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Abstract: NOTCH signaling is implicated in the development of breast cancer tumors. DLK2, a
non-canonical inhibitor of NOTCH signaling, was previously shown to be involved in skin and breast
cancer. In this work, we studied whether different levels of DLK2 expression influenced the breast
cancer characteristics of MDA-MB-231 cells. We found that DLK2 overexpression inhibited NOTCH
activation in a dose-dependent manner. Moreover, depending on the level of inhibition of NOTCH1
activation generated by different levels of DLK2 expression, cell proliferation, cell cycle dynamics, cell
apoptosis, cell migration, and tumor growth in vivo were affected in opposite directions. Low levels
of DLK2 expression produced a slight inhibition of NOTCH1 activation, and enhanced MDA-MB-231
cell invasion in vitro and cell proliferation both in vitro and in vivo. In contrast, MDA-MB-231 cells
expressing elevated levels of DLK2 showed a strong inhibition of NOTCH1 activation, decreased
cell proliferation, increased cell apoptosis, and were unable to generate tumors in vivo. In addition,
DLK2 expression levels also affected some members of other cell signaling pathways implicated in
cancer, such as ERK1/2 MAPK, AKT, and rpS6 kinases. Our data support an important role of DLK2
as a protein that can finely regulate NOTCH signaling and affect the tumor properties and growth
dynamics of MDA-MB-231 breast cancer cells.

Keywords: DLK2; NOTCH signaling; MDA-MB-231 cells; kinase; tumor growth in vivo

1. Introduction

In addition to its pivotal role during embryonic development and tissue homeostasis
in adult life, NOTCH signaling is implicated in the development of numerous types of
tumors. It is now accepted that NOTCH receptors may act both as oncogenes and as tumor
suppressor proteins, depending on the cellular context [1–3]. The important role of NOTCH
signaling in breast cancer development was established more than two decades ago with
the discovery that the mouse Int3 oncogene, a truncated NOTCH4 protein corresponding
to its active intracellular region (NICD4), was implicated in mammary tumors [4]. It is
known that NOTCH signaling is aberrantly activated in breast cancer cell lines and primary
cell samples. The overexpression of NOTCH receptors and ligands was reported in breast
tumors, correlating with poorer patient prognosis. The inhibition of NOTCH signaling
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was shown to consistently suppress cell proliferation, invasiveness and migration, as well
as the development and progression of breast tumors, which is of great importance for
therapeutic targeting considerations [5].

Numerous studies established DLK1 (Delta-like homolog 1), a non-canonical ligand of
NOTCH receptors, as an inhibitor of NOTCH signaling, including various works published
by our group [6–13]. In a previous work, we studied the role of DLK1 in the tumor
properties of MDA-MB-231 breast cancer cells [10]. We confirmed that human DLK1
inhibited NOTCH1 activation in these cells, and we revealed that their proliferation rate
and invasion capabilities depended upon the level of NOTCH1 activation as negatively
regulated by the level of DLK1 expression. A significant decrease in MDA-MB-231 cell
proliferation and invasion was associated with high levels of DLK1 expression, which
produced a significant inhibition of NOTCH1 activation. However, low levels of DLK1
expression produced low levels of inhibition of NOTCH1 activation, which unexpectedly
caused an enhanced in vitro MDA-MB-231 cell invasion and increased cell proliferation
both in vitro and in vivo. Therefore, NOTCH1 activation levels, as negatively regulated
by DLK1, appeared critical for the function of this receptor as an oncogenic or as a tumor
suppressor protein in MDA-MB-231 cells.

DLK2 (Delta-like homolog 2) is a protein highly homologous to DLK1 [14]. As with
DLK1, DLK2 was shown to interact with NOTCH receptors and function as another
non-canonical inhibitor of NOTCH signaling [8,11,13]. It was reported that, similarly
to DLK1, DLK2 affects the growth of SK-MEL-2 melanoma cells, and the nature of its
effects depends upon DLK2 expression levels and the degree of inhibition of NOTCH1
activation [9]. Recently, DLK2 was described as overexpressed in lethal prostate cancers,
uveal melanoma, breast cancer cell lines and in patient tissues spanning three breast cancer
subtypes (Luminal A, Luminal B, and Triple Negative) [15–18].

In this work, we explored the effects of different DLK2 expression levels on the char-
acteristics of MDA-MB-231 breast cancer cells. We found that increased DLK2 expression
levels led to the increased inhibition of the NOTCH1 receptor. However, only elevated
levels of the inhibition of NOTCH1 activation, achieved by elevated levels of DLK2 expres-
sion, led to decreased cell growth. Cell cycle dynamics and apoptosis were also affected by
DLK2 expression levels in opposite directions. The invasive properties of these cells were
also affected. Thus, low levels of DLK2 expression led to the increased invasive properties
of MDA-MB-231 cells, whereas high levels of DLK2 expression did not significantly modify
them. These invasive alterations were associated with changes in the expression levels
of cell adhesion proteins, such as E-cadherin and N-cadherin, involved in epidermal-to-
mesenchymal transition (EMT) and carcinogenesis [19]. In addition, DLK2 expression
levels also affected members of other cell signaling pathways, including ERK1/2 MAPK
(mitogen-activated protein kinase/extracellular signal-regulated kinase), AKT (protein
kinase B), and rpS6 (ribosomal protein s6) kinases. Finally, MDA-MB-231 cells expressing
high levels of DLK2 were unable to generate tumors in vivo in a nude mouse model, an
effect that was not observed in control cells or cells expressing low levels of DLK2. Overall,
these data support an important and complex role of DLK2 in the control of NOTCH
signaling and in the tumorigenic properties and growth dynamics of MDA-MB-231 cells.

2. Results
2.1. Generation of Transfected MDA-MB-231 Cells Stably Expressing Different Levels of Human
DLK2 Protein

MDA-MB-231 cells, a triple-negative breast cancer cell line, display representative
epithelial-to-mesenchymal transition (EMT) associated with breast cancer metastasis [20].
We selected this cell line for our studies because it represents an aggressive and fast-growing
type of breast cancer, capable of generating metastasis in vivo [21]. In addition, our previous
analyses confirmed that MDA-MB-231 cells do not express DLK1 [10], although they do
express DLK2. We estimate that this property is suitable for studying the potential effects
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of the forced overexpression of DLK2 on triple-negative breast cancer cell growth without
interfering with the expression of its homolog, DLK1.

MDA-MB-231 cells with different levels of DLK2 expression were obtained as de-
scribed in Materials and Methods by transfecting several plates of cells with the HDLK2S
plasmid or the empty vector. After each transfection, cells able to grow in a selective
medium were pooled, and their DLK2 mRNA and DLK2 protein expression levels were
analyzed. By these procedures, we ended up selecting two different pools of MDA-MB-231
cells that expressed low or high levels of DLK2 mRNA, compared with empty-vector cells,
used as a control, as determined by RT-qPCR. These pools of cells were named HDLK2SL
and HDLK2SH, respectively (Figure 1A).
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pools, we first studied the cell distribution in the different phases of the cell cycle by flow 
cytometry. We observed that a higher percentage of HDLK2SH cells were in the G0 phase 

Figure 1. Generation of MDA-MB-231 cells with different levels of DLK2 expression. Cells were
transfected with the DLK2 expression plasmid (HDLK2S) or the empty vector. Different transfected
pools were obtained, and the expression levels of mRNA and protein were analyzed. (A) Analysis of
DLK2 mRNA expression levels by RT-qPCR. (B) Analysis of DLK2 expression by Western blot and
densitometric analysis. Two pools showing significantly different DLK2 mRNA and DLK2 protein
expression levels, termed HDLK2SL (low expression level) and HDLK2SH (high expression level),
were selected and used in subsequent assays. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 (Student’s t-test
results relative to empty vector control cells).

We also performed Western blot assays to determine DLK2 protein expression levels
in the HDLK2SL and HDLK2SH cell pools compared with empty-vector cells. Images were
quantified by densitometry. As expected, DLK2 levels were lower in HDLK2SL cells than
in HDLK2SH cells. The differences between both pools, as well as between each pool and
the pool of cells transfected with the empty vector, were statistically significant (Figure 1B).

2.2. Different Levels of DLK2 Expression Inversely Modulate the Growth of MDA-MB-231 Cells

To analyze how different DLK2 expression levels affected the growth kinetics of
MDA-MB-231 cells in vitro, the two pools of DLK2-expressing cells were grown in a culture
medium for several days and their cell numbers were estimated at various time points by an
MTT assay (see Materials and Methods). The results showed that cell growth was strongly
dependent upon DLK2 expression levels. HDLK2SL cells showed a higher proliferation
rate compared with that of cells transfected with an empty vector. However, HDLK2SH
cells grew at a lower rate compared to cells transfected with an empty vector (Figure 2A).
Overall, after eight days in culture, HDLK2SL and HDLK2H cells had grown at a very
significantly different rate, the cells with higher levels of DLK2 expression showing a slower
growth rate.
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Figure 2. Overexpression of human DLK2 modulates cell proliferation and apoptosis. (A) The
growth rates of HDLK2SL and HDLK2SH cell pools were analyzed by MTT assays. The graph
shows the percentage of cell growth (mean ± SD) of the indicated transfectants compared to that of
empty-vector cells (adjusted to 100%) after 8 days of culture. (B) Cell cycle distribution analysis of
HDLK2SL and HDLK2H cells by flow cytometry. (C) Relative mRNA levels of CCND1 and CDKN1A,
determined by RT-qPCR. (D) Percentage of each transfected cell line stained with annexin V and
propidium iodide (PI). Details on how the different assays were performed are described in Material
and Methods section. ** p ≤ 0.01, *** p ≤ 0.001 (Student’s t-test results relative to empty-vector cells).

To try to uncover the reasons of these remarkable differences between the two cell
pools, we first studied the cell distribution in the different phases of the cell cycle by flow
cytometry. We observed that a higher percentage of HDLK2SH cells were in the G0 phase
of the cell cycle, compared to HDLK2SL or empty-vector cells (Figure 2B), suggesting
that a decreased cell cycle rate was associated with higher levels of DLK2 expression.
Consistent with this, a lower percentage of HDLK2SH cells was detected in the S phase,
with a concomitant increase in the percentage of cells in the G2/M phase [22].

Using RT-qPCR, we also determined the relative mRNA levels of CCND1 (cyclinD1)
and CDKN1A (p21, Cip1), two proteins involved in cell cycle progression [23]. No sig-
nificant differences were observed between HDLK2SL cells and empty-vector cells in the
relative expression levels of CCND1 or CDKN1A mRNAs. However, HDLK2SH cells
showed significantly higher levels of CDKN1A and lower levels of CCND1 (Figure 2C),
which may help to explain the slow cell growth rate of these cells compared to that of
HDLK2SL or empty-vector cells.

Increased apoptosis could also be a factor affecting the different overall cell growth
rates observed in cells with high and low DLK2 protein levels. To study this aspect, we
determined annexin V/ propidium iodide (PI) double staining by flow cytometry. Annexin
V and propidium iodide staining was more intense in HDLK2SH cells and less intense in
HDLK2SL cells compared to empty-vector cells (Figure 2D). Thus, apoptosis also appeared
to be affected by DLK2 expression levels consistent with the observed effects on cell growth.

2.3. Invasion Features of DLK2-Overexpressing MDA-MB-231 Cells

The increased malignancy of tumor cells is related to their ability to establish metastasis
to distant organs or tissues. To achieve this, the cells must leave the original tumor and
migrate. To determine whether DLK2 overexpression could affect the migration ability of
MDA-MB-231 cells, in vitro invasion assays were performed as described in Materials and
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Methods section. Figure 3A shows that DLK2 overexpression levels altered the invasion
potential of these cells. HDLK2SL cells showed a significant increase in invasiveness,
whereas HDLK2SH cells showed no significant changes in this property compared to
empty-vector cells.
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Figure 3. Invasion features of MDA-MB-231 cells overexpressing DLK2. (A) HDLK2SL cells,
expressing low levels of DLK2 showed a significantly increased invasion capacity compared with
empty vector or HDLK2SH cells. (B) Expression levels of the transcription factor SNAI2, involved in
the epithelial-to-mesenchymal transition, as determined by RT-qPCR. (C) Relative expression levels
of CDH1 and CDH2, as determined by RT-qPCR. ** p ≤ 0.01, *** p ≤ 0.001 (Student’s t-test results
relative to empty-vector cells).

The invasiveness of breast cancer cells depends on the activity of transcription factors
that modulate the expression of cell adhesion proteins, such as E-cadherin, encoded by the
CDH1 gene and N-cadherin, encoded by the CDH2 gene, and the epithelial-to-mesenchymal
transition. The zinc finger protein Slug, encoded by the SNAI2 gene [24,25], is one of
these transcription factors. This gene is upregulated by NOTCH activation in colorectal
cancer [26] and in MDA-MB-231 cells [27]. Our transfected cells showed that SNAI2
expression levels were affected by DLK2 expression levels. HDLK2SL cells showed a
significant increase, whereas HDLK2SH cells showed a significant decrease, in SNAI2
expression levels (Figure 3B).

As expected, the expression levels of CDH1 and CDH2 were affected by the changes in
SNAI2 expression levels, which are caused by the different levels of DLK2 expression. Both
HDLK2SL and HDLK2SH cells showed an increase in CDH1 and CDH2 mRNA expression
levels. However, CDH1 expression levels were higher for HDLK2SH cells (Figure 3C).

2.4. DLK2 Inhibited NOTCH Activation in MDA-MB-231 Cells in a Dose-Dependent Manner

In previous works, we showed that DLK2 functions as an inhibitor of NOTCH sig-
naling in mouse preadipose cells [8,11,13] and in human melanoma cells [9]. The level of
NOTCH1 signaling greatly affected the proliferation rate of melanoma cells in a non-linear
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fashion. For these reasons, we hypothesized that DLK2 might be acting by a similar mecha-
nism on MDA-MB-231 cells. The overall state of NOTCH signaling depends not only on
NOTCH1 but also on the activation of the other three NOTCH receptors (NOTCH 2-4)
expressed by MDA-MB-231 cells [10]. To assess this, we first estimated the global levels of
NOTCH signaling in MDA-MB-231 cells transiently transfected with the HDLK2S plasmid
by determining the activity of a luciferase reporter gene under the control of a NOTCH-
dependent promoter that possesses binding sites for the CSL/RBP-Jk factor. We observed a
significant decrease in luciferase reporter gene activity in MDA-MB-231 cells transiently
transfected with the HDLK2S plasmid compared with cells transiently transfected with the
empty vector (Figure 4A). The degree of inhibition was comparable to that obtained when
cells transiently transfected with an empty vector were treated with the NOTCH inhibitor
DAPT at a concentration of 10 µM for 24 h. Thus, this result confirmed a global NOTCH
inhibitory role of DLK2 on NOTCH activation and signaling.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 4. DLK2 inhibits NOTCH activation and signaling in MDA-MB-231 cells in a dose-de-
pendent manner. (A) Analysis of the overall NOTCH signaling status in MDA-MB-231 cells transi-
ently transfected with the empty vector or the HDLK2S expression plasmid as determined by lucif-
erase assays. Treatment of empty-vector cells with the NOTCH inhibitor DAPT was used as a posi-
tive control. (B) Western blot and densitometric analysis of active NICD1 expression in HDLK2SL- 
and HDL2SH-stable transfectant cells. As before, treatment of empty-vector cells with the NOTCH 
inhibitor DAPT was used as a positive control. (C) Expression analysis of NOTCH target genes 
HES1, HEY1 and HEY2 in HDLK2SL- and HDLK2SH-stable transfectant cells by RT-qPCR. (D) RT-
qPCR analysis of JAG1 expression level in HDLK2SL- and HDLK2SH-stable transfectant cells. (E) 
RT-qPCR analysis of NOTCH1 to NOTCH4 mRNA expression levels in HDLK2SL- and HDLK2SH-
stable transfectant cells. Details of the procedure are described in Materials and Methods section. * 
p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 (Student’s t-test results relative to empty-vector cells). 

2.5. DLK2 Modulates Phosphorylation of ERK1/2 MAPK, AKT and rpS6 Kinases in MDA-MB-
231 Cells 

The ERK/MAPK pathway appears to be constitutively activated in MDA-MB-231 
cells, which likely is important in preventing anoikis and maintaining the anchorage-in-
dependent growth of these cells [29]. In a previous work, and in agreement with other 
reports [30–32], we showed that, in addition to NOTCH signaling, DLK1 inhibited the 
ERK1/2 MAPK signaling pathway in MDA-MB-231 cells [10]. Therefore, it was important 
to study whether DLK2 overexpression would also modify the steady state of ERK1/2 
MAPK activation in these cells. To this end, we analyzed the phosphorylation status of 
ERK1/2 MAPK in our pools of DLK2-transfected cells by Western blot analysis. For 
HDLK2SL cells, no changes were observed relative to empty-vector cells, whereas 
HDLK2SH cells showed a significant decrease in ERK1/2 MAPK phosphorylation. As a 
control, we treated cells transfected with an empty vector with 10 μM of the MEK inhibitor 
U0126, or with 30 μM of the MAPKK inhibitor PD098059 for 24 h to inhibit ERK1/2 MAPK 
phosphorylation (Figure 5A). 

Figure 4. DLK2 inhibits NOTCH activation and signaling in MDA-MB-231 cells in a dose-
dependent manner. (A) Analysis of the overall NOTCH signaling status in MDA-MB-231 cells
transiently transfected with the empty vector or the HDLK2S expression plasmid as determined
by luciferase assays. Treatment of empty-vector cells with the NOTCH inhibitor DAPT was used
as a positive control. (B) Western blot and densitometric analysis of active NICD1 expression in
HDLK2SL- and HDL2SH-stable transfectant cells. As before, treatment of empty-vector cells with the
NOTCH inhibitor DAPT was used as a positive control. (C) Expression analysis of NOTCH target
genes HES1, HEY1 and HEY2 in HDLK2SL- and HDLK2SH-stable transfectant cells by RT-qPCR.
(D) RT-qPCR analysis of JAG1 expression level in HDLK2SL- and HDLK2SH-stable transfectant
cells. (E) RT-qPCR analysis of NOTCH1 to NOTCH4 mRNA expression levels in HDLK2SL- and
HDLK2SH-stable transfectant cells. Details of the procedure are described in Materials and Methods
section. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 (Student’s t-test results relative to empty-vector cells).

Next, we analyzed NOTCH activation levels in our two pools of DLK2-transfected
cells. First, NOTCH1 activation levels were determined by Western blot by using an
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antibody that specifically detects the active intracellular domain of NOTCH1 (NICD1).
Both HDLK2SL and HDLK2SH cell pools showed a significant decrease in NICD1 levels,
indicating lower levels of NOTCH1 activation. The degree of inhibition was proportional
to the level of DLK2 expression, and HDLK2SH cells showed a significant and stronger
decrease in NOTCH1 activation levels than HDLK2SL cells, which also showed a significant
inhibition of NOTCH1 activation compared to empty-vector cells (Figure 4B). As a control,
we treated empty-vector cells with the gamma-secretase inhibitor DAPT (10 µM) for 24 h, a
treatment known to suppress NOTCH receptors activation (Figure 4B).

We also studied the expression levels of HEY1, HEY2 and HES1, three NOTCH recep-
tors target genes (Figure 4C) [28]. As expected, the expression levels of HEY1 and HEY2
correlated with the levels of NOTCH1 activation shown by cells with different levels of
DLK2 expression. Thus, both HDLK2SL and HDLK2SH cells showed lower HEY1 and
HEY2 expression levels than empty-vector cells, although this decrease was not significant
for HEY2 in the case of HDLK2SL cells. However, HES1 expression levels showed an in-
crease in both pools of transfected cells, rather than the expected decrease, and the increase
was greater in HDLK2SH cells. We do not have an explanation for these data; perhaps it is
possible that changes in the stoichiometry of NOTCH 1-4 receptor activation and canonical
ligand expression caused by DLK2 expression levels may lead to increased expression of
some NOTCH target genes but to the inhibition of others.

To further study this possibility, we decided to analyze the expression levels of the
JAG1, which encodes for Jagged1, one of the most important canonical NOTCH receptor
ligands in breast cancer [27], as well as the expression levels of the four NOTCH receptor
genes in our DLK2-overexpressing cells. We also analyzed the expression of the JAG2
gene, but it was not expressed by these cells. We hypothesized that if DLK2 preferentially
inhibited one or a few, but not all, NOTCH receptors, this inhibition might somehow be
compensated by the increased expression levels of the Jagged1 ligand, or by the increased
expression levels of at least one of the NOTCH receptors, which could lead to the observed
increase in HES1 expression, despite lower overall levels of NOTCH activation. However,
this was not what we observed. The expression level of JAG1 decreased as DLK2 expression
levels increased (Figure 4D), indicating that the direct inhibition of NOTCH activation
caused by DLK2 could also be associated with an indirect inhibition caused by decreased
expression levels of JAG1 ligand. Moreover, all NOTCH receptor genes, except NOTCH2,
showed a significant decrease in their expression levels in both HDLK2SL and HDLK2SH
cells (Figure 4E). The most significant reduction occurred in the case of NOTCH3.

2.5. DLK2 Modulates Phosphorylation of ERK1/2 MAPK, AKT and rpS6 Kinases in
MDA-MB-231 Cells

The ERK/MAPK pathway appears to be constitutively activated in MDA-MB-231 cells,
which likely is important in preventing anoikis and maintaining the anchorage-independent
growth of these cells [29]. In a previous work, and in agreement with other reports [30–32],
we showed that, in addition to NOTCH signaling, DLK1 inhibited the ERK1/2 MAPK
signaling pathway in MDA-MB-231 cells [10]. Therefore, it was important to study whether
DLK2 overexpression would also modify the steady state of ERK1/2 MAPK activation in
these cells. To this end, we analyzed the phosphorylation status of ERK1/2 MAPK in our
pools of DLK2-transfected cells by Western blot analysis. For HDLK2SL cells, no changes
were observed relative to empty-vector cells, whereas HDLK2SH cells showed a significant
decrease in ERK1/2 MAPK phosphorylation. As a control, we treated cells transfected with
an empty vector with 10 µM of the MEK inhibitor U0126, or with 30 µM of the MAPKK
inhibitor PD098059 for 24 h to inhibit ERK1/2 MAPK phosphorylation (Figure 5A).
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Figure 5. Phosphorylation levels of ERK1/2 MAPK, rpS6 and AKT kinases in MDA-MB-231 cells
overexpressing DLK2. Representative Western blot analyses of phosphorylation levels of ERK1/2
MAPK (A), rpS6 (Ser235/236) (B), and AKT (Ser473) (C) in HDLK2SL and HDLK2SH cell pools.
MDA-MB-231 cells stably transfected with the empty vector and treated with 10 µM of the MEK
inhibitor U0126, or with 30 µM of the MAPKK inhibitor PD098059 for 24 h were used as controls for
the analysis of the ERK1/2 MAPK phosphorylation. MDA-MB-231 cells stably transfected with the
empty vector and treated with 10 µM of the PI3-K inhibitor LY294002 for 24 h was used as a control
for the analysis of the rpS6 or AKT phosphorylation. MDA-MB-231 cells stably transfected with the
empty vector and treated with 1 µg/mL of the mTOR inhibitor Rapamycin for 24 h were used as a
control for the analysis of the rpS6 phosphorylation. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 (Student’s
t-test results relative to empty-vector cells).

Consistent with the previous results, we demonstrated that the phosphorylation levels
of rpS6, a substrate for ERK1/2 MAPK, were significantly decreased when DLK1 was
overexpressed [10]. Accordingly, we studied the phosphorylation levels of rpS6 in our
DLK2-transfected cells. In this case, however, we observed different results. HDLK2SL
cells showed a significant increase in rps6 phosphorylation levels, whereas no changes
were observed in HDLK2SH cells with respect to empty-vector cells (Figure 5B). Here, as a
control, we treated empty-vector-transfected cells with 10 µM of the PI-3 kinase inhibitor
LY294002, or with 1 µg/mL of the mTOR kinase inhibitor, Rapamycin.

Finally, the PI3K/AKT pathway, an important signaling pathway related to cell qui-
escence and proliferation, which is activated in 30–40% of breast cancer cases [33], was
not modified in MDA-MB-231 cells transfected with DLK1 [10]. However, HDLK2SL cells
showed a significant increase in the activation of this pathway, whereas HDLK2SH cells
showed a decrease (Figure 5C). As a control, we treated empty vector-transfected cells with
10 µM of the PI-3 kinase inhibitor LY294002 to inhibit PI3K/AKT activation.
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2.6. DLK2 Overexpression Affects MDA-MB-231 Tumor Development In Vivo

In our previous work [10], we observed that the significant effects exerted by DLK1
on the cellular and molecular events of MDA-MB-231 cells, which impacted their growth
properties in vitro, also impacted their ability to form tumors in vivo. This ability was
dependent upon DLK1 expression levels. Low levels of DLK1 expression accelerated
tumor growth in vivo, whereas high levels of DLK1 expression caused tumors that grew
more slowly than normal. To study the effects of different DLK2 expression levels on
tumor growth in vivo, we subcutaneously injected MDA-MB-231 cells transfected with
empty-vector cells, or HDLK2SL or HDLK2SH cell pools into nude mice and measured
their growth rate for six weeks. The results were striking. While HDLK2SL cells showed
a non-statistically significant increase in tumor growth compared to empty-vector cells,
HDLK2SH cells completely failed to establish tumors in vivo (Figure 6A,B). Furthermore,
in mice injected with HDLK2SL cells, a second smaller tumor appeared near the injection
site (Figure 6C). These results indicate that different levels of DLK2 expression could have
different consequences on the establishment and growth of MDA-MB-231 tumors.
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Figure 6. High levels of DLK2 expression in MDA-MB-231 cells inhibit tumor growth in vivo.
MDA-MB-231 cells from HDLK2SL- and HDLK2SH-transfectant pools or MDA-MB-231 cells stably
transfected with the empty vector were subcutaneously injected into nude mice. (A) Tumor size was
measured as described in Material and Methods section at the indicated time points. Results are
represented as means ± SD. (B) The graph shows the means ± SD of the tumor sizes at the end of
the experiment. * p < 0.05 (Mann–Whitney U test results for mice injected with the empty-vector
cells). (C) Mice were euthanized after 41 days and photographed. Representative photographs of
subcutaneous tumors formed in mice from each group are shown.

3. Discussion

In a previous work, we reported that different levels of DLK1 expression exerted a
significant modulation on the growth and tumorigenic properties of MDA-MB-231 triple-
negative breast cancer cell line [10]. The present work aimed to study the effects exerted by
DLK2, a protein homologous to DLK1, in the tumorigenic properties of this cell line [14].
As with DLK1, DLK2 was shown to inhibit NOTCH receptor signaling [8,11,13] and affect
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the outcome of several differentiation processes, in particular adipogenesis [8,10,13,34]
and chondrogenic differentiation [35]. Therefore, it was important to study the effects of
different levels of DLK2 expression on the growth of MDA-MB-231 breast cancer cells and
their tumorigenic properties, and then compare them with the effects exerted by DLK1 in
these cells, especially since NOTCH signaling was found to be a hallmark of triple-negative
breast cancer tumors [36].

The effects on the growth and invasion capabilities of MDA-MB-231 cells observed upon
the reconstitution of DLK1 [10] or upon DLK2 overexpression, are consistent with the role of
NOTCH signaling in the growth of triple-negative breast cancer cells. Our data indicate that, as
was the case with DLK1, the in vitro and in vivo growth properties of MDA-MB-231 cells are
negatively affected by elevated levels of DLK2 expression (Figures 2 and 6). High levels of DLK2
expression affected cell distribution throughout the cell cycle phases (Figure 2B). These
changes were related to a significant increase in the expression of CDKN1A (p21, Cip1), a
cyclin-dependent kinase inhibitor capable of inhibiting all cyclin/CDK complexes, and a
downregulation of CCND1 (cyclin D1) expression, which could result in the decreased cell
growth that we observed in vitro and in vivo. The effects we detected on proliferation could
also be related to the fact that high levels of DLK2 expression also increased apoptosis, as
determined by annexin V/ propidium iodide assays. On the other hand, low levels of DLK2
overexpression led to increased cell proliferation, and changes in the cellular distribution
throughout the cell cycle phases and the expression levels of p21, Cip1 and cyclin D1. In
addition, cells with low levels of DLK2 expression showed a decreased apoptosis.

One possibility that may help to explain the similar effects caused by the overexpres-
sion of DLK1 and DLK2, despite the observed differences, is that both proteins were shown
to act as inhibitors of NOTCH signaling in several cellular systems [6–13]. The data pre-
sented here confirm that DLK2 is also an inhibitor of NOTCH activation in MDA-MB-231
cells. The behavior of DLK2 as an inhibitor of NOTCH signaling in MDA-MB-231 cells
closely mimics the behavior of DLK1 [10]. Both proteins inhibit NOTCH1 activation in a
dose-dependent manner, as elevated levels of DLK1 or DLK2 expression correlate with
the high levels of inhibition of NOTCH1 activation. In both cases, the rate of inhibition
of NOTCH1 activation obtained by a high expression of DLK1 or DLK2 is similar to that
obtained by treatment with 10 µM DAPT, an inhibitor of the γ−secretase complex that
processes NOTCH receptors (Figure 4B). The similar behavior of both DLK proteins as
inhibitors of NOTCH activation is also revealed by analyzing their effects on the expression
levels of known target genes used as markers of NOTCH signaling levels. These genes
include HEY1, HEY2 and HES1. The overexpression of DLK2 generally led to decreased
expression levels of HEY1 and HEY2, but significantly increased expression levels of HES1
(Figure 4C) [10]. While the decrease in HEY1 and HEY2 expression levels was expected,
the increase in HES1 expression level was contrary to expectations. We do not have an
explanation for this unexpected result. Although it is known that HES1 expression levels
can fluctuate widely [28], it is unlikely that the consistent effect of DLK2 overexpression on
HES1 expression levels in MDA-MB-231 cells is due to these fluctuations. These and previ-
ous data reveal that, in some cells or some contexts, the inhibition of NOTCH signaling can
lead to the increased expression of some target genes, suggesting the existence of feedback
mechanisms that may be altered by abrupt changes in NOTCH activation levels [8,13].

Despite all of the similar effects of DLK1 and DLK2 overexpression on MDA-MB-231
cells, there are some important differences, especially in the effects caused by both proteins
on NOTCH mRNAs expression levels. In this regard, low or high levels of DLK2 expression
caused a decrease in the expression levels of all NOTCH genes, except NOTCH2 (Figure 4E).

Despite being able to inhibit overall NOTCH signaling levels to similar degrees, it is
likely that DLK1 and DLK2 do not inhibit this signaling pathway with the same specificity.
Most likely one of the proteins inhibits one of the NOTCH receptors preferentially to the
others. This different specificity is reflected in different NOTCH-dependent genes being
transcribed or silenced or in the same genes being transcribed to different degrees. Thus,
each DLK protein influences the differentiation outcome and growth properties of the cells



Int. J. Mol. Sci. 2022, 23, 1554 11 of 19

in a particular way. In this regard, it is worth mentioning that NOTCH4 appears to be the
most important NOTCH gene for inhibiting breast cancer growth, since the overexpression
of NOTCH4 increases, whereas the inhibition of NOTCH4 reduces, the proliferation and
invasiveness of triple-negative breast cancer cells [37]. Our data indicate that NOTCH4 is
one of the genes whose expression is more strongly reduced by high levels of DLK2.

On the other hand, NOTCH3 increases the establishment of tumors and metastasis [38,39].
However, the opposite effects are observed in vivo, since HDLK2SH cells were totally
unable to establish tumors in nude mice (Figure 6).

DLK2 also affects the growth of MDA-MB-231 cells. The effects depend on DLK2
expression levels and the degree of inhibition of NOTCH signaling, as elevated DLK2 ex-
pression levels, which resulted in high levels of inhibition of NOTCH activation, produced
a decreased cell growth and increased apoptosis. Meanwhile, low DLK2 expression levels,
which resulted in low levels of the inhibition of NOTCH signaling, produced increased cell
growth and decreased apoptosis. This dose-dependent inhibition of NOTCH activation by
DLK proteins was also described in SK-MEL-2 melanoma cells, where it is also associated
with an opposite effect on cell proliferation [9]. In this regard, previously published data
showed that different levels of NOTCH signaling led to different phenotypic responses,
including stimulatory or suppressive growth effects in mammary epithelial cells [40]. The
effect we observed in MDA-MB-231 cells expressing high DLK2 levels is similar to that
reported in other studies performed in the same cells with monoclonal antibodies that
inhibit NOTCH1 activation. The treatment of cells with these antibodies resulted in the
decreased cell proliferation and increased induction of apoptosis [41]. Nevertheless, it
was recently reported that the overexpression of DLK2 (EGFL9) protein does not affect the
proliferation of mammary epithelial cell, and that the downregulation of its expression
does not affect the proliferation of mouse 4T1 and human SUM159 metastatic breast cancer
cell lines [16].

We also observed that the overexpression of DLK2 in MDA-MB-231 cells resulted
in gene expression changes related to invasiveness. Thus, the expression levels of the
SNAI2 gene were affected by DLK2 overexpression. The Slug (SNAI2) factor enhances the
epithelial-to-mesenchymal transition by modulating E-cadherin and N-cadherin expression
and shows antiapoptotic activity [42]. However, our results (Figure 3) show a somewhat
contradictory situation. Low levels of DLK2 expression (HDLK2SL) produced increased
levels of SNAI2 expression, which is associated with increased levels of E- and N-cadherin
expression. However, high levels of DLK2 expression (HDLK2SH) resulted in decreased
levels of SNAI2 expression, which is associated with even higher levels of E-cadherin
expression and similar levels of N-cadherin expression than HDLK2SL cells (Figure 3B,C).
Therefore, regardless of the changes in SNAI2 expression caused by the different levels of
DLK2 expression, E-cadherin and N-cadherin expression is increased. The increase in the
level of E-cadherin expression is, in fact, correlated with the DLK2 expression levels of the
transfected MDA-MB-231 cells. However, changes in the invasiveness properties of the cells
are not consistent with this, since despite the increased levels of E-cadherin and N-cadherin
expression in HDLK2SL cells relative to empty-vector cells, an increased invasiveness is
observed. This effect is different from what occurs in HDLK2SH cells that do not show
significant changes in invasiveness (Figure 3A,C) compared to empty-vector cells. In this
regard, previously published data show that the inhibition of NOTCH signaling led to an
increase in E-cadherin expression and a decrease in the invasive capacity of MDA-MB-231
cells [43], which agrees with our findings showing that HDLK2SH cells exhibit a high rate
of inhibition of NOTCH1 activation and prevent tumor development in nude mice.

Strikingly, despite the observed differences in the expression levels of slug and N-
cadherin and E-cadherin caused by DLK2 overexpression in MDA-MB-231 cells, similar
effects on invasiveness features were observed for MDA-MB-231 cells overexpressing
different levels of DLK1 [10]. This suggests that, in addition to their effect on SNAI2 and
CDH gene expression, both DLK1 and DLK2 may affect other shared mechanisms that
modulate the invasive properties of MDA-MB-231 and other cancer cells. DLK1 is known
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to affect MMP9 expression levels through NOTCH signaling to promote lung cancer cell
invasion [44]. Recently, it was also described that the ectopic expression of (DLK2) EGFL9
significantly promotes cell migration and invasion in mammary epithelial cell lines and
cancer metastasis in vivo, while a knockdown of DLK2 in highly metastatic breast cancer
cell lines decreased cell migration and invasion and inhibited distant tumor metastasis
in vivo [16]. These effects appear to be the result of the physical interaction between DLK2
and cMET receptor. This interaction activates the cMET receptor and downstream signaling
pathways that are involved in cell migration and invasion. It is possible that different levels
of DLK2 expression may led to different effects on MDA-MB-231 cells depending on the
degree of DLK2 interaction with cMET or NOTCH, as it was reported that NOTCH1 and
cMET may crosstalk with each other and are involved in a complex feedback loop [45,46].

Moreover, Jagged1, a canonical ligand of NOTCH receptors, was reported to modulate
epithelial-to-mesenchymal transition in breast cancer cells through NOTCH signaling, in-
crease the expression levels of SNAI2 and decrease those of CDH1. Jagged1 also modulates
cell proliferation, as the inhibition of Jagged1 expression in MDA-MB-231 cells is sufficient
to reduce cell cycle progression [5,47]. We observed that increasing DLK2 expression levels
in MDA-MB-231 cells led to a proportional and significant decrease in JAG1 expression
(Figure 4D). These and previous data argue strongly in favor of DLK1 and DLK2 acting
upon common molecular mechanisms to modulate NOTCH activation, which in turn may
be affected by the decreased expression of at least one of the most important NOTCH
canonical ligand gene, such as JAG1. However, our data indicate that JAG1 expression
levels do not directly correlate with the invasiveness of DLK2-overexpressing cells. Only
MDA-MB-231 cells, with high levels of DLK2 expression that have decreased levels of JAG1
expression, correlate with reduced cell cycle progression and invasiveness in vivo.

We also analyzed the effects of different levels of DLK2 expression on other signaling
pathways already known to be affected by DLK1 expression [10] and NOTCH signaling [5],
which ultimately affect gene expression and cell behavior in breast cancer cells [48]. The
ERK1/2 MAPK pathway, involved in cell proliferation and migration, as well as epithelial-
to-mesenchymal transition, is reported to crosstalk with the NOTCH1 signaling pathway
in MDA-MB-231 cells [49]. DLK2 behaved similarly to DLK1 in the regulation of ERK1/2
MAPK phosphorylation. The overexpression of DLK2 led to the decreased phosphorylation
of ERK1/2 MAPK, although only high DLK2 expression led to a significant inhibition of
ERK1/2 MAPK phosphorylation (Figure 5A) [10]. The activation of NOTCH1 signaling was
described as leading to increased ERK1/2 MAPK activity, which in turn led to increased
expression levels of JAG1 in MDA-MB-231 cells [50]. The inhibition of ERK1/2 MAPK
caused by the increased expression levels of DLK2 may help explain the inhibition of JAG1
in our transfectant cells.

The mTOR pathway plays a role in breast cancer cell proliferation and anti-cancer
drug resistance and was also reported to crosstalk with the NOTCH signaling pathway
in several malignant cells, including breast cancer cells [51]. The phosphorylation status
of rpS6 kinase differed between MDA-MB-231 cells transfected with DLK1 or DLK2. In
this case, low levels of DLK2 expression caused an increase in rpS6 phosphorylation
levels, and high levels of DLK2 expression did not significantly affect rpS6 phosphorylation
(Figure 5B) [10]. Additionally, NOTCH can activate AKT kinase signaling, which is involved
in the growth, proliferation, motility, and survival of breast and other cancer cells [5,51].
The overexpression of DLK2 in MDA-MB-231 cells also results in changes in the level of
AKT phosphorylation, which again appears to be dependent on DLK2 expression levels.
In this case, low DLK2 expression levels cause an increase in AKT phosphorylation levels,
whereas high DLK2 expression levels cause a decreased in AKT phosphorylation levels.
These data suggest that the growth and invasion capabilities of MDA-MB-231 cells may
depend on the level of activation of NOTCH signaling and/or the level of phosphorylation
of ERK1/2 MAPK, rpS6 and PI3K/AKT kinases.

The data presented here, and those already published on the effect of DLK1 in MDA-
MB-231 cells [10], reveal that both proteins are able to inhibit NOTCH signaling and
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modulate other signaling pathways affecting the growth and invasive properties of MDA-
MB-231 cells in vitro and in vivo. Furthermore, our data show that the level of activation
of NOTCH and the degree of phosphorylation of the kinases studied in this work, which
appear to be modulated by the expression levels of DLK2, may lead to opposite effects
on the features of MDA-MB-231 breast cancer cells. In addition, we revealed that the
insufficient inhibition of NOTCH signaling may enhance tumor cell growth, which should
be considered for future treatment strategies. To our knowledge, studies on the possible
stronger effects of the combined activity of DLK1 and DLK2 on breast cancer cell growth
and/or their invasive properties have not yet been performed. Thus, further studies are
warranted to explore this possibility and could open a new potential therapeutic window
using both proteins as therapeutic tools against this aggressive triple-negative form of
breast cancer.

4. Materials and Methods
4.1. Plasmids

The HDLK2S plasmid contains the full-length human DLK2 cDNA (MGC Full-Length
clone IMAGE ID 54954558) cloned into the HindIII-NotI restriction sites of the pLNCX2
expression vector [9].

4.2. Cell Culture and Transfection Conditions

The human breast cancer cell line MDA-MB-231 was purchased from the American
Type Culture Collection (HTB-26). Cells were cultured at 37 ◦C in a humidified atmosphere
at 5% CO2, with a 1:1 mixture of DMEM (Dulbecco’s modified Eagle’s medium, Lonza,
Pontevedra, Spain) and F12 (Lonza) cell culture media, containing 10% FBS (Fetal bovine
serum) (Lonza). Transfections were performed in 80% confluent cells, using FUGENE
HD Transfection Reagent and plasmid DNA in a 3:1 ratio, following the manufacturer’s
recommendations (Roche Diagnostics GmbH, Mannheim, Germany). Stable transfectants
were selected under standard culture conditions in a selective medium containing G418
(Sigma, Madrid, Spain) at 500 µg/mL. In some experiments, cells were treated for 24 h
with 10 µM γ−secretase IX inhibitor (DAPT: N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-
phenylglycine t-butyl ester) (Calbiochem, Madrid, Spain), 30 µM PD098059 (MEK inhibitor,
New England Biolabs, Inc., Barcelona, Spain), 10 µM UO126 (MEK inhibitor, Sigma),
10 µM LY294002 (PI-3 kinase inhibitor, Sigma), 1 µg/mL Rapamycin (mTOR kinase inhibitor,
Sigma), or solvent DMSO as control.

4.3. Cell Growth Assays

Cell proliferation was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assays for 8 days, following the protocol provided by the manufacturer (Sigma).
A total of 1500 cells per well were seeded in a 96-well plate, and the culture medium was
replaced every two days. Proliferation assays were carried out for eight days. These assays
were repeated at least three times.

4.4. Cell Cycle Assays

Stably transfected MDA-MB-231 cells (1 × 105 cells/mL) were seeded into a 10 cm
dish. After 24 h, cells were incubated with 10 µM bromodeoxyuridine (BrdU) (APC BrdU
Flow Kit, BD Pharmingen, Madrid, Spain) for one hour. Cells were harvested, fixed and
permeabilized in BD Cytofix/Cytoperm Buffer (APC BrdU Flow Kit, BD Pharmingen)
for 30 min. The cells were then washed with BD Perm/Wash Buffer (APC BrdU Flow
Kit, BD Pharmingen) and centrifuged (180× g, 5 min). Then, cells were resuspended
with BD Cytoperm Plus Buffer, washed in BD Perm/Wash Buffer, incubated with BD
Cytofix/Cytoperm Buffer, washed again in BD Perm/Wash Buffer, and incubated in DNase
solution (300 µg/mL) (APC BrdU Flow Kit, BD Pharmingen) for 1 h at 37 ◦C.

DNase-treated cells were washed by adding BD Perm/Wash Buffer, resuspended in
BD Perm/Wash Buffer containing diluted (1:50) fluorescent anti-BrdU antibodies (APC
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BrdU Flow Kit, BD Pharmingen), and incubated for 20 min at room temperature. Finally,
cells were washed with BD Perm/Wash Buffer and resuspended in 20 µL of 7-amino-
actinomycin D solution (APC BrdU Flow Kit, BD Pharmingen) in the dark. Stained cells
were resuspended in staining buffer (1xDPBS + 0.03% FBS + 0.09% sodium azide) and
analyzed on a FACSCanto II cell analyzer (BD Biosciences, Madrid, Spain). The percentage
of cells in each cell cycle phase (G0/G1, S or G2/M) was calculated by using FACSDiva v
6.1.3 software (BD Biosciences). These assays were repeated at least three times.

4.5. Annexin V Assay

Stably transfected MDA-MB-231 cells were incubated in the absence of serum for
24 h. Cells were then washed twice with cold PBS (Phosphate Buffered Saline, Lonza) and
resuspended in 1X Annexin V Binding Buffer (FITC (fluorescein isothiocyanate) Annexin
V Apoptosis Detection Kit I, BD Pharmigen) at a concentration of 1 × 106 cells/mL. One
hundred microliters (1 × 105 cells) were transferred to a 5 mL culture tube and incubated
in the dark with 5 µL of FITC-annexin V and 5 µL propidium iodide for 15 min, following
the manufacturer´s protocol (FITC Annexin V Apoptosis Detection Kit I, BD Pharmigen).
Finally, 1X Annexin V Binding Buffer (400 µL) was added and the cells were analyzed by
flow cytometry (FACSCanto II, BD Biosciences).

4.6. Invasion Assays

In vitro cell invasion assays were performed in Matrigel BD BioCoat Invasion Cham-
bers (BD Biosciences), following the manufacturer´s recommendations. Briefly, 1 × 105

transfected cells, resuspended in 500 µL of serum-free medium, were plated in the upper
chamber, which was introduced into the lower chamber containing the complete medium.
Chambers were incubated for 24 h at 37 ◦C, in a humidified atmosphere at 5% CO2. Non-
invasive cells were removed by wiping the top of the membrane, and invasive cells were
fixed and stained. Cell invasion through the membranes was determined by microscopi-
cally counting cells present in six random fields at 100× magnification. These assays were
repeated at least three times.

4.7. RNA Extraction and RT-qPCR

For gene expression analysis, cell monolayers were washed twice with PBS and de-
tached with Trypsin/Versene (Lonza). Cells were then collected by centrifugation (180× g,
5 min, at 4 ◦C) and washed twice with PBS. Total RNA was isolated by using the RNeasy
Kit (Qiagen, Valencia, Spain). After this, DNase treatment (Qiagen), RNA (1 µg) was
reverse transcribed by using the cDNA RevertAidH Minus First Strand kit (Fermentas,
Madrid, Spain), according to the manufacturer’s recommendations. To perform RT-qPCR,
cDNA was amplified by PCR using the SYBR-GREEN Master Mix and StepOnePlus Real-
Time PCR System (Applied Biosystems, Madrid, Spain). The PCR conditions used were
an initial denaturation step at 95 ◦C, followed by 30 s at 60 ◦C. GAPDH expression was
used as a control to compare the CT of the different samples. The primers used to de-
termine the expression level of GAPDH, DLK2, HEY1, HEY2, HES1, NOTCH1, NOTCH2,
NOTCH3, NOTCH4, JAG1, CCND1, CDKN1A, SNAI2, CDH2 and CDH1 were previously
described [10].

4.8. Western Blot

For protein expression studies, cell pellets were lysed in RIPA buffer containing a
100-fold dilution of Phosphatase Inhibitor Cocktails 1 and 2 (Sigma), incubated on ice for
30 min and centrifuged at 10,000× g for 10 min at 4 ◦C. The protein content of cleared
lysates was quantified, after which 100 µg of total protein extract was loaded on 12% (w/v)
SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) gels. Western
blotting was performed as previously described [6] by using the following antibodies:
anti-human DLK2 (Proteintech, Manchester, United Kingdom), diluted 1:500 in 5% w/v
Bovine Serum Albumin (BSA), 1X TBS, 0.1% Tween® 20 (TBS-T); anti-cleaved NOTCH1 (Val
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1744, Cell Signaling, Barcelona, Spain), diluted 1:500 in 5% w/v BSA, TBS-T; anti-pERK1/2
(E-4, Santa Cruz Biotechnology, Inc., Heidelberg, Germany) diluted 1:500 in 1% w/v nonfat
dry milk, TBS-T, and anti-ERK2 (C-14, Santa Cruz Biotechnology, Inc.), diluted 1:1000
in 1% w/v nonfat dry milk, TBS-T; anti-phospho AKT (Ser473, Cell Signaling), diluted
1:500 in 5% w/v BSA, TBS-T and anti-AKT, diluted 1:1000 in 5% w/v BSA, TBS-T (Cell
Signaling); anti-phospho rpS6 (Ser235/236, Cell Signaling), diluted 1:1000 in 5% w/v BSA,
TBS-T; anti-rpS6, diluted 1:1000 in 5% w/v BSA, TBS-T (Cell Signaling); and anti-alpha
tubulin (Sigma), diluted 1:5000 in 5% w/v nonfat dry milk, TBS-T. Western blot images were
obtained by using a Fujifilm LAS-3000 Imager analyzer or by developing exposed films
(CP-BU New) in a Curix 60 developing apparatus (AGFA, Barcelona, Spain). Densitometric
analyses of Western blot signals were made by using Quantity One 1D analysis software
(Bio-Rad, Madrid, Spain).

4.9. Luciferase Assays

To estimate NOTCH-dependent transcriptional activity, MDA-MB-231 cells were co-
transfected with the pGLucWT (CSL/RBP-Jk-LUC) plasmid and the pLNCX2 (empty
vector) or DLK2 expression (HDLK2S) plasmids. The pGLucWT plasmid contains the
luciferase reporter gene under the control of a promoter with four copies of a CSL/RBP-
Jk (recombining binding protein suppressor of hairless) binding site [6]. To measure
the inhibition of NOTCH-dependent transcriptional activity caused by DAPT, cells were
co-transfected with pLNCX2 and pGLucWT plasmids and incubated in the presence of
10 µM DAPT for 24 h. To measure luciferase activities, cells were lysed and processed by
using the dual luciferase kit (Dual-Luciferase Reporter Assay System, Promega, Madrid,
Spain) 24–48 h after transfection, following the manufacturer’s recommendations. To
normalize the data obtained, cells were also transfected with pRLTK (renilla expression
plasmid). Luciferase and renilla activities were measured on a Monolight 3096 Microplate
Luminometer (Becton Dickinson). These assays were repeated at least three times.

4.10. Animal Studies

Female nude athymic-Foxn1nu mice (5-week-old) were supplied by Harlan Laborato-
ries (Barcelona, Spain). Stably transfected MDA-MB-231 cells (2.5 × 106 cells resuspended
in 200 µL of PBS) were injected subcutaneously into the dorsal flanks of the mice for a
total of 5 mice per group. Mice were sacrificed 41 days after injection. Tumor size was
calculated by the following formula: length (mm) × width (mm). In vivo experiments were
performed in accordance with Spanish and European regulations and were approved by
the Animal Care and Use Committee of the University of Castilla-La Mancha.

4.11. Statistical Analysis

Data are presented as the mean ± S.D of at least three independent assays. Data
were also analyzed with the GraphPad and/or SPSS software packages for two-tailed
Student’s t-test or Mann–Whitney U test to determine statistical significance in relation to
cells transfected with pLNCX2 (empty vector). A p value ≤ 0.05 was considered statistically
significant (*); a p value ≤ 0.01 was considered highly statistically significant (**); and a p
value of ≤0.001 was considered extremely statistically significant (***).

5. Conclusions

Our data revealed for the first time that different levels of DLK2 expression in MDA-
MB-231 breast cancer cells can produce opposite effects on tumor invasiveness and growth
rate both in vitro and in vivo. These opposite effects are most likely due to the induction of
different levels of NOTCH signaling and ERK1/2, AKT and mTOR kinases phosphorylation.
Low levels of DLK2 expression resulted in a slight inhibition of NOTCH signaling activation,
the increased phosphorylation of rpS6 and AKT kinases, and increased invasiveness and
cell growth in vivo and in vitro. Conversely, high levels of DLK2 expression produced a
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strong inhibition of NOTCH signaling, decreased the phosphorylation of ERK1/2 MAPK
and AKT kinases, decreased cell growth rate in vitro and failed to establish tumors in vivo.

The data presented in this work and in our previously published work reveal that both
DLK proteins are capable of inhibiting NOTCH signaling and modulating kinase signaling
pathways involved in cancer. Most likely, the level of NOTCH activation, modulated by
DLK1 and DLK2, may led to opposite effects on the invasive properties of MDA-MB-231
breast cancer cells and tumor cell growth in vitro and in vivo. Furthermore, we revealed
that the insufficient inhibition of NOTCH signaling may enhance tumor cell growth. This
aspect should be considered for patient treatment strategies against this aggressive form
of breast cancer. Figure 7 summarizes the effects of the levels of DLK2 expression on
MDA-MB-231 cell growth and invasion properties revealed in this work.
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