  as described previously 37 . Briefl y, 
duplicate wells were transfected with a reporter (the T β 4 promoter or mutated 
versions thereof, upstream of luciferase in pGL2 basic), along with either 250   ng 
pcDNA3-Hand1 or 250   ng pcDNA3 and a pCMV- β -galactosidase ( β -gal) vector 
to normalize for transfection effi  ciency. Luciferase and  β -gal activity were assayed 
48   h aft er transfection as described 37 ; following normalization, diff erences in 
RLU /  β -gal were analysed using a Student ’ s  t -test. Each transfection experiment was 
performed three times and a representative data set is shown for each.   

  ChIP   .   Wild-type and Hand1-null EBs were collected aft er 14 days of diff erentia-
tion, and washed twice in PBS. E8.5 and E11.5 embryos were dissected in PBS 
containing 0.3 %  Triton X-100. Tissues were immediately cross-linked for 3   h at 
room temperature in ChIP fi x (1.8 %  formaldehyde, 50   mM HEPES pH7.9, 1   mM 
EDTA, 1   mM EGTA, 100   mM NaCl and 0.09 %  (v / v) butyric acid), homogenized 
in lysis buff er and sonicated. A volume of 60    μ g of chromatin lysate was used per 
immunoprecipitation with 10    μ g of  anti-Hand1 antibody  ( Sigma ) in ChIP dilution 
buff er at 4 ° C overnight. A no-antibody procedure was performed in parallel as a 
control. Immune complexes were pulled down with Protein A / G beads, washed, 
resuspended in TE (10   mM Tris, 5   mM EDTA, pH 8.0), the cross-links reversed 
overnight at 65 ° C and the DNA purifi ed. ChIP and no-antibody samples were 
assayed by PCR using primers designed to amplify regions of the T β 4 proximal 
regulatory region, as illustrated in  Figure 2 .   

  ELISA for T � 4   .   Pregnant wild-type female mice were injected with T β 4 (6   mg   kg     −    1  
in PBS) or vehicle control either 48 or 2   h before collection of E8.5 embryos. 
Protein extracts were prepared from six yolk sacs of each treatment group using 
the RIPA method. A volume of 10    μ g of total protein was assayed in duplicate using 
a  T β 4 ELISA kit  ( Immundiagnostik ), according to manufacturer ’ s instructions. 
Mean T β 4 concentration was calculated and signifi cance determined using a 
Student ’ s  t -test.   

  Whole-mount immunohistochemistry   .   Embryos were dissected in sterile PBS, 
within their yolk sacs, and fi xed in 4 %  (w / v) paraformaldehyde for 2   h at room 
temperature. Embryos were treated with 3 %  (v / v) hydrogen peroxide in PBS 
to block endogenous peroxidase activity and permeabilized by incubation for 
3 × 15   min in PBT  × 0.3  (PBS containing 0.3 %  Triton X-100), 2 × 15   min in PBT  × 0.5  
(PBS containing 0.5 %  Triton X-100), followed by two further 15   min incubations 
in PBT  × 0.3 . Embryos were blocked for 1   h at room temperature in PBT  × 0.3  / BR (2 %  
 blocking reagent  ( Roche ) in PBT  × 0.3 ). Th e blocking solution was replaced with 
anti body, diluted in PBT  × 0.3  / BR for overnight incubation at 4 ° C ( biotinylated rat 
anti-PECAM ,  BD Pharmingen , 1:50;  rabbit anti- α -SMA ,  Abcam , 1:150). Following 
two rinses in PBT  × 0.3  and three 1   h washes in PBT  × 0.5 , embryos were blocked for 1   h 
at room temperature in PBT  × 0.3  / BR and incubated overnight with  biotinylated anti-
rabbit antibody  ( Dako , 1:100), diluted in BR  × 0.3  (except for PECAM staining, using 
a biotinylated primary antibody when the second day washes and incubation with 
biotinylated secondary antibody were omitted). Aft er two rinses in PBT  × 0.3  and 
three 1   h washes in PBT  × 0.5 , embryos were incubated with diluted streptavidin –  
horseradish peroxidase complex (diluted in PBT  × 0.3  / BR), washed three times 
in PBT  × 0.3 , rinsed in PBS and developed using a 3,3 ′ - Diaminobenzidine Liquid 
Substrate System  ( Sigma ). Aft er imaging, DNA was prepared from embryos for 
genotyping, with primers as shown in  Supplementary Table S1  1 .   

  RNA  in situ  hybridization of embryonic yolk sacs   .   Whole-mount  in situ  
hybridization of embryos retained within the yolk sac was performed, as previously 
described 4  using a T β 4 3 ′ UTR riboprobe.   

  qRT – PCR of EBs and yolk sac vascular genes   .   For real-time qRT – PCR analysis 
of  Hand1 and  T β 4  through diff erentiation, wild-type (R1) and  Hand1 -null (6.13) 
EBs were collected at days 2, 4, 6, 8, 10, 12, 14 and 16, snap-frozen and total RNA 
extracted using an  RNeasy kit  ( Qiagen ). For yolk sac vascular genes, embryos were 
collected at E8.5, yolk sacs were snap-frozen and DNA was extracted from embryos. 
Aft er genotyping, four yolk sacs per genotype / treatment group were pooled and 
total RNA was extracted. Linear amplifi cation of mRNA was performed using a 
 Microarray Target Amplifi cation kit  ( Roche ), according to manufacturer ’ s instructions. 
qRT – PCR analysis was performed on an  ABI 7000 Sequence Detector  ( Applied 
Biosystems ) using  SYBR Green  ( Applied Biosystems ). Data were normalized to 
 Hprt1  expression and gene expression was calculated using the  Δ  Δ  C t  method 38 . 
 P -values were obtained using Student ’ s  t -test ( n     =    9). Primers sequences were obtained 
from Primer Bank ( http://www.pga.mgh.harvard.edu/primerbank ), and are shown 
in  Supplementary Table S1 .   

  Yolk sac immunofl uorescence   .   Whole-mount embryos with yolk sacs intact were 
dissected and fi xed as described above. Embryos were removed before yolk sacs 
were blocked and incubated with primary antibody as described above ( Cy3-conju-
gated  α SMA  ( Sigma , 1:200),  anti-PECAM  ( BD Pharmingen , 1:50),  × 3  anti-Hand1  
( Santa Cruz , 1:50;  Sigma , 1:200; and an additional polyclonal anti-Hand1, a kind 
gift  from Dr Orford, 1:200) or  anti-TB4  ( Immundiagnostik , 1:100)). Aft er washing, 
as above, the following secondary antibodies were used (all diluted 1:200):  Alexa 
594 -conjugated anti-rabbit (T β 4),  Alexa 488-conjugated anti-rabbit  (TB4),  Alexa 
488-conjugated anti-goat  (Hand1) or  Alexa 488-conjugated anti-rat  (PECAM)). 
Nuclei (DNA) were stained with 5   mg   ml     −    1  of bis-benzamide ( Hoechst 33342 ; 
 Sigma ) in PBS for 10   min at room temperature. Quantitative measures of levels of 
fl uorescence were determined on images captured at equivalent light intensities 
and fi lter settings by an investigator blinded to genotype using  ImageJ soft ware  and 
compared against no-primary / secondary antibody-alone controls.                     
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