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Abstract: There are challenges in the genetic diagnosis of rare diseases, and pursuing an optimal
strategy to identify the cause of the disease is one of the main objectives of any clinical genomics unit.
A range of techniques are currently used to characterize the genomic variability within the human
genome to detect causative variants of specific disorders. With the introduction of next-generation
sequencing (NGS) in the clinical setting, geneticists can study single-nucleotide variants (SNVs)
throughout the entire exome/genome. In turn, the number of variants to be evaluated per patient
has increased significantly, and more information has to be processed and analyzed to determine a
proper diagnosis. Roughly 50% of patients with a Mendelian genetic disorder are diagnosed using
NGS, but a fair number of patients still suffer a diagnostic odyssey. Due to the inherent diversity of
the human population, as more exomes or genomes are sequenced, variants of uncertain significance
(VUSs) will increase exponentially. Thus, assigning relevance to a VUS (non-synonymous as well as
synonymous) in an undiagnosed patient becomes crucial to assess the proper diagnosis. Multiple
algorithms have been used to predict how a specific mutation might affect the protein’s function,
but they are far from accurate enough to be conclusive. In this work, we highlight the difficulties of
genomic variability determined by NGS that have arisen in diagnosing rare genetic diseases, and
how molecular modelling has to be a key component to elucidate the relevance of a specific mutation
in the protein’s loss of function or malfunction. We suggest that the creation of a multi-omics data
model should improve the classification of pathogenicity for a significant amount of the detected
genomic variability. Moreover, we argue how it should be incorporated systematically in the process
of variant evaluation to be useful in the clinical setting and the diagnostic pipeline.

Keywords: NGS; VUS; multi-omics; tissue-specific model

1. Introduction

Since the release of the first draft of the human genome in 2001 [1], one of the most
fundamental challenges clinical geneticists have faced is trying to uncover the cause of
Mendelian or single-gene disorders. The lack of functional knowledge of most of the
variability within the genome has been the main barrier for genetic diagnostics. In an
effort to understand the genetic complexity, rare diseases (RDs) have been the focus of
active research. Approximately 72% of RDs are caused by genetic mutations. Due to
the singularity of RDs, a disease or condition is considered rare if it affects less than 1
in 200,000 people (United States) or less than 1 in 2000 people (Europe) [2]. Unexplored
regions of the genome unlock its function, leading to a distinguishable phenotype. The
identification of one or multiple variants that trigger an RD maps a genomic localization to a
function (genotype–phenotype). The obvious handicap of working with RDs is the difficulty
in establishing a cause–effect association of a specific mutation, requiring functional studies.
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Although mutation hotspots have been described for specific RDs, most disease-causing
genes have pathogenic mutations scattered all over the gene body or regulatory regions.
Identifying the same mutation in different patients with the same pathophysiological
processes is difficult in the RD context. To solve this conundrum, two strategies have been
applied: The first approach involves investigation of familiar or highly consanguineous
populations to increase the probability of characterizing recurrent mutations detected
throughout a well-described pedigree, which correlates with the phenotype of study. The
second procedure requires gathering and aggregating patients with the same phenotype
on a global scale. An example of this kind of initiative is Matchmaker Exchange [3],
where genotypic and phenotypic data are shared, seeking common variability to reveal the
putative etiology of an undiagnosed group of patients. This second procedure provides
less sensitive results compared to the first strategy, as genetic alterations among different
patients might not be the same. Overall, 9349 clinical entities and 7877 rare-disease-gene
linkages have been described [4].

Since 2009, when next-generation sequencing (NGS) was first introduced to identify
disease-causing genes [5], the pace of RD-causing gene discovery has increased drasti-
cally [6]. Due to its high resolution, being able to identify mutations at the base-pair level,
and its capability to analyze multiple genes at the same time, NGS has become one of the
most powerful tools to detect genetic variability. Thus, NGS has been fully incorporated
into the clinical setting for disease diagnosis, in combination with other, more conventional
techniques [7]. The use of NGS has allowed a deep characterization and subgrouping of
certain diseases, leading to more accurate diagnosis. However, as a counterbalance to this
precise genetic profiling, phenotypic overlap in human diseases has increased since the
discovery of new causative genes, blurring the lines between diseases.

NGS has driven genetic diagnosis of RDs to a global 50% of diagnostic yield. Some
diseases present diagnostic yields over 70%—for example, inborn errors of metabolism
or specific neurological conditions, in which the presence of a biomarker facilitates the
genetic diagnosis [8,9]. Moreover, having biological support for a genetic disorder allows
the possibility to design other strategies to resolve unsolved conditions, such as looking for
intronic or regulatory regions, or using specific approaches to detect structural variation.
Unfortunately, the diagnostic odyssey remains harder for patients with RDs that do not fall
into these groups, and understanding their genomes becomes a complex process. It is worth
mentioning the reusability of NGS data. Variants of uncertain significance (VUSs) detected
in an undiagnosed patient can be reclassified as disease-causing in light of new discoveries.

Alongside the significant increase in diagnostic yield, NGS has boosted the amount of
data generated and, therefore, has increased uncertainty. The more genomes are sequenced,
the more VUSs are obtained. Moreover, due to pleiotropic effects, other factors are putting
molecular analysis alone into a deadlock; a single gene could affect multiple and apparently
unrelated phenotypes and mutational penetrance, and a particular mutation does not
always produce the same effect in all individuals who carry it (Figure 1).

The aim of this work is to portray the actual state of molecular diagnosis, considering
only genomic sequencing, and to study complementary sources of information in order to
combine them and determine a model to make better use of these powerful data. Omics
data have to be structured and integrated in order to achieve a clearer picture of the possible
impact that novel and unknown variants might have. It is imperative for the benefit of
patients with RDs that we drive diagnostic yield to as close to 100% as possible for as many
conditions as possible [10], using all of the tools we have available.
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Figure 1. Examples of gene effect complexity. A. Dominant: a single mutated allele is enough to 
cause the disorder B. Recessive: two mutated alleles are required to cause the disorder C. X-linked: 
males that carries the disease-causing mutation are affected due to the single copy of the X chromo-
some D. Penetrance: same genetic variant might not develop the same symptomatology in different 
individuals E. Polygenic: disorder caused by the combined action of more than one gene F. Pleiot-
ropy: mutations in a single gene affects two or more apparently unrelated disorders. 

2. Results 
2.1. Genetic Variability 

Considering the fraction of DNA sequenced by NGS technology, genomic variation 
can be determined using gene panels, which can span from less than a hundred to a few 
thousand protein-coding genes; whole-exome sequencing (WES), which comprises genes 
with well-established pathogenicity as well as functionally unknown genes; and whole-
genome sequencing (WGS), where variants in the intergenic non-coding regions can be 
analyzed. Panels of all known pathogenic genes—also known as clinical exome sequenc-
ing (CES)—are one of the choices to introduce NGS into the clinical setting. 

To illustrate the limitations that a regular genetics department encounters routinely 
when analyzing NGS data, we studied the outcomes derived from the Illumina TruSight 
One Expanded (TSOex) gene panel (6704 genes) from all patients analyzed over 2 years 
(n = 2474) at the Sant Joan de Déu Children’s Hospital. Genes included in TSOex are abun-
dant in cellular processes, related to binding or catalytic activity, mostly belong to the 
metabolite interconversion enzyme protein class, and are enriched in 71 OMIM (Online 
Mendelian Inheritance in Man) disease categories, with anemia being the most significant 
(Figure 2A–D and Supplementary Table S1). 

Figure 1. Examples of gene effect complexity. (A). Dominant: a single mutated allele is enough
to cause the disorder (B). Recessive: two mutated alleles are required to cause the disorder (C).
X-linked: males that carries the disease-causing mutation are affected due to the single copy of the X
chromosome (D). Penetrance: same genetic variant might not develop the same symptomatology in
different individuals (E). Polygenic: disorder caused by the combined action of more than one gene
(F). Pleiotropy: mutations in a single gene affects two or more apparently unrelated disorders.

2. Results
2.1. Genetic Variability

Considering the fraction of DNA sequenced by NGS technology, genomic variation
can be determined using gene panels, which can span from less than a hundred to a few
thousand protein-coding genes; whole-exome sequencing (WES), which comprises genes
with well-established pathogenicity as well as functionally unknown genes; and whole-
genome sequencing (WGS), where variants in the intergenic non-coding regions can be
analyzed. Panels of all known pathogenic genes—also known as clinical exome sequencing
(CES)—are one of the choices to introduce NGS into the clinical setting.

To illustrate the limitations that a regular genetics department encounters routinely
when analyzing NGS data, we studied the outcomes derived from the Illumina TruSight
One Expanded (TSOex) gene panel (6704 genes) from all patients analyzed over 2 years
(n = 2474) at the Sant Joan de Déu Children’s Hospital. Genes included in TSOex are
abundant in cellular processes, related to binding or catalytic activity, mostly belong to the
metabolite interconversion enzyme protein class, and are enriched in 71 OMIM (Online
Mendelian Inheritance in Man) disease categories, with anemia being the most significant
(Figure 2A–D and Supplementary Table S1).

As genetic variants with low population frequency are more likely to be the cause
of genetic diseases, for this study, we selected variants with an allele frequency < 0.01
(European non-Finnish, gnomAD). A total of 2,456,984 variants were detected within all
samples. The five most abundant types of variants per sample are shown in Figure 3A;
missense mutations were the most prominent. Although synonymous mutations are
also very well represented, when determining the unique mutations within all samples,
their proportion becomes almost negligible (Figure 3B). The drastic reduction in recurrent
synonymous mutations might be the result of common variants in the Southern European
population that are underrepresented in the gnomAD database. More than 90% of the
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mutations are missense, followed by stop-gain and structural interaction mutations. Next,
we determined the number of mutations detected per gene, and summarized all samples
(Figure 3C). Most genes only showed one mutation. TTN was the most mutated gene, with
2337 individual variants throughout its gene body. Interestingly, there was a slight peak
between 8 and 50 mutations per gene, followed by a long tail of increasingly mutated genes.
Due to the differential mutational landscape among the analyzed genes, we compared
them to their lack of permissiveness to accept missense variations that might lead to loss of
protein function, using the observed versus expected values from gnomAD (Figure 3D).
The higher (closer to 0) this score, the more tolerant the gene, and the lower this score
(negative values), the more intolerant it is. Most genes are tolerant to variations, showing
two high-density areas: one at 1 mutation per gene (for example, the case of gene RPS17),
and another at close to 50 mutations per gene (for example, the gene LRPAP1). Surprisingly,
the most intolerant genes correlate with the 8–50 peak shown in Figure 3C, indicating that
mutations in those genes are the most susceptible to leading to loss of function.
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molecular function (GO_MF) terms; (C) protein class terms; (D) OMIM disease UMAP clustering. 
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using an adjusted p-value < 0.05, calculated by the Benjamini–Hochberg method. Seven OMIM dis-
ease clusters were detected using EnrichR. From the 71 significantly enriched terms (q-value < 0.05; 
Supplementary Table S1), the 10 most significant are labelled in panel D (adjusted p-values were 
calculated using the Benjamini–Hochberg method). 
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Figure 2. TSOex gene panel description: (A) Gene Ontology biological process (GO_BP) terms;
(B) molecular function (GO_MF) terms; (C) protein class terms; (D) OMIM disease UMAP clustering.
A, B, and C were determined using PANTHER GO-Slim gene lists. Fisher’s exact test was performed
using an adjusted p-value < 0.05, calculated by the Benjamini–Hochberg method. Seven OMIM
disease clusters were detected using EnrichR. From the 71 significantly enriched terms (q-value < 0.05;
Supplementary Table S1), the 10 most significant are labelled in panel D (adjusted p-values were
calculated using the Benjamini–Hochberg method).
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Figure 3. Genomic variability: (A) Number of variants detected per sample, classified by the five
most abundant mutation classes. (B) Percentage of unique mutations detected in all 2474 patients, by class.
(C) Genes sorted by the number of unique mutations detected (log-scaled). (D) Density map of
gene constraints determined by gnomAD by the number of unique mutations detected (log-scaled).
The red lines represent the first and forth quartiles for C and D. 3′UTR (variant in 3′ untranslated
Region); intron (variant in non-coding region); missense (non-synonymous variant in coding region);
splice_region + intron (splice-site variant in non-coding region); synonymous (variant in coding
region that produces the same amino acid); stop-gain (variant that causes a stop codon); structural
interaction (interaction loci that are likely to be supporting the protein structure).

2.2. Variant Conservation Score

Regions or individual nucleotide positions with low evolutionary variability might
indicate negative selection due to functional constraints. The absence of allelic variants and
a high conservation index—measured using the CADD (Combined Annotation-Dependent
Depletion) index—in such regions could be an indicator of clinical importance when a
variant is detected. We classified variants using the SnpEff impact categories (defined in
Supplementary Table S2), the CADD score, and allele frequency (Figure 4A and Table 1). We
consider CADD scores over 20 as having a high probability of being in front of a pathogenic
variant. We found the correlation between HIGH (i.e., variants with a disruptive impact
on the protein) mutations and CADD scores > 20 (88% within its group). Meanwhile,
MODERATE (i.e., variants with a non-disruptive impact on the protein) mutations have
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58% high-CADD-score variants, while LOW (i.e., variants unlikely to change protein
behavior) and MODIFIER (i.e., variants with no evidence of impact) categories only reach
approximately 11.5%. Most mutations have an allele frequency close to zero, indicating
that putative deleterious mutations tend to be extremely rare (frequencies < 0.002 are the
most common in all categories). It is worth mentioning that a high-concentration area can
be observed in the MODERATE mutations, with a low allele frequency and a CADD score
just above 20. When analyzing individual samples, there is a linear correlation (r = 0.97)
between the total number of variants and the ones with a CADD score > 20 (Figure 4B).
Approximately 20% of the mutations detected have a high CADD score independent of the
sample’s total mutations. This correlation might be due to the types of genes included in
the TSOex gene panel. Thus, we would not expect to observe this same pattern as more
regions of the genome are analyzed.
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Figure 4. Variant conservation score: (A) Hexagonal heatmap of variant frequency related to the
CADD score, grouped by the SnpEff impact classes (Supplementary Table S2). (B) Scatterplot of
variants with high CADD scores (>20) related to total variants per sample. (C) Distribution of CADD
scores of detected causative variants (n = 807). The red lines represent a CADD score of 20. AF_NFE
stands for allele frequency_non-Finnish European population (gnomAD).
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Table 1. Variants conservation score according to its impact class.

IMPACT Total Number CADD > 20 %CADD > 20

HIGH 36,753 32,207 87.63

LOW 7010 800 11.41

MODERATE 884,264 513,406 58.06

MODIFIER 13,027 1536 11.79

941,054 547,949 58.23

2.3. Variant Classification

From the 2474 samples analyzed, approximately 800 (30%) had a single-nucleotide
variant (SNV) that could be associated with the patient’s pathophysiological process. Ac-
cording to our own data, diagnostic efficiency using TSOex reaches approximately 50%,
considering other genomic variations such as indels or copy-number variants (CNVs).
Almost all informed variants (98%) have a CADD score > 20 (Figure 4C), and are cat-
egorized as HIGH or MODERATE (43% and 57%, respectively). MODERATE variants
have an elevated proportion of VUSs, taking into account the elevated CADD scores
(Tables 1 and 2). Using the American College of Medical Genetics and Genomics (ACMG)
guidelines [11], variants can also be classified into five main groups, namely, pathogenic,
likely pathogenic, VUS, likely benign, and benign. Taking one sample as an example,
variants were assigned to one of these five categories using the VarSome software, which
calculates variant impact using the ACMG classification guidelines (Table 2) [12]. Most
variants (80%) were categorized as benign or likely benign. A small fraction (<0.4%) were
pathogenic or likely pathogenic. A deep phenotypic characterization is crucial to determine
whether these pathogenic variants are relevant to a patient’s disease. A thorough study
of the overlap between the described pathophysiological alterations of the mutated gene
and the patient’s phenotype will lead to a causative informed variant or an unresolved
study. Approximately 20% of mutations are VUSs in a randomly selected sample. After
removing the benign/likely benign and pathogenic/likely pathogenic variants, a huge
amount of uncertainty remains to be analyzed. As expected, most of these VUSs belong
to the MODIFIER category, as their relevance in gene function or regulation is not well
established. Surprisingly, a significant proportion of VUSs belong to the LOW variant class,
highlighting the difficulty in reaching a conclusive diagnosis when taking only genetic data
into account.

Table 2. Variant classification in one random sample.

IMPACT Pathogenic Likely Pathogenic VUS 1 Likely Benign Benign

HIGH 11 11 65 14 119

LOW - 4 118 388 1284

MODERATE - 7 186 284 722

MODIFIER - - 1368 476 3842

11 22 1737 1162 5967
1: Variant of uncertain significance.

2.4. Expression Variability

Gene expression data are gradually being incorporated into the diagnostic process
to detect certain types of variations. Specifically, variability affecting alternative splicing,
allele-specific outliers, and expression outliers are of great interest. The relevance of a
genomic mutation with weak pathogenic evidence can be increased by its association
with an aberrant gene expression profile. Transcriptomic data can be highly relevant,
especially when dealing with VUS mutations. Unlike genomic data, expression data are
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tissue-specific. Thus, genomic variability can be studied by considering the affected target
tissue. Most studies trying to address gene expression alterations use blood or fibroblasts
as surrogate tissues. The main reason to do so is that these sample types are usually much
easier to obtain than the target tissue. Gene expression is extremely diverse among tissues.
Clinical diagnosis must exploit transcriptomic data resources such as those generated by
international consortia such as GTEx or Cell Atlas. As an example, in Figure 5A we show
the expression of the 50 most expressed genes in the brain cortex distributed throughout the
54 tissues collected by the GTEx consortium. These genes are homogeneously expressed
in all brain tissues, but differ greatly in others. We want to draw special attention to the
difference between whole blood and brain tissues. Thus, when analyzing genomic data
and inferring the putative effect of a variant, it is essential to focus on the expression data
of the tissue of interest, if available. Moreover, transcript usage might also be crucial when
analyzing genetic variability. Most protein-coding genes have more than one transcript
(Figure 5B), with 11 being the median. KCNMA1 has the highest number of transcripts,
namely, 92. Not all transcripts are expressed equally in all tissues. Generally, one isoform is
predominant, while the rest might be important in a specific tissue or in a specific stage in
the cellular/organ genesis.
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Figure 5. Transcription variability: (A) Tissue expression profiles of the 50 most expressed genes in
the brain cortex from GTEx. (B) Number of protein-coding transcripts per gene using GTEx tissue
data. (C) Rank 1 transcript switch in 1, 2, 3, or 4 out of 54 tissue datasets, using the TREGT database.
Expression units are transcripts per million (TPM).

Transcript switch is not a rare event. From the 54 tissues from GTEx, the switch from
the predominant isoform to another in one tissue happens in approximately 1000 genes
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(Figure 5C). Tung et al. [13] analyzed up to four tissue switches, highlighting the relevance
of this phenomenon. MECP2 has two main transcripts (Figure 6A, Supplementary Table S3),
and it is shown as an example of a gene with a high-order transcript switch, with 14 tissue
switches (Figure 6B). The major cause of Rett syndrome (RTT) is mutations in the MECP2
gene. RTT is a neurodevelopmental disorder, and transcript switch and differential brain
region expression of MECP2 are crucial to study mutational profiles (Figure 6C). The same
MECP2 isoform is expressed in fibroblasts and the brain, but a different one is expressed in
the blood. Integration of genomic and transcriptomic data facilitates variant categorization
and prioritization for enhanced diagnosis and clinical decision making.
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Figure 6. MECP2 transcript depiction: (A) MECP2 schematic diagram of the two major isoforms.
(B) Transcript switch between the different MECP2 isoforms. (C) MECP2 gene expression in different
brain areas. In A, UTR sequences are represented in light blue. In total, 14 rank 1 transcript switches
are detected among the 54 tissues studied in the TREGT database. The GTEx brain expression profile
(TPMs) is represented in C using the cerebroViz R package; cerebroViz output for exterior (left) and
sagittal (right) views.

2.5. Protein Variability

Protein abundance is not a replica of gene expression, and deviations at the protein
level might not be detectable at the transcript level. Figure 7A shows protein quantification
(high, medium, and low) for the same highly expressed genes depicted in Figure 5A
(brain cortex). We obtained the data from the Human Protein Atlas. We removed genes
for which there was no detectable protein in more than half of the tissues from the plot.
There are significant differences between the different cell types within the cortex region,
highlighting distinct cellular composition. Protein distribution contrasts with transcript
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expression. Interestingly, the genes ACTG1 and FTH1 have much lower protein levels than
their gene expression suggests, while TUBA1A and PSAP have high protein abundance,
as expected.
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Figure 7. Protein detection and available PDB structures: (A) Tissue protein profiles of 25 of the 50
most expressed genes in the brain cortex from GTEx. (B) Gene transcripts from the TSOex panel
with and without PDB IDs. (C) Transcript abundance with PDB IDs. In Figure 7A, proteins with no
available data in >50% of the analyzed tissues from the Protein Cell Atlas were removed. In Figure 7B,
the connecting dotted lines link the numbers of all transcripts from one gene with the amounts of
these transcripts with PBD IDs.

2.6. Protein Structure

Secondary and tertiary protein structure can provide reliable insights into whether a
mutation could be associated with disease. Studying protein structure and protein–protein
interactions is another source of information to determine whether a mutation might alter
the protein’s function. The number of transcripts from the TSOex gene panel with known
structures collected from the Protein Data Bank (PDB) is markedly smaller compared with
the remaining transcripts to be characterized (Figure 7B). Most genes—approximately
50%—do not have a single transcript with a PDB structure, while only 10% have been fully
resolved (Figure 7C).
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3. Discussion

The incorporation of NGS into clinical diagnostics has uncovered imminent needs in
terms of clarifying the huge amount of uncertainty that arises from large-scale sequencing
studies. Aside from disease-specific strategies, which allow more detailed and complete
designs to reach a molecular diagnosis [14–16], generic solutions when confronting any
kind of rare disease are difficult to achieve. Predicting the clinical significance of a change at
the DNA level is a challenging task due to the myriad of structures/processes that could be
affected. In this work, we quantified the number of VUSs in the TSOex gene panel in a single
clinical cohort—approximately 20% of the total detected variants, derived from a standard
NGS analysis. Although conservation scores are relevant, most pathogenic variants fall into
the high CADD scores (Figure 4C), which we showed to be less specific than desired, with a
total of 20% of detected variants having high values (Figure 4B). Moreover, we highlighted
the importance of taking into account tissue-specific transcriptomic and proteomic data
to analyze the phenotypic and clinical outcomes in a more precise manner. The obvious
path to elucidate the classification/pathogenicity of a genomic variant is the combination
of multiple sources of information. To understand the implications of a mutation in a
biological system, it is crucial to grasp the disruption caused in a highly dimensional
structure such as a human being [17]. Thus, to capacitate the diagnostic process with all
of the available tools and resources, reducing the variant effect uncertainty, we propose a
data-aggregated tissue-specific model (Figure 8).
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The first step for a targeted strategy as proposed here is accurate phenotyping of
the patient’s symptoms and/or congenital malformations. Depending on the suspected
disease, the search for the causative variant(s) will focus on a specific tissue or cell type [18].
Highly tissue-specific manifestations of genetic diseases are due to the deregulation of
a functional subnetwork of genes (disease module), rather than a single gene [19]. The
overall module is responsible for the tissue-specific clinical manifestation. Consequently,
distinct etiological disease origins can converge in similar symptoms, leading to phenotypic
overlap [20]—a many-to-one relationship. Thus, a precise clinical description may allow
clinicians to hypothesize that the cause of the patient’s condition is due to a specific set
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of genes, narrowing down the genetic analysis to a reduced subset of putative variants.
Characterizing the tissue-specific interactome is critical to find the subsets of deregulated
modules and their components. Intuitively, the composition of these modules is determined
by the gene–phenotype association [21–23].

Two main data components are required to build an accurate tissue-specific interac-
tome: gene expression, and protein structure and interactions.

When focusing on a specific disease/tissue, it is important to create a context-specific
interactome. The tissue-specific protein interaction landscape must be established to de-
termine the baseline from which a perturbation might lead to the patient’s disease [24,25].
Most protein interaction databases have been compiled from yeast two-hybrid (Y2H)
or tandem affinity purification coupled with mass spectrometry (TAP–MS) experiments,
without tissue-specific information [26]. To overcome this limitation, transcriptomics has
proven to be a crucial tool to prune non-relevant interactions between proteins that in
some cases might be associated, but probably not in all scenarios. GTEx and the Human
Cell Atlas [27] are two commonly used sources of precise tissue- and cell-type-specific
transcriptomic data, respectively, that can be combined with protein interaction data [28].
Co-expression matrices and/or gene regulatory networks can shape the tissue-specific inter-
action networks [29,30]. Moreover, the combination of gene expression and protein–protein
interaction networks might identify gene modules that correlate with disease deregulation.
When constructing the different interactomes, isoform differential functionality [31] and
expression must be taken into account, as shown in Figure 6. In this regard, another issue
arises: depending on the source of information, the coordinates of isoform boundaries
might be slightly different. Thus, the nucleotide composition of certain isoforms is ques-
tioned. To reduce this uncertainty, a collaborative project called Matched Annotation from
NCBI and EMBL-EBI (MANE) has the main objective of reporting a consensus among both
reference sets [32]. Still, differences have to be computed when analyzing protein structure
and interactions.

Once the main tissue-specific interactome components have been related, omics data
can be combined to associate genomic variability with cell/tissue system disruption. Pub-
licly available data (as mentioned previously) or the patient’s own data can be utilized. To
achieve a more accurate analysis, data-intensive precise medicine must be performed, and
the patient’s multi-omics data should be collected routinely [33]. Currently, this scenario in
daily medical routine is unthinkable, but it should become available as omics technologies
become more cost-effective. If transcriptomic and/or proteomic data from the patient are
available, even from a surrogate tissue, several complementary analyses can be performed
if at least some of the genes contained in the disease module are expressed. From the
transcriptomics point of view, aberrant events such as expression and splicing outliers or
allelic imbalance can be detected for a more individualized analysis [34,35]. Due to the
fact that correlation between mRNA and protein abundance is not always detected, as
shown in Figures 5A and 6A, the patient’s transcriptomic data alone might be insufficient
to identify the outcome of a genomic mutation. For each tissue there is a balance between
both molecules. Thus, disruption of this equilibrium might indicate the source of variability
that leads to a pathogenic consequence [36,37].

The presence and abundance of a protein are not the only important factors in deci-
phering the complexity of the interactome within a tissue; the protein’s three-dimensional
(3D) structure/domains and protein–protein interactions are also essential. For decades,
structural biologists have studied how to predict the most stable protein folding using
methods such as X-ray crystallography, nuclear magnetic resonance spectroscopy (NMR),
and cryogenic electron microscopy (cryo-EM). The study of all human proteins using these
methods is not possible due to time and cost constraints. Nevertheless, it is imperative
to be able to study all proteins capable of triggering a genetic disease, and to study all
variants detected by NGS, assigning each of them with potential pathogenicity [38]. Just
recently, an algorithm using artificial intelligence, AlphaFold, has shed some light on the
prediction of a protein’s correct conformation [39]. The use of multi-sequence analysis
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provides the possibility to transform a nucleotide sequence into a physiologically stable
3D protein structure. A huge leap forward has been accomplished by the use of deep
learning algorithms. This strategy is not only limited to monomeric proteins—the same
concept behind AlphaFold is being applied to multimers [40]. Furthermore, in the quest to
model tissue-specific interactomes, allosteric sites are an important attribute when studying
protein conformation. To map long-range communications between protein regions, a
global scan of all proteins must be accomplished to ensure that variability in those sites is
accountable for the putative interaction deregulation [41].

Building a specialized protein–protein interaction network (PPIN) depends heavily on
prior knowledge. In addition to the protein interaction databases that base part of their
protein relationship on previously mentioned techniques such as Y2H [42–44], predicted
interactions can be established using several machine learning techniques. Some methods
predict protein interactions using amino acid sequences and support-vector machine (SVM)
algorithms with k-nearest neighbor with local description, conventional autocovariance, or
deep neural networks with amphiphilic pseudo amino acid composition [45–47]. Other
approaches use a genomic sequence evolutionary perspective or combination with a learn-
ing algorithm [48–50]. More recently, due to the fact that two proteins are more likely to
interact if they share a common biological process or are present in the same subcellular
compartment, semantic similarity has been used to predict PPINs [51]. Moreover, in specific
disease scenarios it is fundamental to define the protein’s subcellular localization [52], and
combining Gene Ontology with SVM to predict protein interactions might be fundamental
to elucidating the proper interactome. New technologies such as PROPER-seq that map
protein interactions at a massive scale can help create accurate and specialized PPINs [53].
Importantly, cohesion and separation indices, as well as topological features (i.e., central-
ity, clustering, or node degrees), are relevant to define interactions between proteins in
a PPIN [54].

Although the tissue-specific model presented in this study has been introduced in the
context of rare Mendelian disease diagnostics, it is worth mentioning that it could also be
applied as a more general model. Two prominent examples are polygenic and late-onset
diseases. The former comprise related variants as candidate genes that compose disease
modules. The combined effect of multiple mutations within the same subnetwork can be
characterized. Polygenic risk scores can also be used to weight the interactions between the
components of the interactome. Using this kind of approach, new disease-related genes can
be discovered, and the specific relevance of each of their members can be measured [55].
The latter relates to ageing and dynamic evolution through tissue development. While
at early stages of life the differentiation process requires most of the organism’s energy,
during ageing there is a reverse effect, leading to loss of tissue and cellular identity [56,57].
The interactome’s trajectories can be shaped, and deviations over time can be modelled in
a pathophysiological context [58].

Despite recent advancements in the omics realm, several limitations still prevent full
characterization of variant pathogenicity. We have presented the difficulties in determining
the effects that SNVs can trigger, but other sources of genomic variability might present
the same challenges. Nevertheless, mutations at the gene regulatory level (e.g., sncRNAs,
promoters, epigenetic signatures, or enhancers), dynamic expansions, or mutations at the
genomic level (e.g., structural variants or genomic architecture) can also benefit from an
interactome model [59,60]. We believe that with the introduction of new high-throughput
technology—particularly in the proteomics area—and integrative algorithms to combine
multidimensional data, variant effect uncertainty will be greatly reduced with a tissue-
specific model.

4. Materials and Methods
4.1. Samples

DNA from 2474 pediatric patients with a rare disease was extracted from blood sam-
pled over a 2-year period (June 2018–June 2020) at the Sant Joan de Déu Children’s Hospital.
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Samples were processed to capture the regions designed on the TruSight One expanded
Illumina commercial gene panel (Illumina Inc., San Diego, CA, USA), which includes the
coding regions and flanking intronic regions from approximately 6700 genes with known
clinical phenotype association, following the protocol instructions and sequenced using a
NextSeq 500 instrument (Illumina Inc., San Diego, CA, USA).

4.2. Variant Calling

Approximately 6700 genes from the TruSight One expanded clinical exome (Illumina
Inc., San Diego, CA, USA) were analyzed per sample. Briefly, FASTQ files were generated
using a NextSeq 500 sequencer (Illumina Inc. FastQC v0.11.5 software was used to evaluate
read/base quality [61]). Adaptors and low-quality bases (Phred score < 20) were removed
using cutadapt software [62]. Reads were aligned to the reference genome HG19 using
BWA-MEM [63], and variant calling was performed using GATK 3.7 [64], DeepVariant
v0.10.0 [65], and Octopus v0.6.3 [66]. In 807 samples, at least one pathogenic mutation was
identified and reported. CNVs were not analyzed in this study.

4.3. Annotation

Mutations with gnomAD v 2.1.1 [67] European non-Finnish frequencies > 0.01 were
removed from downstream analysis. CADDv1.3 and the observed versus expected ratio
from gnomAD were annotated using SnpEff to determine the impacts specific mutations
might have on the protein function. Plots were generated using R language with the
ggplot package.

4.4. Gene/Disease Classification

PANTHER 16.0 was used to group TSOex genes in different categories [68]. OMIM
disease enrichment analysis was performed using EnrichR [69]. Clusters were computed
using the Leiden algorithm. Disease terms were plotted on the first two UMAP dimensions.

4.5. Databases

Transcriptomics data were collected from the GTEx web portal [70] on 12 October
2021. Brain MECP2 expression (TPMs) from GTEx was visualized using the R package
cerebroViz [71]. Transcript switch and quantification were obtained from Top-Ranked
Transcript Isoforms in Human Protein-Coding Genes (TREGT) [72]. Transcript PDB IDs
were extracted from ENSEMBL BioMart on 12 October 2021 [73]. Protein quantification
from specific tissue cell types was retrieved from the Human Protein Atlas [74].
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