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Gene-level metagenomic architectures across
diseases yield high-resolution microbiome
diagnostic indicators

Braden T. Tierney® 234, Yingxuan Tan!, Aleksandar D. Kostic234™ & Chirag J. Patel® '*

We propose microbiome disease “architectures”: linking >1 million microbial features (spe-
cies, pathways, and genes) to 7 host phenotypes from 13 cohorts using a pipeline designed to
identify associations that are robust to analytical model choice. Here, we guantify con-
servation and heterogeneity in microbiome-disease associations, using gene-level analysis to
identify strain-specific, cross-disease, positive and negative associations. We find coronary
artery disease, inflammatory bowel diseases, and liver cirrhosis to share gene-level signatures
ascribed to the Streptococcus genus. Type 2 diabetes, by comparison, has a distinct meta-
genomic signature not linked to any one specific species or genus. We additionally find that
at the species-level, the prior-reported connection between Solobacterium moorei and color-
ectal cancer is not consistently identified across models—however, our gene-level analysis
unveils a group of robust, strain-specific gene associations. Finally, we validate our findings
regarding colorectal cancer and inflammatory bowel diseases in independent cohorts and
identify that features inversely associated with disease tend to be less reproducible than
features enriched in disease. Overall, our work is not only a step towards gene-based, cross-
disease microbiome diagnostic indicators, but it also illuminates the nuances of the genetic
architecture of the human microbiome, including tension between gene- and species-level
associations.
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ARTICLE

he ecology of the human microbiome is known to be asso-

ciated with both phenotype and environment!-2, Here, we

introduce “microbiome architectures”, which, analogous to
human genetic architectures?, are the characteristics of the micro-
biome, which, as a group, correlate with human phenotype. More
specifically, we compute architecture by identifying the complete set
of associations between the microbiome and a given host disease.
We hypothesize that these could potentially be jointly diagnostic for
different aspects of host health*-7. Moreover, identifying common—
and distinct—architectures across diseases can shine light on the
degree to which diseases share common etiologies. Achieving these
ends, however, requires identifying how architecture changes across
an array of human diseases in a manner that can easily be tested
with in vivo or in vitro experiments.

Others have considered microbial community ecology across
human individuals. Outside of single-disease metagenome-asso-
ciation studies, investigators have introduced the concept of the
“enterotypes,” 3 hypothetically phylogenetically (at the phylum-
and genus level) and functionally distinct groups of microbiome
compositions. Enterotypes were initially identified across indivi-
duals from different backgrounds and countries®. While inter-
individual microbiome variation and the presence of enterotypes
is debated, their contribution to the field of comparative meta-
genomics remains fundamental!®-12. However, by comparing
microbiome ecology across a range of host phenotypes, the
concept and construction of architectures sidesteps the challenge
of building grand views of a “normal” microbiome. Architectures
instead enable the identification of specific (but still holistic)
microbial factors associated with specific host phenotypes across
sources of metagenomic variation.

At the heart of a metagenomic architecture rests a set of sta-
tistical associations between individual microbial features (e.g.,
species, pathways, or genes) and a given human phenotype. These
associations are subject to the same challenges of any observa-
tional study, such as lower sample size (lack of power to detect
associations) or confounding (e.g., not accounting for particular
batch effects, geography, and/or diet). Lack of power and bias in
observational studies (such as confounding) can lead to type 1
(false-positive) and type 2 (false-negative) errors.

Many studies use “meta-analyses” to aggregate and compare
results across cohorts. There are a few approaches for carrying
out a meta-analysis (e.g, random vs. fixed-effect meta-
analyses!3), and they provide a way to estimate an “overall”
association size. Historically, they have been deployed for both
randomized and observational research!4, such as to aggregate
effects across clinical trials'®>. Meta-analyses are emerging in the
microbiome and have been used to discover new microbiome-
disease associations in, for example, colorectal cancer®16-18,

However, meta-analyses are still potentially subject to con-
founding effects due to variable model specification strategies that
occur in individual studies. In most situations, investigators
choose a set of measured and potential confounding variables to
adjust for in a model based on a prior hypothesis between the
nature of the association between the independent and dependent
variables. However, when the exact mechanism of potential
confounding is unknown, the choice of potential measured con-
founders to adjust for in a model is arbitrary. The degree to which
variation in model specification (e.g., adjusting for certain con-
founders and not others) changes the relationship between
dependent and independent variables has been described as
“Vibration of Effects” (VoE)!°-2l. Modeling VoE enables
researchers to identify not just that a result is irreproducible
among certain model specifications, but potentially why that is
the case?V. Briefly, we hypothesize that the larger the variation of
associations that occur due to measured confounding and model
choice, the less robust an association is. In other words, a robust

association should persist across all or most configurations of
study designs and model choices.

To be clear, we do not claim to identify the “best” method for
computing architectures. Rather, we aim to propose architectures
as a concept and demonstrate one method for their identification
that controls for inconsistency in model output due to model
specification. There are many options for computing the asso-
ciation between a disease and microbiome feature, ensuring these
associations are robust, and meta-analyzing across datasets. Each
of these steps rests upon volumes of biostatistics and microbiome
literature. For example, a range of methods are used in the
microbiome, from nonparametric tests to complex machine
learning, like random forests.

Here, we propose one avenue for the identification of robust,
multidata-type, microbial architectures in human disease by
applying an analytic framework that considers a vast array of
model specifications. We quantified the shared and distinct
microbiome-disease architectures for seven prevalent diseases.
We used the results of our meta-analysis and VoE pipeline to
build high-resolution, robust multidisease architectures for seven
diseases (adenoma, colorectal cancer (CRC), liver cirrhosis
(CIRR), inflammatory bowel diseases (IBD), type 2 diabetes
(T2D), otitis, and atherosclerotic cardiovascular disease
(ACVD)), with a novel emphasis on gene-level, cross-disease
associations. We specifically chose to examine otitis as a form of
negative biological control, as, to our knowledge, it has limited
reported association with the gut microbiome, and we expected it
to have a negligible metagenomic architecture.

Results

Microbiome meta-analyses alone yield a panoply of associa-
tions. We executed a combined meta-analytic and VoE approach
to identify microbiome-based associations with seven common
diseases spanning 13 cohorts and 2573 samples (Fig. 1 and
Supplementary Data 1). We identified associations between
microbial taxonomy/pathway/gene family abundance and disease
presence, defining statistically significant relationships as those
with a false-discovery rate (FDR)-adjusted P value of <0.05. A
glossary of terms related to our pipeline and regression analysis is
listed in Supplementary Data 2.

The results of our initial analysis demonstrated how associations
vary as a function of data type, disease, and phenotype (Figs. 1A and
2). We used a linear modeling approach to identify initial associations
between each microbial species (N = 6832), pathway (N = 76,251),
and gene family (N = 1,167,504), fitting “maximal models” containing
the metadata variables present for a given phenotype within a given
dataset (“Methods”, Supplementary Data 1). We meta-analyzed the
within-cohort regression results across the three phenotypes (CRC,
adenoma, and T2D) that were represented across multiple
independent cohorts. Across all phenotypes, gene families had, on
average, the most FDR-significant associations (mean = 16,557 (1.4%
of all tested)), followed by pathways (mean = 279 (0.4% of all tested)),
followed by species associations (mean = 31 (0.05%)). Meta-analyzed
phenotypes had, on average, fewer FDR-significant associations
(mean = 2890) than non-meta-analyzed phenotypes (mean = 6673).

Otitis and adenoma had the fewest number of FDR-significant
associations (49 and 90, respectively). Conversely, we found IBD,
ACVD, CRC, and T2D to have the largest number of FDR-
significant associations (62,563, 27,573, 21,197, and 1258 respec-
tively). Of all statistically significant associations, 107,966 were
positively associated with phenotype (i.e., increase in abundance in
the presence of disease) and 9762 were negatively associated.

Vibration-of-effects' stress-test microbiome associations. We
next sought to test the robustness of our identified associations
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Fig. 1 Pipeline overview. A Using publicly available metagenomic, shotgun sequencing datasets, we computed linear associations between microbiome
features (gene family, pathway, or species abundances) and for each of seven different diseases separately. In cases where multiple cohorts were present
for one disease, we meta-analyzed the association output. B We then computed Vibration of Effects (VoE), where, given the available individual-level
metadata, we determined how model specification changes the association between each false-discovery rate significant feature and host phenotype.

via modeling VoE. For each FDR-significant feature, we fit every
possible model specification given the possible potentially con-
founding variables measured in the individual cohort and asses-
sed how association sizes and p-values change as a result of model
specification choice. For each dataset, we fit every combination of
covariates found in the maximal model (“Methods”, Fig. 1B),
quantifying the ranges (between the 99th and 1st percentile) in
estimate and p-value size for the independent, binary disease
status variable. We additionally quantified Janus Effects (JEs),
which we define as the fraction of estimates with positive asso-
ciations for a given feature (as opposed to negative). For example,
a JE of 0.5 is an example of a “non-robust” association. For a
given microbial feature with a JE of 0.5, half of its associations
with disease were negative and half were positive. In total, we
tested VoE for 117,966 features that were reported in the

literature as disease-associated and/or found to be FDR-
significant in our initial step, fitting a total of 67,600,562 mod-
els. We found the mean estimate ranges and JEs to be 0.36 +
—0.31 and 0.92 + —0.27 (Supplementary Fig. 1), respectively.
We then selected for “robust” disease-microbiome associations
(Fig. 3). We filtered for associations with minimal vibration of
effects, with JEs of >0.99 or <0.01. Overall, this filtering step
removed 1717 (1688 gene families, 9 pathways, and 4 species) of
the initial FDR-significant associations (1.4%) across all diseases.
ACVD, cirrhosis, and otitis did not present any associations with
JEs that failed this initial filtering criterion. We additionally tested
more stringent filters, taking associations not only with low JEs,
but also those in the bottom 75%, 50%, and 25% quantiles of
estimate ranges (i.e., selecting for associations with consistent
estimate sizes across all models), yielding further reductions to
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Fig. 2 Initial association output. Initial association outputs for each A meta-analyzed and B single-cohort phenotype, split by species associations, pathway
associations, and gene family associations. Each point represents a different feature (e.g., species). Y axes are false-discovery rate-adjusted log,q P values.
Solid line is false-discovery rate-adjusted statistical significance (P <0.05). X axes are the beta-coefficient on the binary, independent disease variable of

interest.

87,012 (73.8% of all initially FDR-significant features), 43,506
(37.0%), and 10,877 (9.2%) features remaining, respectively
(Supplementary Data 3).

We compared our meta-analysis and VoE output to a range of
alternative modeling strategies: univariate associations, associa-
tions with a fixed effect adjusting for cohort (for the multicohort
phenotypes), elastic net regression, random forest regression, and
sparse partial least squares (sPLS) regression (Supplementary
Fig. 3). We additionally randomized disease status for all diseases
as a negative control. We found that architectures (a) built on
randomized disease indicators (for cases and controls) did not
overlap with architectures we identified on non-randomized data
(Supplementary Fig. 4), and the (b) other approaches yielded
similar importance in variable ranking across all data modalities
and phenotypes. Our results indicated that generally the same
features are being implicated in diverse modeling approaches and
that modeling VoE is the most conservative option (Supplemen-
tary Fig. 5). Batch-adjusted regressions yielded the most similar
results in terms of statistical significance to our approach,
followed by univariate models. For the comparison to variable
selection methods, sPLS and elastic nets were the most similar to

our method. Overall, we found that the ranking of features—
especially among those flagged as significant and robust by our
pipeline (mean Spearman correlation with our initial ranking of
features = 0.88 +/— 0.01)—was similar across all methods
(Supplementary Fig. 6).

Gut microbiome-disease architectures are dependent on data
type. Having identified a set of robust associations between seven
human diseases and microbial gene families, pathways, and spe-
cies, we next sought to use our results to comparatively investi-
gate gut microbiome-disease architectures as a function of data
modality. We compared architectures between diseases by esti-
mating the degree of similarity of associations between pheno-
types. We found that of the 6344 microbial species, pathways, or
genes that were associated with multiple phenotypes, 798 (12.5%)
had association sizes with opposite signs. After filtering these out
and comparing the overlap between robust and statistically sig-
nificant features across all diseases for all combined data mod-
alities, we found moderate overall shared microbiome
architecture (Supplementary Fig. 3). The greatest overlap of sta-
tistically significant features was between ACVD and IBD (N =
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Fig. 3 Examples of associations of varying strength. Example of a robust (A) and nonrobust (B) association as identified by modeling vibration of effects.
Each point represents the association deriving from multiple linear regression between the disease and microbial feature of interest for a different modeling
strategy. Y axes are nominal log;o P values. Solid line is nominal statistical significance (P<0.05). X axes are the beta-coefficient on the binary,

independent disease variable of interest. Dotted lines represented the false-discovery rate-adjusted P values. Point colors correspond to cohorts. The solid
blue diamond marks the P value and estimates achieved through meta-analysis across all cohorts. The species listed in A was included in the downstream
analysis, as it exhibited meta-analytic false-discovery rate (FDR)-adjusted statistical significance, whereas the species in B was not included, as it was not
FDR-significant and was not robust, as nominally significant opposite sign results (a Janus Effect) could be achieved with differing model specifications.

1996), followed by ACVD and CIRR (N = 1290), and CRC and
ACVD (N=984). In total, 147 features were shared between
exactly 3 phenotypes, and 5158 features were shared between
exactly 2. In total, two features were shared between four phe-
notypes (IBD, ACVD, CRC, and CIRR).

We identified what has been described as the “Anna Karinena
effect”?223—that unhealthy microbiomes are not alike—to be
generally true at the species and pathway level but not entirely at
the gene level (Fig. 4). For example, at the species level, ACVD,
CIRR, IBD, and CRC clustered together, whereas T2D was
entirely distinct. At the gene family level, however, not only did
the ranking of similarity change between these four diseases, but
T2D was also grouped in with them. In total, nine taxonomic
(MetaPhlAn2) annotations were associated with ACVD and IBD
(members of the genera Solobacterium as well as S. Moorei, the
families Lactobacilliaceae and Actinomycetaceae, the genus
Erysipelotrichaceae, and members of the genus Streptococcus),
one with IBD and CRC (the genus Peptostreptococcus), and
another, S. anginosus, with all IBD, CIRR, and ACVD.

In total, 95 pathways were conserved between diseases. We
found only one pathway, phosphopantothenate biosynthesis I, to
be negatively associated with multiple diseases: ACVD and CIRR.
The species annotated to the disease-associated pathways were
similar to those in the species-level results above. IBD and ACVD
overlapped in 50 pathway annotations, the majority of which
mapped to various Streptococcus species. The 8 pathways
conserved in association with CRC, ACVD, and IBD all mapped
to Solobacterium moorei.

Gene-level taxonomic analysis identifies broad-spectrum health
and disease-associated strains. In total, 5204 (82.0%) of the
microbial features associated with multiple diseases were gene
families. In total, 3728 genes had taxonomic annotations in the
UniProt database, which we mapped to 221 distinct species. We
visualized these annotations in a taxonomic tree to better
understand the shared phylogenetic trends within our diseases of
interest (Fig. 5). We hypothesized that while individual gene
annotations could be spurious (due to the challenge assigning
taxonomies to single-gene families), the overall trend toward
different phylogenies across all genes would inform disease-

architecture structure. In total, 181 species (82.0%) and 3504
genes (94.0% of those with annotations) mapped to the Firmi-
cutes phyla. Of these, the strain Solobacterium moorei F0204 (662
genes (18.1%), associated with IBD (6/662), ACVD (658/662),
and CRC (662/662)), genera Streptococcus (36 species, 553 genes
(14.2%), associated with IBD (380/553), ACVD (527/553), CRC
(10/553), and CIRR (243/553)), and Clostridium (23 species, 233
genes (6.3%), T2D (84/233), IBD (143/233), ACVD (65/233),
CIRR (1/233), and CRC (175/233)) dominated. All of the genes
reported here and in the proceeding sections, including their
names and UniProt annotations, can be located in Supplementary
Data 4.

We have discovered enhanced prior-reported associations with
disease by integrating gene- to strain-level information. We
identified gene clusters that mapped specific species genomes or
pan-genomes. Over 100 genes associated with multiple diseases
were annotated as mapping to S. moorei. Other annotations with
large numbers of genes mapping to them were Erysipelotrichaceae
bacterium CAG:64 (CIRR (1/810 genes), ACVD (802/810 genes),
IBD (806/810 genes), and T2D (19/810 genes)), Firmicutes
bacterium CAG:102 (associated with IBD (517/517 genes) and
CRC (517/517 genes)), and Gemella haemolysans (associated with
CRC (108/110 genes), ACVD (110/110) genes, and IBD (2/110)
genes). While certain studies have reported these organisms as
associated with these diseases (specifically IBD, T2D, and CRC),
their shared, strain-specific markers have not until now been
identified®17.

Moreover, we found our gene-level associations to be, in some
cases, strikingly more robust than species-level associations, such
as in the case of the association between S. moorei and CRC. S.
moorei comprises at least four strains—an association at the
species-level alone yields a Janus effect (Fig. 6). All the genes in
Figure 5 from S. moorei that were associated with CRC, however,
had the same strain-level annotation (S. moorei F0204), and none
of them exhibited a Janus effect.

We also identified select clusters of genes that appeared to be
negatively associated against multiple diseases. These did not fall
within any single phyla or otherwise coherent taxonomic
grouping. The majority of the groups contained fewer than
ten genes, with the exceptions being Eubacterium sp. CAG:86
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Fig. 4 The disease architecture of the human microbiome across seven phenotypes as a function of data modality. A, C, E describe the species,
pathways, and gene families associated with each phenotype and the overlap therein, respectively. B, D, F show the natural log of pairwise jaccard similarity
between binary vectors indicating all of the features (e.g., species or pathways or gene families) associated with a given phenotype.

(negatively associated with T2D (10/55 genes), ACVD (54/55
genes), CRC (1/55 genes), and CIRR (50/55 genes)), Coprobacillus
sp. CAG:235 (negatively associated with T2D (10/10 genes) and
CRC (10/10 genes)), and Sutterella sp. CAG:351 (negatively
associated with ACVD (22/22 genes) and CRC (22/22 genes)).
We were unable to find a specific functional trend among these
groups of health-associated genes and their particular function in
microbiome-host interactions warrants further investigation
(Supplementary Data 4).

Overall, visualizing gene-level annotations on a taxonomic
tree further informed the taxonomic delineations between
disease. For example, 543 out of 1920 (36.6%) gene overlaps
between CIRR, ACVD, or IBD associations were in the
Streptococcus genus. T2D was not associated with a high-
resolution taxonomic group, but rather all of its shared
associations fell within the orders Bacteroidales (1 species, 3
genes), Clostridiales (11 species, 116 genes), and Erysipelotri-
chales (4 species, 31 genes).
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Gene-level metagenomic architectures are reproducible across
additional cohorts. We next aimed to reproduce our gene-level
architectures for CRC and IBD in independent cohorts!®24, For
IBD, we analyzed 1338 samples from 106 subjects (80 cases, 26
controls), and for CRC, we analyzed 82 samples from the same
number of subjects (22 cases, 80 controls). For the 61,575 genes
that had representative sequences in UniRef, were FDR-sig-
nificant, were robust, and were associated with IBD, 2104 (3.4%)
were nominally significant in the validation cohort. For the
19,498 genes that were FDR-significant, robust, and associated

NATURE COMMUNICATIONS | (2021)12:2907 | https://doi.org/10.1038/s41467-021-23029-8 | www.nature.com/naturecommunications

with CRC, 4688 (24.04%) were nominally significant in the
validation cohort (Fig. 7A). Of all the associations tested, 10,567
(54.20%) and 22,616 (44.0%) in the validation cohorts had the
same direction of association as those in the initial CRC and IBD
cohorts. Positive associations with disease were more likely to
reproduce than negative in both cases (Fig. 7B, C).

We examined the taxonomic annotations for the genes,
counting the number of annotations to each species/strain, and
identifying the top 25 for the initial and validation cohorts
(Fig. 7D, E). We found that the top annotations were similar
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logyo P values. Solid line is nominal statistical significance (P < 0.05). X axes are the beta-coefficient on the binary, independent disease variable of interest.
The dotted lines correspond to the 0.05 false-discovery rate-adjusted log;o cutoff (for species and genes, respectively) in our original meta-analysis,
whereas the solid line corresponds to the nominal (P=0.05) cutoff. The gene-level plot (right) contains the overlaid vibration output for every S. moorei
gene (N =662, all deriving from one strain) that was significantly associated with CRC.

between the two, with 22 of the top 25 annotations in the
validation cohort being present in the initial cohort for CRC. In
total, 16 of the top 25 annotations in the validation cohort were
present in the initial cohort for IBD. Overall, this indicates that
the gene-level architectures, when mapped to strains/species, were
reproducible in new cohorts.

Discussion

Anchoring architectures relative to host disease (as opposed
to enterotypes, which are not linked to disease) enables a
biomedicine-focused view of global human microbiome
structure. We used the output of our meta-analytic and VoE
analysis to quantify the degree to which disease-associated
microbiome architectures are similar or dissimilar, identify-
ing shared, gene-cluster-specific signatures of disease. Over-
all, we found striking and previously unrecognized high-
resolution genetic and taxonomic signatures associated with
ACVD, IBD, CRC, and cirrhosis, reproducing our results for
CRC and IBD. We additionally found limited associations
with otitis, which we hypothesized would be the case due (to
our knowledge) to its limited reported biological link to the
gut microbiome.

The hypothesized dissimilarity between diseased microbiomes
has been dubbed the “Anna Karenina Effect,” with all analysis to
date being carried out at the species level 618, Our work extends
these past efforts, showing that gene-level analysis reveals
microbiome signals that show greater similarity overall in
microbiome-disease structure than species-level analysis. We
generally reproduce some prior findings—like the presence of
Firmicutes, specifically Clostridiales, that are broadly disease-
associated!8, We were able, however, to take this work a step
further, identifying pan-disease-associated gene clusters.

Our gene-level architecture analysis captured a previously
undocumented strain-level exploration of pan-disease-associated
microbes. For example, consider S. moorei, reported to be asso-
ciated with CRC and ACVD®2°, We found the reference-based
species-level annotation for this organism to exhibit a Janus effect
(i.e., was not robust to model specification and study design
choices). We did, however, identify a cluster of 622 S. moorei

genes as indicative of not only ACVD and CRC, but also IBD, all
deriving from a single strain, F0204 (one of 4 strains listed in
NCBI’s taxonomic database)?®. This may indicate that certain
strains of S. moorei are disease-associated, whereas others are not.
By identifying specific genes, we provide specific markers of these
strains.

In addition, the high-resolution to low-resolution mapping that
occurs when connecting gene-level analysis to taxonomies pro-
vided glimpses at the overall, strain-specific picture of metage-
nomic architectures that may be worth following up in a
laboratory setting. Examples include the multi-disease-associated
Gemella haemolysans, S. moorei, Erysipelotrichaceae, and Strep-
tococcus, as well as the potentially broad-spectrum health-asso-
ciated Eubacterium sp. CAG:86, and Coprobacillus sp. CAG:235,
Sutterella sp. CAG:351.

Focusing on the gene level may have an additional practical
advantage over analysis at the species- or pathway level in the
clinic: it allows for high-throughput, multiplexed, PCR-based, and
specific diagnostics. Leveraging conserved (or distinct) disease-
associated gene families could potentially yield multifactor diag-
nostics, where a single assay could screen disease risk for multiple
phenotypes simultaneously. In contrast, a species-level diagnostic,
we hypothesize, across multiple taxonomies will not be disease-
specific nor necessarily easy to design a test for.

Methodologically, combining a meta-analysis with modeling
vibration of effects enables the identification of disease archi-
tecture robust to model specification and study design. Meta-
analyses in microbiome research—compiling and comparing
associations across cohorts, usually at the level of species abun-
dances—have proven a powerful approach to increasing the
confidence of host-microbiome associations, notably in the case
of colorectal cancer (CRC)1%17:27:28 However, while powerful,
they are not bias-proof. They are still subject to many of the same
pitfalls that render single-cohort associations irreproducible, such
as failing to adjust for measured confounding. Therefore, as a
secondary result, our efforts yielded an “association-prioritiza-
tion” framework to assist biologists who attempt to functionally
validate the associations that emerge from observational studies
in costly in vivo experiments. The associations generated via
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Fig. 7 Validation of gene-level architectures for CRC and IBD. We used unadjusted, univariate linear models to test the association between gene

abundance and disease state for the genes associated with IBD and CRC in two cohorts not analyzed in our initial study. A Overlaps between the initial and
validation cohorts in terms of significant genes. B, € Volcano plots of CRC and IBD estimate sizes and nominal log;o P values for validation cohorts. Each
point represents a different gene family. Dotted line is nominal (P value < 0.05) significance. Exact P values < 0.05 are shown above the line. Y axes are
nominal log;o P values. X axes are the beta-coefficient on the binary, independent disease variable of interest. Black dots indicate the association direction
(e.g., positive vs. negative) matched in the initial cohort(s), gray indicates initial, and validation associations did not have the same direction. D, E The top
25 taxonomic annotations (by frequency) of genes associated with CRC and IBD in the initial cohorts and how many of these are also found in the top 25

annotations of genes in the validation cohorts.

Of course, our approach is not without drawbacks. First, it is
extremely conservative: we may be filtering out true-positive
results, particularly at the species- and pathway level. For
example, it relies on exclusively linear modeling due to its speed
and the ease of performing statistical inference on the associations
that are output. Many microbiome studies rely on random

multicohort meta-analysis, filtered via VoE, and reproduced in an
external cohort ought to be prioritized first, followed by asso-
ciations that have only gone through a subset of these stringent
checks (e.g., only meta-analyzed data, followed by single-cohort
data). Conversely, we would assign low priority to associations
that are difficult to interpret.
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forests, which can capture nonlinearities but can be difficult to
perform inference on (e.g., ascertain the error around the asso-
ciation estimate) or interpret (e.g., propose a direction of
association)2?-31, It is possible that a more sophisticated model-
ing approach would be able to find more associations. We did
demonstrate that alternative modeling approaches—Ilike the
elastic net, random forest, and sparse PLS, tend to yield similar
results for the features our approach identified. Moreover, we
made choices in our modeling strategy—like averaging long-
itudinal samples from the same individual—due to issues of
scaling mixed-effect models to the needs of our study—that could
affect statistical power. Finally, an additional drawback of the data
underlying our findings is its reliance on compositional data (i.e.,
relative abundances). Many have raised issues regarding potential
bias of batch effects of relative abundance data (which is a con-
founder like other variables assessed in our VoE approach). As
our ability to ascertain true microbial population size improves
via sequencing technology and statistical methods, we should
consider leveraging alternative tools or data structures in building
architectures to reduce this source of bias3233.

For these reasons, we do not claim that our method is the only
one to identify architectures—rather, the value of our work lies in
demonstrating the utility of (specifically, gene-level) architectures
for comparing and reproducing disease signatures across the
microbiome. As with any statistical challenge facing a plethora of
analytic choices, the “best” method for identifying those genes
remains to be determined and must be the focus of future work.

Overall, this work depicts a path for researchers for moving
microbiome associations from the abstract to the robust. In short,
fitting and reporting a single model is simply not sufficient.
However, if we are able to identify robust-to-specification asso-
ciations that reproduce across cohorts, we will increase the effi-
ciency of biomedical experiments.

Methods

Data collection. We accessed all the data used in this project from
curatedMetagenomicDataV1.14.134 and its associated R package. cur-
atedMetagenomicData contains HUMAnN23> V0.7.1 output for each sample in
69 shotgun sequencing cohorts spanning 5 body sites. We downloaded species-level
abundances, pathway-level abundances, and gene family-level abundances for each
dataset, generating single dataframes for each microbiome data type. Overall, we
aggregated 57 cohorts, 10,199 samples, and information on 45 different disease
states. We chose to only analyze diseases in patients who had samples from the gut
microbiome that had either (1) multiple cohorts containing cases and controls or
(2) >100 cases. We chose to exclude one disease, infectious gastroenteritis, from our
list, as despite having multiple cohorts, as it only had data from fewer than 20
individuals and had limited associations reported in the literature. We included the
Type 1 Diabetes data from curatedMetagenomicData in our initial regressions;
however, family-based structure of one cohort (i.e., one cohort contained data on
related individuals) and low sample size of cases prompted removal, specifically to
ensure proper harmonization across case-control studies. As such, we were left
with a total of 2573 samples, 13 cohorts, and 7 diseases. We collected additional
sample information on metformin usage from the Qin study® from Forslund

et al.37 This split the Qin study®® into two sample subsets, one subset where the
samples had metformin information and another that did not have metformin
information.

Filtering gene family data. Upward of 4 million gene families were identified by
HUMANN?2 across all of the datasets in curatedMetagenomicData. We filtered
these data given that our pipeline requires computing an individual association for
each gene, and that highly rare genes were unlikely to generate statistically
meaningful results in our modeling process. We only selected genes that were (1)
present in at least 2 of the 57 cohorts in curatedMetagenomicData and (2) present
in at least 10% of all 10,199 samples. After applying these filters, we were left with
1,167,504 gene families.

Computing diversity and richness metrics. We computed Shannon diversity
using R’s Vegan package®® V2.5.6 for each individual and each microbiome data
type (species, pathways, and gene families). That is to say, “gene family diversity” is
Shannon diversity computed with gene family abundances. We computed genus
richness for each sample by counting the number of genera with nonzero abun-
dance in the species dataframe.

Variable selection for maximal models. We first selected the covariates to include
in our initial, maximal model and eventually vibrate over. For each cohort, we
selected covariates that recorded data for at least 90% of samples. We also removed
variables that were singular or co-occurring with disease presence.

Computing initial microbial feature associations. We fit a linear model using
base-R’s Im function within a cohort for each microbial feature (species, pathway,
and gene family) using the covariates identified in our maximal models (Eq. (1)).

In(microbial_feature; + f) ~ disease_state + covariate, + covariate, ... covariate,

(6]

Disease_state corresponds to whether an individual was a case (1) or control (0).
The microbial_feature variable is the natural-logged relative abundance value for a
given species, pathway, or gene family. We logged these values as we found their
distributions to be primarily log-normal. f represents a fudge factor added to each
abundance value for a given microbe, which prevents NAs when computing log
values. We chose this value to be the smalles t nonzero abundance value for each
microbial feature type (species, pathway, and gene family).

In total, two diseases (IBD, otitis) had longitudinal, repeated measured data for
certain individuals. To avoid confounding due to intraindividual variation, we
averaged the relative abundance of microbial features across all data points for an
individual. We additionally averaged any quantitative covariates (e.g., BMI). For
categorical covariates (e.g., newborn delivery type, which was encoded as either
“cesarean” or “vaginal”), we only kept covariates that were constant across all
samples for an individual. We filtered out failed regressions (e.g., singular fits,
Supplementary Data 2, column 2) before proceeding with further analyses.

Meta-analysis. We performed a meta-analysis over the three diseases for which we
had multiple cohorts (CRC, T2D, and adenoma) using the metafor3® package
V2.4.0. We performed a random-effect meta-analysis of the initial regression
estimates and standard errors using the “metagen” function (parameters: comb.
fixed = FALSE,comb.random = TRUE, method.tau = ‘REML’hakn = FALSE, pre-
diction = TRUE, sm = “SMD?”, control = list(maxiter = 1000)).

We filtered out failed meta-analyses before proceeding with further analyses,
and we only meta-analyzed over features that were present in at least two of the
cohorts for a given disease. For example, consider T2D, which had two cohorts: if
the regression for a given feature failed in one cohort but succeeded in the other, we
removed that feature from consideration for T2D, as its failure to reproduce a
successful regression, statistically significant or not, we considered a mark against
its reproducibility, and therefore utility, as a disease indicator.

Multiple-hypothesis correction. We adjusted for false-discovery rate within each
disease before selecting statistically significant microbial features to conduct
vibration-of-effects analysis on. We combined all feature-fit outputs for a given
microbial data type (e.g., species), and computed an adjusted P value using the
Benjamini-Yekutieli (BY) method and set our significance threshold at an adjusted
p-value of less than or equal to 0.05. The end result was three different FDR cutoffs,
one for each microbial feature type (i.e., species, pathways, and genes).

Microbial feature selection for vibration of effects. We selected all FDR-
significant features for our vibration-of-effects analysis. We additionally carried out
a systematic literature review to identify prior-reported, species-level disease
associations for inclusion. Supplementary Data 3 contains a list of species selected
for analysis as well as the parameters for our literature review.

Vibration of effects. We computed the vibration of effects for a selected microbial
feature by fitting a single model for every possible combination of covariates in the
maximal model. For example, suppose the maximal model for a given disease and
given feature were (using the same variable definitions as in Eq. (1)):

In(microbial_feature + f) ~ disease_state + age + sex + BMI 2)

We would then compute 2" models, where 7 is the number of covariates other
than disease_state. In this case, n =3, so we would fit a total of eight models, the
remaining seven of which are specified below:

In(microbial_feature + f) ~ disease_state 3)
In(microbial_feature + f) ~ disease_state + age (4)
In(microbial_feature + f) ~ disease_state + age + sex (5)
In(microbial_feature + f) ~ disease_state + age + sex + BMI (6)
In(microbial_feature + f) ~ disease_state + age + BMI (7)
In(microbial_feature + f) ~ disease_state + sex 8)

In the case of repeated measures, we executed the same averaging-across-
individuals strategy as described above in “Computing initial microbial feature
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associations.” For downstream analysis, we extracted P values and association sizes
(beta-coefficients) for the disease_state variable, using the same microbial feature-
type FDR threshold as determined in the meta-analyses to gauge statistical
significance.

The only case in which we did not fit every possible model was for one of the
T2D cohorts, which, given the number of potential adjusters, yielded millions of
possible models. Given that we were to vibrate over many thousands of features
associated in our initial meta-analysis with T2D, we found computing so many
models for each one to be computationally intractable. As such, we selected, for
each feature, 50,000 models to fit at random.

Evaluation of vibration of effects. We used two metrics to evaluate the vibration
of effects when modeling disease-microbiome relationships.

1. Estimate Range (ER)—The difference between the 1st and 99th percentiles
of disease_state’s beta-coefficient range across all models fit for a given
microbial feature association with disease_state.

2. Janus Effect (JE)—The fraction of disease_state association sizes greater than
zero across all model fits.

Feature “robustness” is inversely correlated to estimate range and P value range,
and increases as the Janus effect approaches 1 or 0 (with maximal Janus effect being
at 0.5, where half of the estimates were greater than zero and half were less
than zero).

We additionally filtered out pathways labeled as “UNINTEGRATED” or
“UNMAPPED?” at this point in the pipeline.

Computing similarity between microbiome-disease architectures. We con-
structed a binary matrix, with diseases on the columns and microbial features on
the rows, where values of 1 corresponded to a feature being associated with a given
disease. To compute similarity in microbiome-disease signatures, we calculated the
Jaccard distance between pairwise combinations of columns for species-level fea-
tures, pathway-level features, gene family-level features, and all three combined.
For ease of visualization, we took the natural log of these values when plotting in
the heatmap in Fig. 4.

pping g tot my and construction of phylogenetic tree. Each of the
gene families in our analysis has an associated UniRef90 ID*’, which in turn has an
associated UniprotKB ID, which itself has an NCBI taxonomy ID for the taxa in
which a given gene family has been observed. We used the R package “taxonomizr”
V0.5.0 to map these IDs to NCBI taxonomy strings. We then built a phylogenetic
tree based on these taxonomic IDs using the ETE3 Toolkit V3.1.24! in Python
v3.74

Comparison of our approach to other methods and permutation tests. For each
phenotype, we compared how the architectures highlighted by our pipeline—fitting
maximal models, meta-analyzing where possible, and modeling vibration of effects
—would compare, both in statistical significance and strength of association—to 5
alternative approaches: a univariate regression, a linear model only adjusting for
cohort batch (where possible), an elastic net, random forest, and sparse partial least
squares regression (sPLS) (Supplementary Fig. 3). We fit these models using the
caret V6.086 package and the mixOmics V6.12.2 package for sPLS. We did this for
all data types (species, pathways, and gene families). We additionally performed
permutation tests for every model comparison done, where we randomized the
binary disease variable and compared the output (which should be null) to what we
found in our architectures. To avoid having to feed millions of features into the
elastic net, random forest, and sPLS, for pathways and gene families, we only used
the most 10,000 nominally significant associations in the univariate/batch-adjusted
regression. For the univariate/batch-adjusted regression, we compared the overlap
between significant features to those we found to be robust and significant in our
pipeline. For all methods, we compared the concordance (Spearman correlation)
between the ranking of features in terms of absolute value of estimate size or, for
the random forest, relative importance. The estimate size we used for the features
in our architectures was that of either the initial meta-analysis or the initial
maximal model, depending on if it were a multicohort phenotype or otherwise.
Finally, we additionally compared the feature ranking correlation between only the
estimate sizes for the maximal models for the features we included in our archi-
tectures and the other methods.

Validation of gene-level architectures for CRC and IBD in external datasets.
We downloaded additional publicly available IBD (Lloyd-Price et al.)24 and CRC
(Wirbel et al.)!8 cohorts. The latter contained some samples that were already in
our analyses. After removing overlapping samples, and ended up with 82 samples
in total, 22 cases and 60 controls. The IBD cohort had 106 subjects (26 controls, 80
cases from 1338 subjects). We downloaded the FASTA sequences for the genes that
were in our initial CRC and IBD architectures and had representative sequences.
We aligned raw reads from our samples back to these genes using Diamond*? with
the default settings. We calculated relative abundance across all genes normalizing
by gene length and total reads in a sample, as is the standard in the literature3°. The
IBD cohort was longitudinal, and as in the previous stage of the analysis, we

averaged samples from the same individual. For each sample, we took the natural
log of gene abundance (adding a small constant of 0.000001 to the normalized
values). For each disease fit a univariate, linear model of the form log(gene_a-
bundance + constant) ~ disease_status, where disease_status was binary, indicating
cases or controls. We report nominally significant (p < 0.05) genes in the results as
“validated.”

Plotting and figure generation. We generated all plots with R’s ggplot243 package
V3.3.2, the exception being forest plots, which we made with the meta* package
V.13.0. We assembled all figures in Adobe Illustrator.

Other software information. All statistical analyses were conducted in R > V3.6.0.
All compute-intensive analyses (e.g., quantification of vibration of effects) were run
on Harvard Research Computing’s O2 system.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All relevant datasets are publicly available. Those used in the initial analysis can be
downloaded from the R package associated with curatedMetagenomicData%. We used
this package’s compilation of the data into single dataframes. The dataset information
can be found in the “combined_metadata” file available with the package release.
Additional datasets used for validation can be downloaded and accessed at ENA
accession PRJEB27928 and https://ibdmdb.org/tunnel/public/summary.html, with
additional metadata for the former being available at https://github.com/waldronlab/
curatedMetagenomicDataCuration/blob/master/inst/curated/Wirbel]_2018/
Wirbel]_2018_metadata.tsv. The UniRef90/UniProtKB database, used for identifying
gene-level NCBI taxonomic identifiers, can be found at https://www.uniprot.org/.

Code availability

Code relevant to the aforementioned analyses is present at https://github.com/chiragjp/
microbiome_voe. This repository has a DOI registered with Zenodo and the following
citation: Braden T Tierney, Yingxuan Tan, Aleksandar D Kostic, Chirag ] Patel, Gene-
level metagenomic architectures across diseases yield high-resolution microbiome
diagnostic indicators, “microbiome_voe”, https://doi.org/10.5281/zenodo.4652931, 2021.
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