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Abstract: Reconstruction of critical-sized bone defects remains a tremendous challenge for surgeons
worldwide. Despite the variety of surgical techniques, current clinical strategies for bone defect repair
demonstrate significant limitations and drawbacks, including donor-site morbidity, poor anatomical
match, insufficient bone volume, bone graft resorption, and rejection. Bone tissue engineering (BTE)
has emerged as a novel approach to guided bone tissue regeneration. BTE focuses on in vitro manipu-
lations with seed cells, growth factors and bioactive scaffolds using bioreactors. The successful clinical
translation of BTE requires overcoming a number of significant challenges. Currently, insufficient
vascularization is the critical limitation for viability of the bone tissue-engineered construct. Further-
more, efficacy and safety of the scaffolds cell-seeding and exogenous growth factors administration
are still controversial. The in vivo bioreactor principle (IVB) is an exceptionally promising concept for
the in vivo bone tissue regeneration in a predictable patient-specific manner. This concept is based
on the self-regenerative capacity of the human body, and combines flap prefabrication and axial
vascularization strategies. Multiple experimental studies on in vivo BTE strategies presented in this
review demonstrate the efficacy of this approach. Routine clinical application of the in vivo bioreactor
principle is the future direction of BTE; however, it requires further investigation for overcoming
some significant limitations.

Keywords: bone tissue engineering; bone regeneration; scaffold; stem cells; growth factors; bioreactor;
axial vascularization; flap prefabrication; in vivo bioreactor

1. Introduction

Critical-sized bone defects reconstruction remains a tremendous challenge for surgeons
and a burden for the healthcare system worldwide. These defects cause considerable
functional and cosmetic disorders, and negatively impact the quality of life [1,2]. Despite
the huge armamentarium of surgical techniques, current bone repair strategies demonstrate
significant limitations.

Among the ample variety of methods, the use of autologous bone grafts is the gold
standard for bone defects reconstruction. Bone autografts demonstrate osteoinductive
and osteoconductive properties due to their containing growth factors and recruitment of
stem cells, however, their usage concerns donor-site morbidity, poor anatomical match,
insufficient bone volume, and bone graft resorption [3,4].

Although vascularized bone flaps (e.g., fibula, scapula, or iliac crest) show a pre-
dictably high survival rate due to reliable blood supply, their harvesting can result in
significant donor-site morbidity including chronic pain, lameness, hernia, ankle instabil-
ity, etc. Moreover, such complications, as complete or partial flap failure, postoperative
fistula, dehiscence, and bone exposure can occur [5–7]. Free flap harvest and revasculariza-
tion substantially increase intraoperative blood loss volume, complexity, and duration of
surgeries [8].
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Allogeneic and xenogeneic bone graft materials are the most commonly-used al-
ternatives to autologous bone. Along with off-the-shelf availability, human-derived or
deproteinized bovine-derived bone substitutes have a long shelf life [9].

The development of computer 3D planning and prototyping methods contributed to
the clinical application of patient-specific titanium and synthetic implants for extensive
bone defects reconstructions [10,11]. Despite high-precision manufacturing and optimal
anatomical match of the implants, the complication rate is significant. Complications pre-
dominantly include fractures, instability, extrusion, and rejection of implants. Furthermore,
custom-made implants are associated with consequential financial costs [12–14].

Distraction osteogenesis has become particularly popular in treating patients with long
bones defects; however, it is technically challenging and not widely used in craniofacial
bone reconstruction due to the complex three-dimensional configuration of the defects and
high surgical complications rate [15,16].

Therefore, it is of critical need for improved bone defects reconstruction methods
nowadays. Current trends in bone reconstructive surgery include reducing functional
donor-site morbidity, overcoming bone graft volume limitations, and improving the geo-
metrical match of the graft for the recipient site. Bone tissue engineering (BTE) has emerged
as a novel approach to bone defects repair and regeneration. This approach is based on
in vitro manipulation of seed cells, growth factors and bioactive scaffolds using various
bioreactors. The application of BTE is one of the promising trends for researchers globally
due to recent advances in the development of various biocompatible scaffolds and cell tech-
nologies [17–20]. Currently, in vitro and in vivo experimental studies on BTE are widely
presented, however, the routine clinical application is associated with certain limitations.

This study aims to extensively review research papers related to recent developments
in BTE including advances and prospects of the in vivo BTE strategies.

2. Recent Developments in Bone Tissue Engineering

Previous studies have revealed key components of BTE [21–26]. According to these
studies successful bone regeneration relies on the combination of (1) a bioactive scaf-
fold [27–31]; (2) osteoprogenitor cells [21,26,32–35]; (3) growth factors (GF) [23,36–40] and
(4) adequate vascularization [41–43] (Figure 1).
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2.1. Scaffolds in Bone Tissue Engineering

A scaffold is an essential component of the bone tissue-engineered construct. It
is a three-dimensional matrix with a porous microstructure imitating the extracellular
matrix (ECM). Scaffolds with essential physical, chemical and biological properties seek
to create appropriate regenerative microenvironment by providing conditions for cell
adhesion, proliferation, angiogenesis, and the transport of GF. While discussing the cru-
cial properties of a scaffold for bone tissue regeneration, it is mandatory to highlight:
(1) biocompatibility, or biomimetic properties [28,44,45], (2) mechanical properties [22,46]
and (3) biodegradability [47,48]. Some authors among the important requirements for an
ideal scaffold emphasize the porosity and pore size [49], cell attachment properties [46,50],
ability to visualize, histologically investigate, and sterilize the tissue-engineered con-
struct [51–54].

Commonly used groups of materials for the fabrication of scaffolds include natural
and synthetic polymers (including hydrogels), and bioceramics [26,52]. Additionally,
many authors highlight the efficiency of metallic, biological, and composite scaffolds for
BTE [55–61]. A list of scaffold fabrication techniques includes lyophilization, freeze and
solvent casting, gas and microfluidic foaming, melt and compression molding, particulate
leaching, phase separation process, and electrospinning [62–64]. Significant progress in
manufacturing scaffolds has emerged due to the development and implementation of
3D printing technology [65,66]. Additive manufacturing approaches are classified in to
extrusion-based, powder-based, and photopolymerization techniques [62,67–69]. The
main types of the scaffolds for BTE, their crucial properties, fabrication and sterilization
techniques are summarized in Table 1.

Table 1. Scaffolds for bone tissue engineering.

Scaffold Type Advantages Disadvantages Fabrication Technique Sterilization Method

Natural polymers

Biocompatibility
Cell adhesion,
proliferation,
Angiogenesis
Low immunogenicity
Antimicrobial
properties

Poor mechanical
strength
High biodegradability
rate

Electrospinning
Lyophilization
Salt-leaching
3D printing (fused
deposition modeling)

Supercritical carbon
dioxide
Lyophilization combined
with gas plasma
Peracetic acid
Ethanol
UV irradiation

Synthetic polymers

Biocompatibility
Appropriate
mechanical stability
Controlled
biodegradation rate

Lack of degradation (in
the group of
non-biodegradable
polymers)

Salt-leaching
3D printing (fused
deposition modeling)
Fused deposition
modeling
Stereolithography

Plasma sterilization
(Hydrogen peroxide)
Supercritical carbon
dioxide
Ethanol
Antibiotics
Dry heat
Electron beam irradiation
Gamma irradiation
UV irradiation
Ethylene oxide

Hydrogels

Biocompatibility
Osteoconductivity,
Cell adhesion,
proliferation
Hydrophilic
characteristics
Porosity

Poor mechanical
strength

Electrospinning
3D printing

Ethanol
Ethylene oxide
Autoclaving
Supercritical carbon
dioxide
Lyophilization
Electron beam irradiation
Gamma irradiation
UV irradiation
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Table 1. Cont.

Scaffold Type Advantages Disadvantages Fabrication Technique Sterilization Method

Bioceramic
scaffolds

Biocompatibility
Porosity
Osteoconductive and
osteoinductive
properties
High mechanical
strength
Individualized
scaffolds
Easily sterilized and
visualized
Controlled pore size

Brittle structure (HA)

Particle/salt leaching
Gas foaming
Phase separation
Selective laser sintering
Fused deposition
modeling
Electron beam melting
Stereolithography

Steam
Dry heat
Ethylene oxide
Electron beam irradiation
Gamma irradiation
UV irradiation

Metallic scaffolds

Biocompatibility
High mechanical
strength and stiffness
Osteoconductive
properties
Ability to promote
osteointegration
Individualized
scaffolds
Easily sterilized and
visualized
Controlled pore size

Corrosion
Stereolithography
Electron beam melting
Selective laser melting

Steam
Dry heat
Ethylene oxide (ETO)
Electron beam irradiation
Gamma irradiation
UV irradiation

Biological scaffolds

Biomimetic properties
Identical
microstructure and
porosity

Foreign body and
inflammatory response Lyophilization

Supercritical carbon
dioxide
Gamma irradiation

Composite
scaffolds

Combination of
different scaffolds
advantages and
compensating
disadvantages

Combination of
different scaffolds
advantages and
compensating
disadvantages
Limited new bone
formation

Electrospinning
Lyophilization
Particle/salt leaching
Gas foaming
Phase separation
Additive
manufacturing
techniques (selective
laser sintering, fused
deposition modeling
and electron beam
melting)
Stereolithography

Electron beam irradiation
Gamma irradiation
UV irradiation

2.1.1. Natural Polymers

Natural polymers are particularly effective for regenerative medicine application for
two main reasons. Firstly, their structure is similar to the components of the ECM. Such
a similarity enhances the osteoinductive and osteoconductive properties of the scaffolds.
Secondly, the ability of natural polymers to swell significantly in the moist microenvi-
ronment allows them to simulate the hydrated state of living tissues [70–72]. This group
of polymers includes collagen, chitosan, hyaluronic acid, fibrin and cellulose. Natural
polymeric scaffolds can be created via electrospinning, lyophilization, salt-leaching, and
3D printing (fused deposition modeling).

In the past decades due to the collagen structure and function investigation, various
collagen-based scaffolds have been proposed for BTE applications [73–75]. Collagen, as
a connective tissue fibrillar protein, demonstrates biomimetic properties, high elasticity,
and provides appropriate conditions for cells adhesion and interaction [76]. Along with
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hydroxyapatite it forms the basis of the bone tissue [77]. However, low mechanical strength
and high biodegradability rate are considerable drawbacks of collagen as a scaffold for
BTE [78]. Furthermore, short non-triple helical telopeptides in the collagen structure
demonstrate immunogenicity [79,80].

Another natural scaffold material for tissue engineering purposes is chitosan. This
biodegradable polymer can be found in the cuticle of insects, the cell wall of fungi and
the shell crusts of crustaceans [81,82]. Chitosan shows excellent biocompatibility, low
immunogenicity, and antimicrobial properties against certain fungi and bacteria. The main
disadvantage of chitosan is its low mechanical strength, which can be overcome by means
of combining this polymer with other materials [81,83].

Hyaluronic acid, as an important component of the ECM, has been widely used in bone
regeneration, in particular in the craniofacial and alveolar bone reconstruction [84,85]. This
natural polymer can be effectively used as a cell-seeded scaffold or a carrier for bioactive
components due to its elasticity, flexibility, and biocompatibility. Furthermore, hyaluronic
acid promotes and accelerates angiogenesis and cell migration [84,85].

Fibrin is a natural biopolymer derived from human blood. It is formed in the last step
of the clotting cascade by the action of thrombin on fibrinogen. It demonstrates unique
viscoelastic properties [23]. Mechanical stress causes irreversible deformation of the fibrin
network, but it completely recovers its stiffness after removing the stress. Due to the
poor rigidity of fibrin, it is commonly used for coating on metals, polymers, bioceramics,
and other materials with stable mechanical properties. Moreover, coating on scaffolds
noticeably enhances cell adhesion, proliferation, vasculogenesis, and, consequently, bone
regeneration [86].

Cellulose is an organic compound with a polysaccharide structure. It can be derived
from wooden and non-wooden plants, and some kind of bacteria [87]. Bacterial, fibrillated
and crystalline types of cellulose have been studied on their potential in tissue engineering
applications due to their physico-chemical properties, biocompatibility and biodegradabil-
ity. Although mechanical rigidity of the cellulose is lacking, it can be used as the component
of the composite scaffold. Murizan et al. reported the capability of nanocrystalline cellulose
to enhance mechanical properties, tensile and compression of bone scaffolds [87].

2.1.2. Synthetic Polymers

Synthetic polymers are widely used in BTE, and include biodegradable (polylac-
tic acid—PLA, Polycaprolactone—PCL, polylactic-co-glycolic acid—PLGA), and non-
biodegradable (Polyethylene Glycol—PEG, Polyurethane—PU, polyvinyl alcohol—PVA,
poly 2-hydroxyethyl methacrylate—pHEMA) scaffolds [88–91]. Synthetic polymer fabrica-
tion is generally performed using salt-leaching, 3D printing, fused deposition modeling,
and stereolithography techniques. Biodegradable synthetic polymers demonstrate bio-
compatibility, biodegradability, and controlled degradation rate [81,88,92]. PLA is the
most commonly used polymer for tissue engineering applications. Both L and D forms of
polylactide demonstrate high crystallinity and have identical melting temperature. Poly(L-
lactide) shows low biodegradation rate, while poly(L/D-lactide), as an amorphous material,
demonstrates high biodegradation rate and poor mechanical properties [93]. Thus, combin-
ing Poly(L-lactide) and poly(L/D-lactide) allows to achieve optimal biodegradation rate
and enhances mechanical properties of the scaffold [94]. Polycaprolactone (PCL) has been
widely investigated for BTE applications, however, it demonstrates poor cell adhesion and
low mechanical properties [95]. PCL is commonly used as a component for composite scaf-
folds [96–98]. Another widely used synthetic polymer for tissue engineering applications
is PLGA. Similarly to the above mentioned polymers, due to its low mechanical strength
and rigidity, PLGA often plays the role of a biocompatible component, included in a com-
posite scaffold based on substances with appropriate mechanical stability (hydroxyapatite,
beta-tricalcium phosphate, TiO2) [99–101].

Although PEG, PU, PVA, pHEMA and other non-biodegradable synthetic polymers
show excellent biocompatibility and appropriate flexibility, their use for BTE purposes is
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significantly limited by their low mechanical stability, poor cell attachment property, and
lack of biodegradability [102,103].

Recent bone and cartilage tissue engineering studies have focused on hydrogels as
highly swollen and porous 3 dimensional polymer networks that are able to keep moist
microenvironment and to absorb inflammation exudate [104]. Furthermore, hydrogels
demonstrate osteoconductivity, significant potential in the delivery of cells, nutrients, and
GF [26,105,106]. Despite hydrophilic characteristic, good biocompatibility, and porosity,
some authors report the need for the structural and mechanical property improvement of
hydrogels [107,108]. Mechanical integrity can be improved through increasing crosslink
density or creating more complex hydrogel systems with multiple polymers [107]. Another
challenge occurs in using hydrogels in the oral cavity environment, where they are exposed
to saliva [109].

2.1.3. Bioceramic and Bioglass Scaffolds

Bioceramic scaffolds show excellent biomimetic and mechanical properties. They
can be easily sterilized and visualized throughout the process of regeneration. Multiple
fabrication techniques can be used to create bioceramic scaffolds, including particle and salt
leaching, gas foaming, phase separation, and additive manufacturing techniques (selective
laser sintering, fused deposition modeling, stereolithography and electron beam melting).

Hydroxyapatite (HA), is the key mineral component of the bone tissue with an intercon-
nected porous and isotropic structure [110]. HA is excellent for bone tissue regeneration due
to high biocompatibility, osteoconductive and osteoinductive properties [111,112]. Thus,
Liu et al. demonstrated a significantly high volume and trabecular number of the newly
formed bone using porcine HA for alveolar ridge guided bone regeneration [112]. How-
ever, due to the brittle structure of the HA, it is typically used in combination with other
components to enhance their osteoinductive and osteoconductive properties [113,114].

Tricalcium phosphate (TCP) is a tertiary calcium phosphate, and it is widely used in
scaffold-based BTE [115–117]. TCP is a biodegradable material rich with phosphorus and
calcium, and it is commonly used in combination with polymers as a composite scaf-
fold [118], or drug-loaded material [119]. However, low biodegradability rate is considered
as a drawback of TCP scaffolds. Along with HA and TCP Bioglass demonstrates mechanical
stability and biomimetic properties [89].

2.1.4. Metallic Scaffolds

Nowadays, the application of bioabsorbable metallic scaffolds for BTE is of great
interest for various researchers, due to recent advances in their structure and properties
studies, and manufacturing development [58,59,112]. The use of zinc (Zn), magnesium
(Mg), iron (Fe) and their alloys are increasingly gaining popularity for BTE applications.
The porous Zn scaffolds demonstrate adequate mechanical properties matching those of
trabecular bone, as well as having interconnected pore structure that can enhance cell
adhesion and bone tissue ingrowth. Moreover, these scaffolds possess suitable biodegra-
dation rates to allow for simultaneous new bone formation [59]. Among biocompatible
materials for bone defects repair metals demonstrate the highest mechanical strength and
stiffness, osteoconductive properties and ability to promote osteointegration. Metal stiff-
ness is increasing during the early stages of the corrosion process [120]. Strength and
stiffness are particularly important for load-bearing applications of the metallic constructs.
Furthermore, powder-based fabrication techniques enable to create individualized metallic
scaffolds [120,121].

2.1.5. Biologic Scaffolds

The use of the biologic scaffold materials for BTE applications is based on the con-
cept of cell removal and preserving the structural and functional components of the bone
ECM [60]. Therefore, the main goal of such approach is recellularization and remodeling
of the bone tissue structure. Xenogeneic decellularized bone is typically bovine-derived.
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Allogeneic scaffolds come from different human bones. Physical decellularization includes
freeze–thaw and osmotic pressure procedures that cause cell lysis without critical disrup-
tion of the organic structure of the tissue. During freezing and thawing ice crystals penetrate
cell membranes, while hypertonic or hypotonic solutions can disrupt the plasma membrane
through osmotic shock. Other physical decellularization approaches include the use of
hydrostatic pressure, ultrasound and electroporation [122]. Traditionally, lyophilization
(freeze-drying technique) is used for decellularized bone scaffolds fabrication [61,123]. The
most common sterilization method for decellularized bone is irradiation, however, the
combination of ethanol, ultraviolet, or antibiotic can be also used for sterilization and disin-
fection [124]. Microstructure of the bone ECM is identical to the native one and provides
optimal conditions of the cell recruitment, adhesion and proliferation. Furthermore, bio-
logic scaffolds demonstrate significant osteogenic properties. We have recently reported the
results of the microstructural and biochemical analysis of the lyophilized allogeneic human
spongiosa [125]. Microstructural analysis revealed the hierarchical porous structure of the
graft with complete removal of the cellular debris and bone marrow components. More-
over, the proteomic analysis confirmed the preservation of the extracellular matrix organic
structure, including collagen and extracellular proteins, stimulating and inhibiting cell
adhesion, proliferation, and differentiation [125]. However, some authors reported on the
possibility of the foreign body response, encapsulation, and proinflammatory macrophage
activation as a result of using xenogeneic ECM. Overall, the use of the biologic scaffolds is
a perspective alternative to other groups of scaffolds, which provides solutions unavailable
with the use of the synthetic scaffolds [60].

2.1.6. Composite Scaffolds

Over the past decade, numerous efforts to create an ideal scaffold for BTE have been
focused on combining various materials that provide biocompatibilty, biodegradability and
adequate mechanical properties [44,56,83,123].

Most commonly bioceramics are combined with natural polymers, e.g., chitosan,
collagen [56,57,118,126]. The main purpose of such a combination is to promote the new
bone tissue formation, and to enhance the compressive strength of the scaffold. Thus,
Xing et al. demonstrated enhanced osteoconductive properties of the mechanically rigid
scaffold composed of chitin, collagen and hydroxyapatite [57].

Some authors successfully applied composite scaffolds incorporating graphene [27,55,127],
and silk [127,128]. Kang et al. presented an experimental study on the combination of
chitosan and allogeneic bone powder. This composite scaffold demonstrated suitable
porosity and osteogenic properties [123]. Natarajan et al. presented the group of rare earth
metal-based nanoparticles (cerium, gold, europium, gadolinium and others) as emerging
perspective biomaterials for BTE. According to the study results these materials provide
unique biocompatibility, osteogenic, antimicrobial, antioxidant, angiogenic, immunomodu-
latory, and anti-inflammatory properties [129].

While analyzing the application of different scaffolds for BTE, the presented literature
review demonstrates the tendency to combine various biocompatible materials with appro-
priate properties [27,44,118,129–131]. Despite the above-mentioned variety of biomimetic,
biodegradable, and mechanically stable materials, scientists continue efforts to create an
ideal scaffold for BTE purposes.

2.2. Cellular Approach in BTE

The cellular approach in BTE is based on preliminary transplantation of autologous
stem cells onto the scaffolds surface followed by their implantation into the defect site.
Autologous multipotent mesenchymal stem cells (MMSCs) have been traditionally used
for cell-loading procedures [35,44,132,133]. MMSCs demonstrate great perspective in
cell-based tissue regeneration due to their proliferation, differentiation, and multilineage
potential, as well as immune regulatory, and anti-inflammatory effects [134]. The essential
criteria for MMSCs use in regenerative medicine include: (1) the ability to adhesion during
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in vitro cultivation; (2) expression of important specific antigens (SH-2, SH-3, SH-4, STRO-1,
CD44, CD29, CD71, CD106, CD120a, CD124), (3) high proliferation potential (easily induced
osteogenic, adipogenic, chondrogenic, neurogenic, and myogenic differentiation) [135].
Such bioactive substances as ascorbic acid, β glycerophosphate, dihydroxyvitamin D3,
steroid hormones, and bone morphogenetic proteins can induce osteogenic differentiation
of MMSCs. The main sources of MMSCs and their differentiation potential are presented in
Table 2.

Table 2. Sources and differentiation potential of MMSCs.

Source of MMSCs Differentiation Potential

Bone marrow MMSCs Osteoblasts, Adipocytes, Myocytes, Neurons, Astrocytes,
Hepatocytes, Cardiomyocytes, Chondrocytes, Mesangial cells

Adipose tissue MMSCs Chondrocytes, Osteoblasts, Adipocytes, Myocytes

Tooth pulp MMSCs Odontoblasts, Chondrocytes, Osteoblasts, Adipocytes

Muscle tissue MMSCs Osteoblasts, Adipocytes, Chondrocytes, Neurons, Endothelial cells

A number of studies have shown that transplanting MMSCs in vivo can increase the
healing of damaged tissue [34,44,133,136,137]. Their homing, migration, proliferation, and
differentiation are regulated by chemical and mechanical factors. Thus, osteopontin and
stromal derived factor-1 (SDF-1) increase MMSCs migration and survival ability [138,139].
Different GF (basic fibroblast growth factor—bFGF, vascular endothelial growth factor—
VEGF, insulin-like growth factor-1—IGF-1, platelet-derived growth factor—PDGF, trans-
forming growth factor β1—TGF-β1, and others) are critical for the process of MMSCs
homing and inducing tissue regeneration [136]. MMSCs differentiation significantly de-
pends on the bioactive scaffold material and its mechanical properties—roughness, rigidity,
microarchitectonics, and pore size [50,140].

Despite the advantages presented above, current concepts on the in vivo behavior of
MMSCs, including differentiation and survival potential, immunomodulatory functions,
tumorigenicity, and paracrine effects are still controversial [132,141,142]. Moreover, the type
of cells to be seeded on the scaffolds (MMSCs, progenitor cells, or differentiated cells), and
optimal cell culture conditions are still debated [35,132,134,136,141,142]. Lazennec et al. re-
ported the ability of MMSCs to home to tumor sites with further tumor growth suppression
or stimulation [141]. Molecular studies presented by Gunn et al. have demonstrated the
role of IL-6 secreted by MSCs in proliferation and progression of multiple myeloma [142].
Current research on MMSCs focuses on further preclinical and clinical investigations of
their behavior, safety, and therapeutic efficacy in vivo.

2.3. Growth Factors in Bone Tissue Engineering

Various GFs play crucial roles in bone tissue regeneration [22,38–40,143]. Osteoinduc-
tive GFs such as bone morphogenetic proteins (BMPs), vascular endothelial growth factors
(VEGFs), platelet-derived growth factors (PDGFs), insulin-like growth factors (IGFs), trans-
forming growth factors (TGFs-ß), fibroblast growth factors (FGF) promote bone tissue and
vascular growth, regulate cell behavior, including recruitment, migration, adhesion, prolif-
eration, and differentiation. Osteogenic GF have been widely used for BTE purposes. BMPs
have gained particular popularity due to their well-known ability to promote cell migration,
osteogenic differentiation of MSCs, and bone tissue formation [144,145]. The controlled
delivery of GF within bioactive scaffolds enhances osteoprogenitor bone cells migration,
proliferation, and differentiation, stimulates angiogenesis and, as a result, functional bone
tissue regeneration in vitro and in vivo [146].

Jacinto-Tinajero et al. for the first time demonstrated efficacy of the plant-based GF for
ectopic bone formation. Such GF as BMP-2, BMP-7 and TGF-β1 were produced in tobacco
leaves in high amounts and were successfully used for BTE purposes [147].
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Over the past decades, platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) have
been proactively applied in bone augmentation procedures as a natural source of multiple
GF (INF-γ, TNF-α, MCP-1, MIP-1a, RANTES, bFGF, PDGF, VEGF), cytokines (IL-1b, IL-1ra,
IL-4, IL-6, IL-8, IL-12, IL-13, IL-17, IL-2, IL-5, IL-7, IL-9, IL-10, IL-15), and chemokines
(G-CSF, GM-CSF, Eotaxin, CXCL10 chemokine (IP-10), MIP 1b) that hypothetically improve
bone tissue regeneration [40,148,149]. Combination of such platelet concentrates with natu-
ral and synthetic biomaterials can significantly enhance their effectiveness in bone tissue
regeneration [40]. The main groups of GFs, their sources and functions are summarized in
Table 3.

Table 3. Growth factors in bone tissue engineering.

Growth Factors Sources Functions

Bone Morphogenic Protein (BMP)

MMSCs
Osteoblasts
Endothelial cells
Chondrocytes

Induction of the bone growth
Cells migration, proliferation,
differentiation

Vascular Endothelial Growth
Factor (VEGF)

Platelets
Osteoblasts
Chondrocytes
Endothelial cells

Angiogenesis (regulation of
migration and proliferation of
endothelial cells)

Platelet-Derived Growth Factor
(PDGF)

Platelets
Osteoblasts
Endothelial cells

Bone cells proliferation
Angiogenesis

Transforming Growth Factor-Beta
(TGF-β)

Platelets
Osteoblasts
Chondrocytes
Endothelial cells
Fibroblasts

Induction of the bone growth
Osteoprogenitor cells migration,
proliferation, differentiation

Fibroblast Growth Factor (FGF)

MMSCs
Osteoblasts
Chondrocytes
Endothelial cells

Induction of the bone growth
Angiogenesis
Osteoblasts proliferation

Insulin-Like Growth Factor (IGF)
Osteoblasts
Chondrocytes
Endothelial cells

Osteoblasts proliferation ECM
synthesis stimulate Osteoclasts
proliferation

Despite the crucial role of GFs in bone tissue regeneration, adverse effects of their use
are widely presented. Thus, Tannoury et al. reported complications with the use of recom-
binant human BMP 2 (rhBMP-2). Authors presented a wide spectrum of adverse outcomes
related to rhBMP-2 use in spine surgeries, including ectopic bone formation, antibodies
formation, vertebral osteolysis, wound healing complications, hematoma formation, as
well as hypothetical tumorigenicity concerns [150].

2.4. In Vitro Vascularization Strategies in Bone Tissue Engineering

Vascularization is a fundamental requirement for the viability of the bone tissue-
engineered construct. Development of the predictably sufficient vascular network within
the construct remains one of the main challenges of BTE [43,151–154]. A stable blood supply
to the bone scaffold provides an influx of oxygen, nutrients, GF, and osteoprogenitor cells,
that are essential for bone tissue regeneration and remodeling. Therefore, the lack of the
scaffold vascularization leads to oxygen and nutrients deficiency, accumulation of waste
products, and, consequently, graft failure [155]. Insufficient vascularization is a considerable
limit for the creation of large-sized tissue-engineered bone constructs. Various strategies for
in vitro vascularization of the bone tissue constructs have been developed and implemented
in the past. Vascular network creation can be achieved by means of several approaches:
(1) use of the angiogenic GF, (2) use of the angiogenic cell cultures, (3) hypoxia-induced
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vascularization, (4) use of microvascular adipose tissue fragments, (5) 3D-bioprinting.
Furthermore, mechanical stimulation, microfabrication and microfluidic techniques can be
used as vascularization strategies [156,157]. Basic in vitro tissue vascularization strategies
are presented in Table 4.

Table 4. In vitro vascularization strategies in bone tissue engineering.

Vascularization Strategy Vascularization Technique

Use of the angiogenic GF (VEGF,
PDGF, FGF) Direct incorporation of the GF in the scaffold

Use of the angiogenic cell cultures
Direct delivery of endothelial cells into the
implantation site
(scaffold-based or scaffold free techniques)

Hypoxia-induced vascularization

Promoting the proliferation and sprouting of
endothelial cells
Recruitment of pericytes
Inducing the expression of proangiogenic factors

Use of microvascular adipose
tissue fragments Seeding of the microvascular isolates onto the scaffolds

3D-bioprinting
Combining angiogenic GF and angiogenic cells with
3D-printing techniques (Laser-based methods,
Extrusion printing)

Kazimierczak et al. recommend to seed the scaffold with various types of cells for creat-
ing a functional vascularized bone graft in vitro. Authors used co-cultures of mesenchymal
stem cells with endothelial cells to produce such a graft [158]. Currently, bioprinting-based
vascularization strategy represents the most advanced technology of vascular network
creation. 3D bioprinting of the vascular network is a promising approach, however, further
preclinical studies are required [159]. Regardless of in vitro vascularization strategies vari-
ety, their use is characterized by a low vascular network formation rate. Therefore, poor
in vitro vascularization of the bone tissue engineered construct is one of the considerable
limits for routine BTE clinical application [155].

2.5. Bioreactors for In Vitro Bone Tissue Engineering

Bioreactors have been developed as essential devices for in vitro tissue engineering
purposes to provide physiological tissue-specific environment by mimicking in vivo con-
ditions for tissue growth and regeneration [158,160–162]. Various types of bioreactors for
tissue engineering have been developed and applied in recent years.

Perfusion bioreactors use a pump system to provide continuous or non-continuous
media perfusion through the cell-seeded scaffolds with interconnective porous structure
and to enhance cell distribution and synthesis of the ECM. Perfusion bioreactors consist
of a media reservoir, a pump, a flow perfusion chambers, an oxygenator, a tubing circuit,
and a waste tank. Several authors reported successful use of perfusion bioreactors for BTE
purposes [163–165]. Liu et al. presented results of using porcine decellularized native bone
seeded with human smooth muscle cells and human umbilical vein endothelial cells within
a perfusion bioreactor. Authors demonstrated improved density of cells and increased
vascularization [163]. Ressler et al. confirmed osteogenic differentiation using a composite
Calcium phosphate/Hydroxyapatite scaffold seeded with human mesenchymal stem cells
in a perfusion bioreactor [164]. Pereira et al. used a custom-made perfusion bioreactor
system and decellularized human bone scaffolds seeded with human bone marrow-derived
mesenchymal stem cells [165].

Spinner Flask Bioreactors are composed of a media reservoir with two side arms with
filter caps for gas exchange. Such a device design provides a convective flow and pro-
duces hydrodynamic forces to enhance mass transport [158,162]. It can effectively mimic
important aspects of native bone environment and can positively affect accelerating human
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mesenchymal stem cells osteogenic differentiation [162]. The calcium content, alkaline
phosphatase activity, and osteopontin secretion can be used as indicators of mesenchymal
stem cells differentiation [166].

Rotating bioreactors provide unique microgravity conditions for minimizing shear stress
and unloading the gravitational force typically placed on cell cultures. These bioreactors are
composed of two concentric cylinders: the outer cylinder incorporates the culture medium
chamber for placing the scaffold, and the inner one provides gas exchange [162,167]. The
influence of the simulated microgravity environment on mesenchymal cell proliferation and
osteogenic differentiation is still debated. Some authors reported preservation of the human
bone marrow stem cell’s ability to differentiate into osteoblasts [168,169], while others
revealed inhibiting effect of microgravity conditions on mesenchymal cells osteogenic
differentiation [170].

Pulsed Electromagnetic Fields-Based Bioreactors have been recently applied as an effective
treatment option in orthopedic clinical practice to support bone healing in patients with
non-union or delayed-union bone fractures [158,171]. Furthermore, pulsed electromagnetic
fields demonstrated efficiency in osteonecrosis and diabetic osteopenia treatment [172],
and accelerate migration and osteogenic differentiation of mesenchymal stem cells, as well
as osteoblast proliferation and differentiation in vitro [173]. Additionally, it was found that
pulsed electromagnetic fields decrease the level of proinflammatory cytokines and increase
the expression of anti-inflammatory cytokines [158,174].

3. In Vivo Bone Tissue Engineering Advances

Although the above-presented critical components of BTE have been thoroughly
investigated in recent decades, their ideal combination to provide predictable and controlled
bone tissue regeneration process is still lacking. Current limitations of in vitro BTE, in
particular poor vascularization, confirm the critical need for further development of this
field. Flap prefabrication has emerged as a bridge between conventional reconstructive
surgery and tissue-engineering. It is a promising strategy which allows to use precise
customized flaps matching patient-specific needs [175]. Applied to bone reconstructive
surgery flap prefabrication is a potential alternative to autologous bone graft harvest, that
can significantly decrease donor-site morbidity.

3.1. Historical and Terminological Aspects of Flap Prefabrication

Historically, the term “prefabrication” first appeared in the record of house-building
or manufacturing of ships and aircrafts. It initially means the assembling all the necessary
components of a structure, and then transporting the assemblies to the site of construc-
tion [176]. The preliminary report first presented by Shen in 1981 included results of the
experimental study and clinical application of the vascular pedicle implantation into the
skin flap [177]. As a result, a skin flap of the desired location and design became axially vas-
cularized. In 1994 Pribaz et al. introduced the concept of prevascularized flaps modification
by implantation of tissue or other device into a flap prior to its local transposition or free
distant transfer. Authors of this concept first suggested the term “prelamination” [178]. The
most common example of flap prelamination is the rib cartilage subcutaneous implantation
at the forearm followed by later harvest and free transfer of the prelaminated forearm
composite skin-cartilage flap for ear reconstruction [179–181]. Tan (2004) used the term
“vascular induction” to describe the phenomenon of an axial blood supply introduction to
create new transplantable tissue [179].

3.2. In Vivo Bioreactor Approach to BTE: Experimental Studies

In 2005 Stevens et al. first introduced the term “in vivo bioreactor” (IVB) as a new
concept for in vivo BTE. According to this concept large volumes of bone can be created
in a predictable way, without the need for cell transplantation and GF administration. In
an experimental study in rabbits, authors created a space between the surface of the long
bone and the inner layer of the periosteum and filled this space with a biocompatible
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calcium-alginate gel. Radiographical and histological analysis of the bone harvested after a
period of 6 weeks confirmed formation of the new bone tissue biomechanically identical
to the native one. The authors emphasized the crucial role of the pluripotent cells of the
periosteum in the bone regeneration process [182].

Another historically important experimental study on IVB approach was conducted by
Holt et al. in 2005. This study on a rat model presented in vivo ectopic bone formation by
combining an axial vascularization and prefabrication of the hydroxyapatite scaffold with
a capability of further vascularized tissue transfer. Authors of this study demonstrated the
creation of the rich vascular network inside the scaffold regardless of the administration of
the BMP-2, however, supplementation of the BMP-2 could assumedly initiate pluripotent
cells recruitment from circulating blood to new bone generation [183].

These two independent groundbreaking studies have become the starting point for fur-
ther development of in vivo BTE strategies. Even though classical IVB, as it was underlined
above, suggested the human body as the main source of progenitor cells and GF, many
authors presented multiple modifications of the IVB by means of scaffolds cell-seeding and
supplementation with exogenous GF [184–190]. IVB has been investigated in variety of
small and large animal models [189–196]. Akar et al. presented basic requirements for IVB
preclinical models, including the use of clinically translatable surgical techniques, choos-
ing implantation sites with high regenerative potential and low infection risk, allowing
quantitative evaluation of results, and availability in a wide range of research centers [191].
The vast majority of these experimental studies present the combination of the IVB critical
components, which can be represented as a following formula.

IVB = S + FP + AV
(S—scaffold; FP—flap prefabrication, AV—axial vascularization).

According to the above-mentioned IVB formula it is logical to review and discuss this
approach as an inseparable combination of axial vascularization and flap prefabrication
methods. However, AV, as a separate component, may be optional if axially vascularized
flap is used for scaffold prefabrication. Prior to discussion of the IVB strategies presented in
literature in recent years, it is worth highlighting current tendencies in choosing scaffolds
for in vivo BTE purposes.

3.2.1. Scaffolds for In Vivo BTE

While reviewing multiple studies related to in vivo BTE, the spectrum of biocompati-
ble materials most commonly used for in vivo BTE typically includes the bioceramic [184,
185,187,191,197–201], allogeneic or xenogeneic bone-derived [189,193–195,202,203], and
composite scaffolds [190,204,205]. This literature review evidently demonstrates the ten-
dency to use mechanically stable materials with long controlled biodegradation rate for
in vivo BTE purposes. Furthermore, some authors present efforts to improve properties
of the scaffolds by combining various bioactive materials. Thus, Abu-Shahba used bio-
hybrid bone blocks consisting of bovine-derived bone matrix in combination with PCL
biodegradable polymer and collagen fragments for surface activation and scaffold rein-
forcement [204]. Kuzmenka et al. presented sol-gel hybrid glass scaffold integrated with
calcium sources with the aim to create a bioactive implant with long-lasting calcium release
while preserving its mechanical properties [206].

3.2.2. In Vivo Vascularization and Prefabrication Strategies in BTE

Viability and growth support of the in vivo tissue engineered construct strictly depend
on its constant and reliable blood supply. Despite the huge arsenal of in vitro angiogenesis
methods, the lack of adequate vascularization remains the prevalent challenge and limi-
tation in up-to-date BTE [201,207–212]. This fact resulted in the development of various
in vivo vascularization strategies. Furthermore, local soft tissues at the bone defect site
often have inappropriate quality and volume, and can be compromised due to cicatricial
or post-radiation changes. According to this fact, ectopic bone graft prefabrication at the
intact anatomic site can be an effective method to overcome such challenges.
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The axial vascularization strategy has emerged as a powerful tool for rapid vascular
network formation within a bioactive scaffold. This concept of vascularization has been
expanded through the use of flap-based and vessel-based approaches [193,207] (Figure 2).
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In the early seventies, the foundation of the axial pattern flaps revolutionized recon-
structive surgery [213]. In contrast to random pattern flap approach, which predominantly
relies on the angiogenesis within the host recipient site, anatomically stable arteriovenous
system allows to induce predictable neo-vascularization of various scaffold biomateri-
als [207]. Thus, flap-based vascularization, that is also known as the “extrinsic” mode of
neovascularization, can be classified in to random flap-based and axial flap-based types.
While using random flaps, the neovascular bed originates from the periphery of the con-
struct after its implantation into a highly vascularized environment [213]. According to
this principle, subcutaneous, intramuscular, and intraperitoneal implantation have been
reported [198,202,214]. At the same time, the presence of the stable arteriovenous axis pro-
vides constant and reliable blood supply of the flap, and progenitor cells and GF delivery.
Furthermore, axially vascularized flap can be transferred to the defect site via its arteriove-
nous pedicle [207]. However, extrinsic vascularization demonstrates limited success for
the vascular network creation in the central part of large scaffolds [215,216]. Kneser et al.
described “intrinsic” vascularization mode as a tool for adequate perfusion of the large
tissue-engineered construct and uniform vasculature distribution within its structure [217].
Extrinsic and intrinsic vascularization modes have been widely used in the experimental
and clinical studies [202,216–219]. Various tissue types have been applied for bone grafts or
scaffolds prefabrication in recent years, including subcutaneous pocket, periosteal, fascial,
muscular, and omental flaps [147,193,198,204,214,220–223].

Subcutaneous pocket creation has gained popularity as a method of ectopic scaffold
implantation due to simplicity of surgical technique, variety of potential prefabrication
sites for random flap-based vascularization, and minimal donor-site morbidity [193]. This
approach has been investigated by many authors in small and large animal models. Lee et.al
created subcutaneous pockets in rats for cell-seeded and cell-free tibial condyle scaffolds
implantation. The scaffolds were harvested and analyzed 6 weeks after implantation.
Histomorphometry and immunohistochemical analysis demonstrated blood vessels and
mineralized tissue formation within in vivo engineered bone grafts [215]. Wu et al. used
cell-seeded synthetic b-TCP and coral-derived HA scaffolds for ectopic subcutaneous
implantation at the back of Nude Mice. Twelve weeks after implantation, authors revealed
the formation of the vascularized new bone tissue via histological analysis and micro-
computed tomography [221]. Hypothetically, subcutaneously prefabricated bone flaps can
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be axially vascularized by means of anatomically consistent or transposed vascular pedicle
if simultaneous bone and soft tissue repair is needed.

Periosteal flaps have been widely used for bone grafts prefabrication due to well-known
high osteogenic potential and rich vasculature of the periosteum [191,193,194,198,204].
The inner cambium layer of the periosteum is well-vascularized and represents the rich
source of clinically useful osteoprogenitor cells, including osteoblasts and multipotent
stem cells. Despite the fact that osteoblasts may be absent in a cambial layer in adults,
they can appear whenever required, for instance, for fracture healing [224]. The outer
fibrous layer contains highly organized and directional collagen fibers (Sharpey’s fibers),
and a smaller number of cells, mostly fibroblasts and pericytes [225,226]. As mentioned
earlier, the first introduction of the IVB concept was based on the use of the periosteum
cambial layer as the source of progenitor cells for bone regeneration [182]. Periosteal flaps
have been predominantly investigated as an extrinsic approach to scaffolds vascularization
and bone grafts prefabrication [193,198,227,228]. However, Sparks et al. suggested to use
axially vascularized inverted corticoperiosteal flap. This approach provides an intrinsic
axial blood supply, while the osteogenic surface of the periosteum can be located inside
the scaffold [207]. Huang et al. presented a rabbit model of the bone graft prefabrication
using a skull periosteal flap based on the supraorbital vessels, and confirmed new bone
formation after 16 weeks of the graft prefabrication [193]. Ersoy used the combination
of the periosto-fasciocutaneous flap transposed to the abdomen for bioactive glass and
hydroxyapatite scaffolds prefabrication, and confirmed the osteogenic capacity of the vas-
cularized periosteum [198]. Han et.al presented the preclinical model of the IVB in rabbits
by combining β-TCP scaffold, tibial periosteal flap and the saphenous vascular pedicle, and
confirmed the presence of the rich vascular network and new bone formation 4 weeks after
prefabrication. New bone formation was mainly seen in peripheral aspects of the scaffold,
while microvascular infusion and immunohistochemical staining showed direct revascu-
larization of β-TCP scaffold [185]. Nau et al. used a rat model to evaluate the efficacy of
periosteal flaps in bone defects healing. In various study groups, authors used periosteal
flaps alone or in combination with β-TCP scaffold, bone marrow-derived mononuclear
cells, and vascular pedicle. Prefabrication terms of four and eight weeks were analyzed.
This strategy resulted in significantly improved bone healing [228]. Abu-Shahba et al.
investigated the regenerative potential of the periosteal grafts and vascularized periosteal
flaps in combination with muscle flaps in sheep model mandible defects reconstruction.
The authors revealed enhanced new bone formation and enhanced vascularization after
13 and 23 weeks after alloplastic scaffolds implantation in both study groups by means of
micro-CT and histological analysis [204].

Prelaminated fascial flaps have been successfully applied for complex tracheal, la-
ryngeal and ear defects by many authors, by means of cartilage or alloplastic materials
implantation underneath a radial forearm or temporoparietal fascia [180,229,230]. Prefab-
rication of bone grafts using fascial flaps has been also presented in series of preclinical
studies. Fan et al. demonstrated efficacy of segmental bone defects repair in rhesus
monkey using prevascularized cell-seeded scaffolds. These scaffolds were vascularized
by saphenous arteriovenous bundle and covered with the fascial flap. Such vasculariza-
tion and prefabrication approach resulted in new bone formation and capillary vessel
in-growth [231]. Brey et al. conducted comparative analysis of periosteal and fascial flaps
use for bone grafts prefabrication and vascularization. The analysis showed no significant
difference in vascularization of the scaffolds and volume or shape of tissue formed. How-
ever, the use of the fascial flaps resulted in formation of predominantly fibrovascular tissue,
while scaffolds that contacted with periosteal flaps demonstrated endochondral, direct,
and appositional bone growth [232]. For clinical purposes random or axially vascularized
fascial flaps for extrinsic vascularization of the scaffold can be harvested in a variety of
anatomical locations, with minimal donor-site morbidity, however, osteogenic potential
of fascia requires further investigations. Hypothetically, combination of fascial flaps with
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periosteal flaps and/or intrinsic vessel-based vascularization strategies can be considered
as a logical future direction of the IVB concept development.

Muscle flaps have been effectively applied for in vivo BTE purposes [218,222,233,234]. It
is well established that muscle tissue is a rich source of progenitor cells, including cells
with osteogenic properties. Covering the fracture with muscle flaps provides a suitable
environment for osteogenesis and reduces bone healing time [235].

Spalthoff et al. used prefabricated β-TCP scaffolds with or without a vascular bundle,
combined with autologous bone marrow by implantation in the latissimus dorsi muscle
in sheep. Histomorphometric analysis exhibited ectopic bone growth in all study groups
with no significant difference between three- or six-months terms of prefabrication [234].
Kokemüller et al. reported experimental study on IVB approach based on prefabrication
of the β-TCP scaffolds with a latissimus dorsi muscle flap and thoracodorsal vascular
pedicle for axial construct perfusion in sheep. The authors confirmed considerably in-
duced ectopic bone growth in all implanted scaffolds, and significantly increased bone
growth, ceramic resorption and angiogenesis in scaffolds with axial perfusion [219]. Liu
et al. presented IVB for vascularized bone graft engineering by implanting the composite
bovine-derived scaffolds supplemented with recombinant human bone morphogenetic
protein-7 (rhBMP-7) and/or recombinant human vascular endothelial growth factor 165
(rhVEGF165) in latissimus dorsi muscle in pigs. Histomorphometric analysis after twelve
weeks of prefabrication revealed new lamellar and trabecular bone formation with higher
bone density in scaffolds supplemented with rhVEGF165 [223]. Zhou et al. used deminer-
alized freeze-dried bone allografts and coralline hydroxyapatite scaffolds with or without
BMP stimulation, loaded into customized titanium meshes and prefabricated with latis-
simus dorsi muscle flaps in monkeys. Prefabricated bone grafts were used for mandible
reconstruction thirteen weeks after implantation, and were observed in situ for another
thirteen weeks. The authors analyzed the optimal time for prefabricated bone flap transfer
via technetium-99m-methyl diphosphonate (Tc-MDP) single-photon emission computed
tomography/computed tomography (SPECT/CT). According to the study results, authors
suggested to transfer the flap at an interval of 8 to 13 weeks. At these terms the bone density
gradually increased, while the uptake of 99 m Tc-MDP started to decrease from its peak at
8 weeks [236].

In addition to representing a rich source of progenitor cells, vasculogenic and os-
teogenic environment, vascularized muscle flaps can be found in a range of anatomic sites.
In a clinical setting, latissimus dorsi, pectoralis, rectus abdominis, and rectus femoris mus-
cles are widely used as free flaps due to having anatomically consistent vascular pedicles
of an appropriate caliber and length.

Omental flaps have demonstrated osteogenic and vasculogenic potential for BTE pur-
poses in multiple experimental studies [202,237,238]. Kamei et al. presented an experimen-
tal study in a rabbit model based on wrapping omentum with a periosteal graft followed
by harvesting and analyzing omentum samples in 1, 2, 4, 6, 8, 12, or 24 weeks after surgery.
Within 1 week after surgery, authors revealed the presence of osteoblasts clusters, while
8 weeks after prefabrication, medullization, including the presence of granulocytes, was
observed [238]. Similarly, Sadegh et al. used free periosteal graft loaded with adipose
tissue-derived stem cells for wrapping the pedicled omental flap in dog model. Such
a tissue engineering approach lead to ectopic new bone formation [239]. Wiltfang et al.
proposed the IVB strategy for ectopic bone formation based on the combination of titanium
cages filled with bone mineral blocks, supplemented with recombinant human BMP-2,
and bone marrow aspirate. These scaffolds were implanted into the gastrocolic omentum
for a period of 3 months. Later, a free composite flap was harvested and transferred to
the mandibular defect. Bone remodeling and mineralization both at the prefabrication
and at the defect sites was confirmed by in vivo SPECT/CT [202]. Jacinto-Tinajero et al.
presented the dog model of the IVB for BTE. In this study the scaffold consisted of collagen
type 1 sponge, demineralized bone powder, calcium chloride, thrombin and PRP. The
scaffold was wrapped with omentum and prefabricated for four months. As a result, a
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heterotopic trabecular bone formation was revealed [147]. Applied to clinical settings,
omental flaps have been typically used for pharyngeal and esophageal defects reconstruc-
tion [239]. The feasibility of omental flaps clinical application for in vivo BTE purposes
remains controversial and requires further experimental investigations.

While summarizing the efficacy of the flap-based techniques for in vivo BTE, it is
mandatory to underline that the use of different tissue flaps for the scaffolds prefabrication
demonstrates both osteogenic and vasculogenic capacity. Therefore, flap-based approach
can be considered as an essential component of IVB structure. Axially vascularized flaps
initiate bone tissue and blood vessels ingrowth within ectopically implanted scaffold and
allow its consequent transposition or free transfer.

Vessel-based axial vascularization has revolutionized BTE due to the possibility to
create rich and stable vascular network within a scaffold in a rapid and predictable
manner [195,201,207,208,216,240–242]. As mentioned above, the presence of the vascu-
lar pedicle allows for the transposition of the flap locally, or to transfer it to the distant
recipient site. Three main strategies of vessel-based axial vascularization include arteri-
ovenous bundle (AVB), flow-through vascular bundle (FTVB), and arteriovenous loop
(AV-loop).

Arteriovenous bundle (AVB) approach to tissue-engineered construct axial vascular-
ization is based on the use of anatomically consistent vascular pedicle. It has emerged
as a reliable method to provide a scaffold with a stable axial blood supply and constant
perfusion. Moreover, AVB strategy allows to transfer the bone flap after a certain period of
prefabrication using microsurgical techniques [186,241,243]. Polykandriotis et al. presented
the experimental study on the use of AVB for BTE in rats. In this study the authors made an
effort to create vascularized tissue-engineered construct suitable for microsurgical transfer.
For this purpose, AVB was used as the source of an axial blood supply by inserting the
pedicle into a specially designed channel in to the bovine cancellous bone-derived scaf-
fold. The scaffold vascularization was evaluated at 2, 4, and 8 weeks after implantation
by means of histological, histomorphometric analysis, scanning electron microscopy, and
micro-magnetic resonance angiography for in vivo evaluation of the vascularized scaffolds.
The vascularized constructs demonstrated well organized sprouting vascular network
of high density and degree of maturation, with organization into vessels of different or-
ders [242]. Li et al. used AVB for axial vascularization of the composite PLGA/ β-TCP
scaffolds supplemented with rhBMP-2 in minipigs. The authors concluded that AVB signif-
icantly improved scaffold vascularization and new bone formation. Furthermore, defined
vascular pedicle allows to transfer the flap to the bone defect by means of microvascular
anastomoses [244].

Flow-through vascular bundle (FTVB) is an effective and relatively simple option for
intrinsic vascularization of the scaffold. The main difference from the AVB approach is
that the vascular pedicle is not ligated [195,244,245]. Yamaguchi et al. reported results of
the vascularized allogeneic bone graft prefabrication in a rat model using flow-through
saphenous bundle as a vascular carrier. Histological evaluations confirmed angiogenesis
and bone formation in the group of axially vascularized scaffolds [195]. Yao et al. conducted
an experimental study on IVB strategy in rabbits. Free radial bone grafts were harvested
and vascularized by the external maxillary artery pedicle passed through the bone marrow
cavity. India ink perfusion revealed high microvessel density comparing to the control
group without axial blood supply. A peak of angiogenesis was indicated at four weeks
postoperatively by means of integrated optical density of tetracycline fluorescence labelling.
The authors concluded that increased angiogenesis enhanced osteogenesis in the tissue
engineered construct [245].

Arteriovenous loop (AVL) has become the most commonly applied and perspective
axial vascularization strategy described in multiple experimental studies on soft and bone
tissue regeneration in recent decades [186,188,201,208,216,245–247]. The AVL approach to
axial vascularization is based on the creation of the arteriovenous shunt with a purpose
of rapid sprouting of the vascular network. This technique has been investigated in small
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and large animal models as the IVB approach to bone tissue regeneration. Kneser et al.
reported the use of the AVL including artery, vein and vein graft, for bovine cancellous
bone blocks axial vascularization in rats. Significant vascularization of the porous bone
matrix occurred by the 8th week of observation and was confirmed by the intraaortic India
ink perfusion [217]. Beier et al. presented results of the bovine cancellous bone block axial
vascularization via AVL in a sheep model. AVL was microsurgically created in an isolation
chamber. The tissue engineered constructs displayed increased axial vascularization, which
was quantified by histomorphometric analysis and micro-computed tomography. In vivo
sequential MRI demonstrated a significant progressive increase in the scaffold perfusion
volume. Immunohistochemical analysis confirmed new blood vessels formation [248]. In
2011 Eweida et al. introduced the results of the cadaveric and surgical pilot studies in
goats to test the potential model for axial vascularization of the mandible tissue engineered
constructs. The aim of this study was to define the optimal vascular axis to create the AVL
in the mandibular region. Facial artery and vein were considered as vessels of choice to
vascularize scaffolds for mandible defects reconstruction. Later, in 2014, authors applied
this model in vivo by means of successful facial artery—facial vein AVL creating in goats,
and confirmed significantly enhanced vascularization in the central part of the scaffold
comparing to non-vascularized scaffolds in the control group [243,249]. Ma et al. reported
the rabbit model of the IVB for bone defects reconstruction. Authors used a combination of
β-TCP scaffold, saphenous artery—saphenous vein AVL, and osteogenic cell sheet based
on bone marrow-derived stem cells. The AVL was inserted into the specially prepared
lateral grooves of the scaffold. The scaffold was then wrapped with the cell sheet. After
eight weeks of prefabrication, histological and histomorphometric examinations revealed
a formation of the trabecular bone tissue at the central part of the axially vascularized
scaffold with the presence of osteoblasts, osteocytes, and bone marrow cavity-like structures
surrounded by a dense matrix. The control group included scaffolds without axial blood
supply, and displayed lamellar bone formation, predominantly at the edge of the construct,
and sporadic bone formation in the central part of the scaffold [201].

3.3. In Vivo Bioreactor Approach to BTE: Clinical Application

Despite that numerous experimental studies on IVB in BTE using small and large
animal models have confirmed efficiency of this strategy for ectopic bone prevascularization
and regeneration, reports on the clinical application of this principle are still rare. We have
reviewed clinical reports related to in vivo BTE and IVB principle presented in past decades.
In 2016 Huang et al. summarized eight clinical reports on IVB approach to bone defects
reconstruction between 1999 and 2014 [250]. The majority of the defects presented in this
review included mandible defects repair using IVB principle and various prefabrication
strategies [217–219,223,228,251,252]. In two of the eight mentioned cases, authors presented
in situ tibial and radial bones defects repair, and for the first time used AVL in the clinical
settings with excellent long-term results [220]. Additionally, the review of publications
that could belong to the IVB approach to bone reconstruction for the same period of time
revealed several more clinical cases.

Thus, in 2000, Safak et al. reported experimental studies on bone flap prefabrication,
followed by two clinical cases of successful use of prefabricated iliac osteomyocutaneous
flaps. The authors elevated pedicled split-inner cortex iliac bone flap and implanted it into
the subcutaneous pocket in the medial groin region. After four weeks of prefabrication
neovascularized composite flap was harvested and transferred to the defect based on the
deep circumflex iliac vessels [253]. In 2001, Vacanti et al. presented a clinical report on
reconstruction of an avulsed phalanx using in vivo BTE approach. As a result of the car
accident, dorsal skin, nail bed, extensor tendon, and distal phalanx of the thumb had been
lost. At the first stage the injured thumb was debrided and placed in to subcutaneous pocket
at the abdomen for nineteen days. The skin flap healed successfully and was completely
divided on nineteenth day. At the second stage porous HA scaffold was seeded with
autologous radial periosteum-derived cells, incubated in vitro for nine weeks. Cell-seeded



Polymers 2022, 14, 3222 18 of 29

scaffold was implanted to the defect site twelve weeks after injury. MRI examination,
conventional radiographs, and light-microscopical examination of the biopsy specimens,
confirmed adequate vascularization of the scaffold and new lamellar bone formation
within the tissue-engineered construct. However, histomorphometric analysis revealed
that 5 percent of the construct incorporated lamellar bone and ossified endochondral tissue,
while most of the volume was represented with soft tissue and blood vessels [254]. In
2004, Gronthos described a clinical case of the human mandible reconstruction using IVB
approach. The author used prefabricated composite bone–muscle-flap. The scaffold used,
consisted of a titanium mesh loaded with HA blocks seeded with bone marrow-derived
stem cells, and supplemented by rhBMP-7. The tissue engineered construct was implanted
into the latissimus dorsi muscle. After seven weeks of prefabrication the composite flap
was transferred via microvascular anastomoses with the branches of external carotid
artery and cephalic vein with good initial clinical results. During the follow up of the
patient, a fracture of the titanium mesh, as well as partial necrosis of the bone flap were
documented. The follow up was limited due to patient’s death from the cardiac arrest
fifteen months after tissue engineered flap transfer [217,255,256]. In 2004 Yamada et al.
successfully applied injectable tissue-engineered bone, based on bone marrow-derived
stem cells and PRP, for maxilla and mandible augmentation in three partially edentulous
patients [257]. In 2007 Marcacci et al. presented a new tissue engineering approach to
surgical treatment of patients with extensive bone diaphysis defects. The authors applied
porous HA ceramic scaffolds seeded with bone marrow-derived stem cells. Seven years
follow-up demonstrated complete integration of the scaffold confirmed by conventional
radiographs and computed tomography scans [258]. In 2008 Iino et al. reported the
clinical use of the particulate cancellous bone and bone marrow, as an effective in vivo BTE
approach to in situ maxillary and mandibular defects reconstruction, including patients
with lip and palate cleft [259]. In 2009 Leonhardt et al. applied prefabricated radial forearm
flaps for secondary mandible reconstruction in patients who had undergone tumor surgery.
The authors harvested a cylinder of cancellous bone from the iliac crest, and implanted bone
block in the forearm for prevascularization. After a period of 4 weeks the prefabricated
flap was transferred into the mandibular defect [260]. In 2015 Sadigh et al. presented a case
report on the anterolateral thigh flap prelamination with a fibula bone graft in a patient with
the failure of the previously transferred free fibula flap. The fibula bone graft was inserted
into a suprafascial pocket at the thigh for three weeks. After a period of prevascularization,
the free transfer of the composite flap was successfully performed [261]. In 2016 Rüegg et al.
presented a retrospective analysis of fifty clinical cases of facial bones defects reconstruction
from 1988 to 2014 using prefabricated vascularized calvarium flaps. At the first stage
of the procedure authors harvested calvarium bone flap and prelaminated it with a skin
graft. After two to sixteen weeks of prefabrication the neovascularized composite flap was
transferred to the facial bone defect. A long-term evaluation at the fifteen year follow-up
demonstrated high success rate of such approach to bone defects reconstruction [262]. In
2019 Banaszewski et al. successfully used prefabricated corticoperiosteal medial femoral
condyle free flap for one-stage laryngotracheal reconstruction [263].

Despite the variety of the IVB strategies used by the authors of the above-mentioned
studies, the philosophy of the basic approach in all the studies relies on the effort to
effectively combine the critical components of the bone tissue regeneration process.

4. Conclusions and Future Directions

Over the past decades, challenges in critical-sized bone defects repair inspired scien-
tists and surgeons to develop new strategies for in vivo BTE, as innovative patient-specific
solutions for minimally invasive bone defects reconstruction. The main efforts of these
strategies aim to perform bone reconstructions using viable tissue-engineered constructs
of precise anatomical shape and sufficient volume. Furthermore, minimal donor-site
morbidity is one of the important criteria of in vivo BTE concept.
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Although the essential components of the IVB have been thoroughly investigated in
past years, their ideal combination is still debated. Thus, the ideal scaffold material is still a
cause for discussion. Currently, the prevalent trend is to use crucial properties of various
biocompatible scaffold materials through their combination.

Despite the advantages of the flap prefabrication technique, including prevasculariza-
tion at the distant and intact ectopic anatomic site, the flap-based approach is associated
with certain technical challenges, additional surgical site, and time required for scaffold
initial integration. Moreover, according to the up-to-date literature, the terms of bone graft
or scaffold prefabrication are still controversial.

The axial vascularization strategy is considered optimal for rapid vascular network
spreading; however, it requires prefabrication of the grafts at the certain sites with anatom-
ically consistent vascular pedicles. Furthermore, vessel-based axial vascularization, in
particular AVL, requires complex microsurgical procedures, and therefore increases proce-
dure duration and donor-site morbidity.

Further investigation of the safety and long-term effects of cell-seeding techniques and
exogenous GF administration is required prior their routine clinical application. However,
the self-regenerative capacity of the human body as the core principle of the IVB, along
with overcoming the problem of insufficient vascularization of bone tissue-engineered
construct seems to be an exceptionally promising approach to critical-sized bone defects
repair, and can be recommended for further implication in clinical settings.
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