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Abstract

Despite their importance in gene innovation and phenotypic variation, duplicated regions have
remained largely intractable due to difficulties in accurately resolving their structure, copy number
and sequence content. We present an algorithm (mrFAST) to comprehensively map next-
generation sequence reads allowing for the prediction of absolute copy-number variation of
duplicated segments and genes. We examine three human genomes and experimentally validate
genome-wide copy-number differences. We estimate that 73-87 genes will be on average copy-
number variable between two human genomes and find that these genic differences
overwhelmingly correspond to segmental duplications (OR=135; p<2.2e-16). Our method can
distinguish between different copies of highly identical genes, providing a more accurate census of
gene content and insight into functional constraint without the limitations of array-based
technology.
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INTRODUCTION

RESULTS

The human genome is enriched for gene-rich segmental duplications that vary extensively in
copy number 1-4. Variation in the content and copy of these duplicated genes has been
associated with recurrent genomic rearrangements as well as a variety of diseases, including
color blindness, psoriasis, HIV susceptibility, Crohn's disease, and lupus glomerulonephritis
5-10. Despite recent technological advances in copy-number detection, a global assessment
of genetic variation of these regions has remained elusive. Commercial SNP microarrays
frequently bias against probe selection within these regions 11-13. Array comparative
genomic hybridization (arrayCGH) approaches have limited power to discern copy-number
differences especially as the underlying number of duplicated genes increases and the
differential in copy with respect to a reference genome becomes vanishingly small 3,14,15.
Even sequence-based strategies such as paired-end mapping 16,17 frequently fail to
unambiguously assign end-sequences in duplicated regions, making it impossible to
distinguish allelic and paralogous variation. Consequently duplicated regions have been
largely refractory to standard human genetic analyses.

One promising approach for assessing copy-number variation has involved measuring the
depth-of-coverage of whole-genome shotgun (WGS) sequencing reads aligned to the human
reference genome 1. Recent applications of this approach to next-generation sequencing
technology 18-22 have provided high-resolution mapping of copy-number alterations. Most
of these approaches, however, assay only the “unique” regions of the genome 21,23,24. For
example, MAQ reports only unique alignments and arbitrarily selects one position in the
case of tied map positions, reporting no sequence variation 23. Although it is possible to run
MAQ with an option to return all possible map locations of the sequence reads, it reports
only the anchoring position and no sequence variation information is returned. Here, we
develop a read-mapping algorithm to rapidly assay copy-number variation and
experimentally verify its ability to accurately predict copy number in some of the most
complex and duplicated regions of three human genomes.

Algorithm development

We developed mrFAST (micro-read fast alignment search tool) to effectively map large
amounts of short sequence reads to the human genome reference assembly, to calculate
accurate read-depth and to return all possible single nucleotide differences within both
unique and duplicated portions of the genome (Supplementary Figures 1 and 2a). We have
shown previously that the ability to place reads to all possible locations in the reference
genome is a key requirement to accurately predicting the absolute copy number of
duplicated sequences 1.

mrFAST is designed for short (>25 bp) sequence reads, employs a seed-and-extend method
similar to BLAST 25, and implements a hash table to create indices (n=300 indices of 10
Mbp each) of the reference genome that can efficiently utilize the main memory of the
system. The overall scheme of the mrFAST algorithm is illustrated in Supplementary Figure
1. For each read, the first, middle, and last k-mers are interrogated in the hash table to place
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initial seeds where Kk is the ungapped seed length (we set k=12 by default). A rapid version
of edit distance 26 computation as described by Ukkonen 27 is then performed to extend the
seed to discover all possible map locations, allowing 1-2 bp indels. We optionally exclude
most of the “non-extendable” seeds, bypassing the high cost of edit distance computation.
For this analysis, we selected an edit-distance threshold of two mismatches or indels to
account for allelic variants and sequencing error. Moreover, querying three distinct k-mers
guarantees discovery of all possible locations of reads within an edit distance of two if the
length is >=35 and k=12. As a benchmark, mapping of one human genome (21-fold) against
the repeat masked reference genome was achieved in 13.5 hours using a 100-CPU cluster.

Personal duplication maps

We tested the utility of mrFAST to accurately construct duplication maps by obtaining
whole-genome shotgun sequence data from three human males from the NCBI short-read
archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) and European Read Archive (ftp://
ftp.era.ebi.ac.uk/). These included the genome sequence data of an individual of European
descent (JDW) generated using 454 FLX sequence data 20 as well as two genomes
generated with Illumina WGS data (a Yoruba African (NA18507) and a Han Chinese
individual (YH) 18,22 (Table 1)). All loci were first masked for high copy common repeat
elements (retroposons and short high copy repeats) using RepeatMasker 28, Tandem
Repeats Finder29, and WindowMasker 30. We initially assessed the dynamic range response
of shotgun sequence data mapped by mrFAST by determining the read-depth for a set of 32
duplicated and unique loci where copy-number status had been previously confirmed using
experimental methods 1. Using these benchmark loci, we determined the average read-depth
and variance for 5-kbp (unmasked) regions for autosomal and X chromosomal loci (Table
1). For each of the three libraries we found that read-depth strongly correlated with the
known copy number (R2=0.83-0.90, Figure 1a). Due to the known sequencing biases of high
throughput sequencing technologies in GC-rich and GC-poor regions 31, we also applied a
statistical correction to normalize the read-depth based on the GC content of each window
(see Methods and Supplementary Note).

We next assessed the ability of mrFAST read-depth to accurately predict the boundaries of
known duplicated sequences. We selected a set of 961 autosomal duplication intervals (745
intervals =20 kbp) that were predicted both by the analysis of the human genome assembly
32 and by an independent assessment of Celera capillary WGS sequences 1,33 where the 20-
kbp threshold was applied. We reasoned that duplications detected by both methods likely
represented a set of true positive duplications whose boundaries would remain largely
invariant in additional human genomes. We mapped each of the three WGS sequence
libraries (JDW, NA18507 and YH) to the human reference genome (build35) using mrFAST
and identified all intervals where at least 6 out of 7 consecutive windows showed an excess
depth-of-coverage (number of reads > average + 3 standard deviations). A threshold of 3
standard deviations corresponds to a diploid copy number of approximately 3.5, which
means that a fraction of sequences with a hemizygous duplication may be missed by this
approach. We compared the predicted sizes of intervals in each genome with the
duplications predicted from the assembly34 and determined that the boundaries of known
duplications could be accurately predicted (R2=0.92, Figure 1b). Since sequence coverage
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directly affects the power to detect duplications by read-depth, we computed the fraction of
high-confidence duplication intervals that could be detected at various WGS sequence
coverages (Figure 1c). Our results show that at 20-fold sequence coverage, >90% of
segmental duplications larger than 20 kbp can be accurately predicted. Interestingly, the
most significant increase in yield occurs between 3- to 4-fold sequence coverage suggesting
that the majority of copy-number variable sequences in excess of 20 kbp in length will be
accurately predicted from the 1000 Genomes Project (http://www.1000genomes.org) where
at least 4-fold of WGS sequence data are available. We also performed benchmark analyses
to compare the segmental duplication detection power of mrFAST with different edit
distance parameters, as well as against some of the other available read mapping tools
(Supplementary Note).

As an independent and more sensitive test within unique regions of the genome, we
compared copy-number variant (CNV) genotype calls for NA18507, with calls recently
assessed by McCarroll and colleagues using the Affymetrix 6.0 platform35. We found that
250/282 (88.7%) of CNVs >10 kbp and 120/128 (93.8%) of CNVs >20 kbp were consistent
between the two platforms (see Supplementary Note). In two of the most extreme cases of
discrepancy, we found that the Affymetrix 6.0 genotypes likely misassigned absolute copy
numbers, possibly due to an incorrect assignment of the population average genotype based
on fluorescent intensities. These results highlight the potential of mrFAST read-depth to
provide precise estimates of copy number across all genomic regions.

We constructed duplication maps for each of the three genomes and estimated the absolute
copy number of each duplication interval larger than 20 kbp in length. We considered a
given segment to be duplicated within an individual if the median of estimated copy number
for that individual was greater than 2.5 (diploid copy number; see Supplementary Note). We
compared the extent of overlap among duplicated sequences (Figure 2, Methods) and
reclassified duplicated sequences as shared or individual-specific based on the predicted
copy numbers in the analysis of these three genomes (Supplementary Note). We defined a
total of 725 non-overlapping duplication intervals across the three individuals that total
84.76 Mbp. Only 25 duplication intervals were not predicted in all three individuals
suggesting that the vast majority (97% of the intervals and 98% by base pair) of large
segmental duplications are shared (Figure 3 and Supplementary Figure 3).

Experimental validation

We designed two targeted oligonucleotide microarrays to validate predicted differences in
copy number by arrayCGH. Using DNA from each of the sequenced genomes, we
performed three pairwise arrayCGH experiments. We validated 68% (17/25) of duplication
intervals not shared in all three individuals, which implied that only 1.1 Mbp of duplicated
regions would be unique to at least to one of them (Figure 3, Supplementary Note).
Interestingly, ~80% of these validated “individual-specific” duplications mapped within 2
kbp of shared human duplications suggesting that sequences adjacent to ancestral
duplication blocks have the highest probability of segmental duplication. We also performed
a reciprocal analysis of intervals (>20 kbp) predicted to be deleted in one or more of the
individuals and confirmed 28 deletions (or 1.4 Mbp of deletion) (Supplementary Note).
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Irrespective of the next-generation sequence (NGS) platform, the pattern of read-depth was
remarkably reproducible for 48% of the shared duplications (44711/94070 Supplementary
Figure 4). However among the remaining 52% of duplications, read-depth did not correlate
between individuals. This suggests that shared duplications show the greatest extremes of
copy-number variation between individuals (Supplementary Figure 5). Using absolute
estimates of copy number, we calculated an in silico logs ratio for each of the three genome-
wide comparisons and compared it to the experimental values as determined by arrayCGH
(Figure 4, Supplementary Figure 6). Overall, we found a positive correlation with copy-
number predictions (R2=~0.52-0.63 depending on the pairwise comparison). We note that
the ability of arrayCGH to discriminate absolute differences diminishes as the duplication
copy number increases 14.

We selected eleven duplicated loci that showed copy-number differences between the YH
and NA18507 genomes and performed fluorescence in situ hybridization (FISH) analysis on
interphase nuclei (Figure 5, Supplementary Note) from immortalized cell lines from YH and
NA18507. These results show remarkable consistency between the absolute copy number
predicted by mrFAST and FISH. For cases where the copy number is higher than 15, FISH
was unable to provide a precise estimate of copy-number difference due to the technical
limitations of this procedure (Figure 5d, Supplementary Note). With one exception,
interphase FISH analysis showed that differences in copy number involved local changes in
copy number suggesting that duplicative transpositions to new locations were exceedingly
rare.

Copy-number polymorphic genes

This analysis validated 68 gene families as being completely or partially copy-number
variable among these three individual genomes (Supplementary Table 1). This includes a
complete duplication of the complement factor H-related complex (consisting of four genes,
CFHR1 through CFHR4) within the JDW genome (Figure 2b). We also confirm one
additional copy of the 8p23.1 defensin gene family (DEFB103B) within the YH genome
when compared to NA18057 and in NA18507 when compared to JDW. We predict about
twice as many copies of the amylase (AMY1) gene family in NA18507 (n=9) and YH (n=10)
when compared to JDW (n=5). As expected 7, the African genome (NA18507) showed the
greatest number of CCL3L1 copies (n=7) when compared to either JDW (n=3) or YH (n=5).
We also validate increases in gene segments of functional relevance. For example, we find
ten fewer copies of the kringle 1V domain of the lipoprotein A gene (LPA) in NA18507 (22
copies vs. 35 in JDW and 26 in YH)—a polymorphism known to be protective against
coronary heart disease 36.

While many of these differences are consistent with previous studies, the analysis also
confirmed differences in rapidly evolving human and great ape gene families that have been
previously difficult to ascertain. For example, our results suggest an increase in copy of the
TBC1D3 gene family within NA18507 (29 copies) when compared to the other two
genomes (JDW=26, YH=17). Similarly, we predicted absolute differences in the morpheus/
NPIP copy number between different humans. Unlike FISH or arrayCGH, sequencing data
provides exquisite specificity for assessing the presence or absence of individual paralogous
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genes. We examined three gene families (morpheus, opsin and CFHR) in more detail by
identifying single nucleotide variants that distinguish the different paralogs. Despite the high
degree of sequence identity among the duplicated genes, we found approximately 300
distinct paralogous sequence variants per duplicated gene (1 variant/91 bp) (Supplementary
Table 2). We determined which specific duplicate genes were present in each individual,
providing for the first time an accurate census of specific genes (as opposed to copy-number
differences in the aggregate) (Supplementary Figure 7). Since we track all single nucleotide
differences using mrFAST, we can also assess the relative proportion of disruptive stop
codons providing a first-pass approximation of the functional constraint on each
polymorphic gene family (Supplementary Table 3). These data suggest that the systematic
identification of unique paralogous sequence variants for all duplicated gene families
combined with next-generation sequence data will be a powerful approach to genotype these
complex regions of the genome. Longer sequence reads, however, will be necessary to
accurately assess phase.

Our experimental analysis found that 97% (66/68) of the validated genic copy-number
differences among the three genomes corresponded to regions annotated as segmental
duplications (providing strong evidence that functional copy-number polymorphisms will be
similarly biased in their genomic distribution). Since we considered only the largest (>20
kbp) regions in our initial analysis, we repeated the copy-number estimate on a gene-by-
gene basis removing the length threshold. We analyzed 17,610 non-redundant RefSeq
transcripts 37 (Supplementary Note) and calculated the absolute copy number for each
sample based on the median depth-of-coverage for each of the corresponding gene segments
in the genome (Supplementary Note). Based on this computational analysis, we predict that
3.8% of genes (662/17601) show a difference of at least one copy (Supplementary Tables 4,
5), with an average of 394 predicted gene copy-number differences between two individuals
(see Table 2 for the 30 validated genes with the largest copy-number differences). In order
to validate these predicted gene differences, many of which are smaller than 20 kbp, we
interrogated the three samples using a customized oligonucleotide microarray targeted
toward these gene regions. We conservatively validate 113 genes (Supplementary Table 6)
as being variable in copy number among these three individuals (73-87 genes between two
human genomes). Although there are almost certainly real copy number differences that
were not validated by array-CGH (see Supplementary Note), we note that 84% (95/113) of
the validated changes map to segmental duplications. Thus, genes that are duplicated
(having a 50% overlap with annotated duplications of at least 90% identity) are significantly
more likely to show copy-number difference (OR=135; p< 2.2e-16 Fisher's Exact Test).
Moreover, these variably duplicated genes show a greater copy-number range than the non-
duplicated CNV genes (median copy-number difference of 2.8 vs. median copy-number
difference of 1.2). Notably, 97% (69/71) of the genes with a copy-number difference of two
or greater map to previously reported segmental duplications 1,32,34 (Figure 6).

DISCUSSION

Next-generation sequencing platforms are fundamentally altering the way genetics and
genomics research is performed. Compared to other methods, these platforms offer the
ability to obtain an unprecedented amount of sequence information in a low-cost, high-
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throughput fashion. The main draw back of existing technologies is the comparably short
sequence read-lengths they produce. As a result, some regions of the human genome—
particularly duplication or repeat-rich regions—have already begun to be excluded as part of
standard NGS analyses. We specifically designed our new mapping algorithm, mrFAST, to
address this limitation. By considering all possible map locations for a read in an efficient
manner, we have been able to apply the high potential of NGS to some of the most
structurally complex and dynamic regions of the human genome. By including these
regions, we provide one of the first comprehensive estimates of absolute copy-number
differences among three human genomes.

There are three major conclusions from our computational and experimental analyses. First,
we show that NGS read-depth can be used to accurately predict absolute copy number, such
that even multi-copy differences (5 vs. 12; see Figure 5) can be reliably predicted between
different individuals. Second, our results suggest that the duplication status of the largest
segmental duplications (>20 kbp in length) is largely invariant with only 3% of the
duplications being specific to an individual. Third, our analysis reveals that the most
extreme copy-number variation corresponds to genes embedded within segmental
duplications and that most of these differences involve tandem changes in copy as opposed
to duplications to new locations. We validated 113 complete genes as copy-number variable
among these three individuals. Several of the validated loci are of known biomedical
relevance related to color blindness (e.g. opsin variation, Supplementary Figure 2d;
psoriasis, Supplementary Note; and age-related macular degeneration, Figure 2b). It is also
interesting that several of the most variable human copy-number genes (Table 2,
Supplementary Figures 2b, 2f) correspond to rapidly evolving gene families that emerged
within the common ancestor of human and African great apes (e.g. TBC1D, LRRC37,
GOLGA, NBPF). These genes correspond to the core duplicons that have been implicated in
the expansion of intrachromosomal segmental duplications during hominid evolution 38.
While the function of these genes is largely unknown, the ability to use NGS to accurately
predict their copy humber provides the ability to make genotype and phenotype correlations
in these complex areas of the genome.

Copy-number differences, including variable duplications of entire genes, are now
recognized as making substantial contributions to variation in human phenotypes. The
ability to accurately and systematically determine the absolute copy number for any
genomic segment is an important first step toward a true and complete picture of individual
genomes and phenotypes. In light of the sensitivity and specificity of read-depth approaches,
we anticipate that this strategy will eventually replace arrayCGH based methods. The next
challenge will be defining variation in the sequence content and structural organization of
these dynamic and important regions of the human genome.

METHODS

Computational Analyses

Details regarding the mrFAST algorithm are described at length in the Supplementary Note.
mrFAST can be downloaded from (http://mrfast.sourceforge.net) and is freely available to
not-for-profit institutions. Segmental duplication maps were constructed from approximately
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6X 454 sequence coverage of the JDW genome, 42X lllumina sequence coverage of
NA18507 and 40X Hlumina from YH. 454-based JDW WGS sequence reads (average
length 266 bp) were broken into 36-bp sequences to make the read-length properties
comparable among the three sequence libraries (see Supplementary Note). Sequence reads
were mapped using mrFAST against the human genome reference build35 (Supplementary
Note), to define duplication intervals and calculate absolute copy numbers. Read-depth was
normalized with respect to their GC content via a LOESS-based smoothing technique
(Supplementary Note). For cross-sample comparisons, the duplication status of each
individual over each interval was reassessed based on the estimated absolute copy number
(Supplementary Note).

arrayCGH Validation

We performed array comparative genomic hybridization (arrayCGH) to confirm individual-
specific duplications and to confirm copy-number differences for shared duplications. A
total of six experiments were performed in replicate with dye-reversals performed between
test and reference: NA18507 vs. JDW, NA18507 vs. YH and JDW vs. YH. Log, relative
hybridization intensity was calculated for each probe. In this analysis, we restricted our
analysis to those regions that were greater than 20 kbp in length and contained at least 20
probes. We used a heuristic approach to calculate log, thresholds of significance for each
comparison dynamically adjusting the thresholds for each hybridization to result in a false
discovery rate of <1% in the control regions 39.

FISH Analysis

Metaphase spreads were obtained from lymphoblast cell lines from NA18507 (Coriell Cell
Repository, Camden, NJ) and YH (Han Chinese) 18. FISH experiments were performed
using fosmid clones 4 (Table 3) directly labeled by nick-translation with Cy3-dUTP (Perkin-
Elmer) as described previously 40 with minor modifications (see Supplementary Note).
Digital images were obtained using a Leica DMRXAZ2 epifluorescence microscope equipped
with a cooled CCD camera (Princeton Instruments). DAPI and Cy3 fluorescence signals,
detected with specific filters, were recorded separately as grayscale images. Pseudo coloring
and merging of images were performed using Adobe Photoshop software. A minimum of 50
interphase cells were scored for each probe.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Correlation of predicted and known segmental duplications (NA18507)
a) mrFAST sequence read-depth per 5-kbp window along the human genome correlates well

(R2=0.87) with the known copy number of duplicated sequences. b) Predicted duplication
interval length versus the assembly-based length intervals of known duplications (Whole
Genome Assembly Comparison; WGAC, =94% sequence identity) 34 shows that boundaries
of duplications can be accurately predicted. A few intervals show discrepancy in boundary
prediction, however, this is largely due to deletion polymorphism in the NA18507 genome
within duplications (supported by arrayCGH). c) A cumulative plot of the fraction of
duplication intervals detected as a function of various read-depth sequence coverage. The
segmental duplication (SD) size is given in cumulative intervals (=5 kbp, =10 kbp, etc.) and
represents the set of intervals identified both within the public reference assembly (build35)
and the Celera whole-genome shotgun sequence reads. As expected, the sensitivity of our
method increases with more genome coverage; the most dramatic difference in detection is
observed between 3- to 4-fold coverage.
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Figure 2. Computational prediction and arrayCGH validation of segmental duplication copy-
number differencesfor three human genomes

Regions of excess read-depth (average+3std) are shown in red in contrast to regions of
intermediate read-depth (gray; average + 2std-3std) or normal read-depth (green, average +/
— 2std).The absolute copy number and arrayCGH results for specific individual genome
comparisons are shown in the context of RefSeq annotated genes. Oligonucleotide relative
log, ratios are depicted as red/green histograms and correspond to an increase and decrease

in signal intensity when test/reference is reverse labeled. a) A known copy-number

polymorphism on 17¢g21.31 that is associated with the H2 haplotype among Europeans
(build35 coordinates chr17: 41,000,000-42,300,000). The JDW genome shows an increase
of 1-2 copies of a 459-kbp segmental duplication mapping to 17921.31 when compared to

NA18507. b) An expansion of the complement factor H related gene family

Nat Genet. Author manuscript; available in PMC 2010 May 24.
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(chr1:193,350,000-193,700,000) within JDW. ¢) An increase in NA18507 copy number for
the defensin gene cluster in 8p23.1 is confirmed by arrayCGH.
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Figure 3. Validation of individual-specific segmental duplications
The number of duplicated base pairs predicted and validated in NA18507, JDW, and YH

(autosomes only) are shown. The height of the bars represents the sum of computationally
predicted interval lengths, and the blue color bars correspond to the experimentally validated
portion. Only duplicated intervals >20 kbp were considered for validation.
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Figure 4. Correlation between computational and experimental copy number for NA18507 vs.
JDW

We computed the copy number for each shared (gray) and individual specific duplication
interval (blue or orange) based on the depth-of-coverage of aligned WGS against the human
reference assembly (build35). Based on this computational estimates of copy number, we
calculated a predicted log, copy-number ratio for each autosomal duplication interval >20
kbp in length (and with less than 80% of total common repeat content). These values were
plotted against the experimental log, ratios determined by oligonucleotide arrayCGH. The
vertical red lines indicate the threshold used for the validated calls (see Supplementary
Note).
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Figure5. FISH validation
a) Sequence read-depth predicts 5 copies of this particular 17g21.31 segment in the YH

genome and 2 copies (unique) in NA18507. ArrayCGH shows an increase in the YH
genome and interphase nuclei FISH confirms the absolute copy-number difference between
the two genomes. b) Similarly, interphase FISH confirms copy-number difference of 5 vs.
12 copies for the NPEPPSgene. c) YH is predicted and validated to have two more copies
of the defensin gene family cluster of 8p23.1. d) Due to the known mosaic architecture 38
for this high copy locus (>30 copies), both arrayCGH and FISH methods fail to accurately
estimate copy-number difference between NA18507 and YH genomes: despite the fact that
sequence depth predicts ~2 more copies in NA18507.
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Copy Number Differences and Duplication Status for 113 CNV Genes Based On Genome
Assembly
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Figure 6. Copy-number differ ences between unique and duplicated regions
The 113 genes that vary in copy number are partitioned based on the range of copy-number

difference and their intersection with annotated segmental duplications. Duplicated genes
show a greater extent of copy-number variation when compared to genes mapping to unique
regions of the genome.
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