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Background. Out-of-hospital cardiac arrest (OHCA) is a major health problem worldwide, and neurologic injury remains the
leading cause of morbidity and mortality among survivors of OHCA. The purpose of this study was to investigate whether a
machine learning algorithm could detect complex dependencies between clinical variables in emergency departments in OHCA
survivors and perform reliable predictions of favorable neurologic outcomes. Methods. This study included adults (≥18 years of
age) with a sustained return of spontaneous circulation after successful resuscitation from OHCA between 1 January 2004 and
31 December 2014. We applied three machine learning algorithms, including logistic regression (LR), support vector machine
(SVM), and extreme gradient boosting (XGB). The primary outcome was a favorable neurological outcome at hospital
discharge, defined as a Glasgow-Pittsburgh cerebral performance category of 1 to 2. The secondary outcome was a 30-day
survival rate and survival-to-discharge rate. Results. The final analysis included 1071 participants from the study period. For
neurologic outcome prediction, the area under the receiver operating curve (AUC) was 0.819, 0.771, and 0.956 in LR, SVM,
and XGB, respectively. The sensitivity and specificity were 0.875 and 0.751 in LR, 0.687 and 0.793 in SVM, and 0.875 and
0.904 in XGB. The AUC was 0.766 and 0.732 in LR, 0.749 and 0.725 in SVM, and 0.866 and 0.831 in XGB, for survival-to-
discharge and 30-day survival, respectively. Conclusions. Prognostic models trained with ML technique showed appropriate
calibration and high discrimination for survival and neurologic outcome of OHCA without using prehospital data, with XGB
exhibiting the best performance.

1. Introduction

Out-of-hospital cardiac arrest (OHCA) is a major public
health problem worldwide, with an annual incidence of 50
to 100 per 100,000 in the general population [1]. OHCA
has a high societal burden when compared to all other major
causes of death, with an estimated 2.04 million years of
potential life lost for men and 1.29 million years for women
[2]. Despite advances in prehospital care, the prognosis for
OHCA remains limited, with only 5.4%–20% [3–5] of
patients surviving to hospital discharge. Neurologic injury

remains the leading cause of morbidity and mortality among
survivors of OHCA, because of inadequate cerebral perfu-
sion during cardiac arrest or reperfusion injury that occurs
in the early postresuscitation phase. The Pan Asian Resusci-
tation Outcomes Study (PAROS) Clinical Research Network
demonstrated that the survival rate with proper neurological
function was only 2.7% [5].

Many prehospital factors improve survival following
OHCA, including witnessed cardiac arrest, bystander car-
diopulmonary resuscitation (CPR), and initial heart rhythm
[6–8]. The time from collapse to initiation CPR (no-flow
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interval) and the duration of CPR (low-flow interval) were
also considered predictors of outcomes [9]. Severe scores
were developed for predicting survival with proper neuro-
logical function at the time of ICU admission after OHCA.
The OHCA score comprised five parameters, including the
initial heart rhythm, no-flow interval, low-flow interval,
serum creatinine, and arterial lactate [10]. The CAHP score
stratified patients into three-level groups using seven vari-
ables, including age, initial heart rhythm, no-flow interval,
low-flow interval, location of cardiac arrest, epinephrine
dose, and arterial pH [11]. However, no-flow or low-flow
intervals may be the result of inaccurate recall or recording
during a highly stressful event. The updated Utstein tem-
plate eliminated the necessity for recording the time of col-
lapse, and thus, the duration of the no-flow interval could
not be calculated [12].

In the past few years, machine learning (ML) techniques
were used to influence clinical research and practice, such as
prediction of sepsis through digital biomarker discovery
[13], prediction of mortality for intensive care patients
[14], and prediction of outcome in traumatic brain injury
[15]. The ML algorithms outperform conventional triage
tools and early warning scores in detecting patients at risk
for cardiac arrest in emergency departments [16]. They can
also accurately predict the need for critical care on informa-
tion acquired during emergency medical services [17].

Previous studies have suggested that ML methods could
predict neurologic and survival outcomes of OHCA patients
[18–21]. Harford et al. found that an ML model can be used
to support intervention decisions such as CPR or coronary
angiography in OHCA patients [18]. However, only limited
studies examined independent variables after patients
arrived at the emergency department (ED). This study is
aimed at investigating whether an ML algorithm could
detect complex dependencies between clinical variables dur-
ing ED in OHCA survivors and performing reliable predic-
tions of the favorable neurological outcome.

2. Materials and Method

2.1. Study Setting and Variables. This was a retrospective
study conducted from 1 January 2004 to 31 December
2014 in a tertiary medical center of southern Taiwan, which
had 72,000 ED visits on average every year. The Ethics Com-
mittee of Chang Gung Memorial Hospital (No.
202001675B0) approved the study protocol. Because of the
study’s retrospective nature, informed consent from the sub-
jects was not required.

The study included adults (≥18 years of age) who had
a sustained return of spontaneous circulation (ROSC) after
successful resuscitation from OHCA and were then admit-
ted to ICU. The demographic characteristics, baseline
comorbidities, and clinical variables were extracted from
the ED electronic database. The underlying medical condi-
tions included heart failure, cerebrovascular disease,
peripheral vascular disease, diabetes mellitus, chronic
obstructive pulmonary disease, chronic kidney disease,
liver cirrhosis, malignancy, metastatic tumor, dementia,
and moderate to severe Charlson comorbidity index

(CCI) (CCI scored ≥3) [22]. Tentative diagnosis of cardiac
arrest causes, such as hypothermia, hyperkalemia, acidosis
(pH < 7:1), acute myocardial infarction (AMI), pulmonary
embolism, tension pneumothorax, or intoxication, at the
ED was recorded. Medication administration, including
epinephrine, sodium bicarbonate, dopamine, norepineph-
rine, amiodarone, lidocaine, and calcium use or not, was
collected. Intervention at ED included percutaneous coro-
nary intervention and extracorporeal membrane
oxygenation.

The primary outcome was a favorable neurological out-
come at hospital discharge, defined as a Glasgow-
Pittsburgh cerebral performance category (CPC) of 1 to 2.
The favorable neurological outcome included patients with
full recovery or those who can independently perform daily
activities but may have a minor to moderate disability. How-
ever, CPC 3–5 was categorized as a poor functional outcome,
which included patients dependent on others, in a coma or
vegetative state, and who are dead [23, 24]. In this study,
CPC scores were collected retrospectively using electronic
medical records and physical examinations by a consensus
of neurologists who were blinded to the study. The second-
ary outcome was the 30-day survival rate and survival-to-
discharge rate.

2.2. Stepwise Feature Selection and ML Algorithms. To detect
the model performance between features and subsequently
select the best performing subset, all collected features were
subjected to stepwise feature selection. The stepwise
approach started with the evaluation of each individual fea-
ture based on forward feature selection and then checked for
elimination. In each step, a variable was considered for addi-
tion to or subtraction from the set of explanatory variables
based on mean accuracy.

We applied three ML algorithms including logistic
regression (LR), support vector machine (SVM), and
extreme gradient boosting (XGB). LR is a supervised classi-
fication algorithm. It transforms its output using a sigmoid
function to return a probability value, which can then be
mapped to two or more discrete classes. SVM belongs to
the supervised learning technique for classification, increas-
ingly used in many data mining and bioinformatics applica-
tions. SVM constructs a hyperplane based on the support
vectors and maximizes the gap width between the two cate-
gories [25, 26]. XGB is a gradient boosted tree algorithm
used for regression, binary and multiclass classification,
and ranking problems. XGB is a robust and supervised
learning algorithm capable of handling various data types,
relationships, distributions, and hyperparameters that can
be fine-tuned by users [27].

2.3. Outcome Prediction and Statistical Analysis. Categorical
data are expressed as counts and proportions, and continu-
ous data are expressed as means and standard deviations.
The patients enrolled were randomly separated into the
training set (90%) and test set (10%) for independent perfor-
mance measurement of the model’s generalizability. The
training set was randomly divided into ten equal-sized
groups for cross-validation during model development. We
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examined the area under the receiver operating characteris-
tic curve (AUC) for performance measurement and plotted
the receiver operating characteristic (ROC) curve using sen-
sitivity against (1-specificity) [28]. We also compared posi-
tive predictive value (PPV) (true positives/(true
positives+false positives)), sensitivity (true positives/(true
positives+false negatives)), and specificity (true negatives/(-
true negatives+false positives)) between each prognostic
model. The ML models were performed using Scikit-learn
(version 0.22.2) with Python (version 3.8).

3. Experiment and Result

3.1. Dataset Description. For the study period, although there
were 1076 patients, 1071 were included in our study for the
final analysis. Five patients were excluded due to missing
values. The mean age of the 1071 patients was 66:2 ± 16:8
years. The dataset included 596 (55.6%) males. There were
86 (8%) patients with favorable neurological outcomes after
discharge. Furthermore, the dataset had 249 (23.2%) patients
with 30-day survival and 216 (20.2%) patients survived to
discharge. The other population characteristics were catego-
rized and presented as underlying disease, laboratory data,
medication, and intervention at ED. ED diagnosis is demon-
strated in Table 1.

3.2. Feature Engineering. All 42 variables were subjected to
stepwise feature selection based on their individual impor-
tance and their effect on the mean accuracy to create the best
performing subset prediction model. Figure 1 depicts the
results of stepwise feature selection for the three ML models.
Table 2 ranks the results of variables by importance. We
used 10, 12, and 11 parameters for model training in the
LR, SVM, and XGB algorithms, respectively. The parameters
ranked by LR were PCI, DM, hemoglobin, troponin I,
dementia, CCI, norepinephrine use, liver cirrhosis, hypoka-
lemia, and tumor metastasis. For SVR, the features were tro-
ponin I, CCI, dementia, DKA, PCI, norepinephrine use,
ECMO, pulmonary embolism, amiodarone use, pneumotho-
rax, tumor metastasis, and acidosis. For XGB, the features
were troponin I, epinephrine dose, heart failure, PCI, amio-
darone use, calcium use, dementia, sodium bicarbonate use,
band neutrophil, malignancy, and AMI.

3.3. Prediction. Table 3 demonstrates the comparison of pre-
diction ability for neurological outcomes between the three
ML models. The AUC was 0.819, 0.771, and 0.956 in LR,
SVM, and XGB, respectively. The sensitivity and specificity

Table 1: Characteristics of the patients at baseline.

Variables All patients (n = 1071)
Demographic characteristics

Age (years),mean ± SD 66:2 ± 16:8
Sex, male, n (%) 596 (55.6)

Underlying medical conditions, n (%)

Heart failure 161 (15.0)

Cerebrovascular disease 248 (23.2)

Peripheral vascular disease 37 (3.5)

Diabetes mellitus 244 (22.8)

Chronic obstructive pulmonary disease 247 (23.1)

Chronic kidney disease 232 (21.7)

Liver cirrhosis 15 (1.4)

Malignancy 146 (13.6)

Tumor metastasis 23 (2.1)

Dementia 100 (9.3)

CCI scored ≥3 715 (61.8)

Laboratory data, mean ± SD

White blood cell (1,000/μL) 13:651 ± 7:4871
Segmented neutrophils (%) 53:05 ± 19:671
Band neutrophils (%) 2:36 ± 4:143
Hemoglobin (g/dL) 11:056 ± 2:9859
Creatinine (mg/dL) 2:570 ± 2:90
Alanine aminotransferase (ALT) (U/L) 248:97 ± 560:968
Na (mEq/L) 138:97 ± 7:935
K (mEq/L) 5:029 ± 1:588
Troponin I (ng/mL) 0:801 ± 5:364
pH 7:165 ± 0:226
ED diagnosis, n (%)

Hypothermia 5 (0.5)

Hyperkalemia 216 (20.2)

Acidosis 722 (67.4)

Acute myocardial infarction 140 (13.1)

Pulmonary embolism 4 (0.4)

Tension pneumothorax 3 (0.3)

Toxin 30 (2.8)

Diabetes ketoacidosis 27 (2.5)

Medication and intervention

Epinephrine use, n (%) 1050 (98.0)

Epinephrine dose, mean ± SD 5:35 ± 4:917
Sodium bicarbonate use, n (%) 690 (64.4)

Dopamine use, n (%) 655 (61.2)

Norepinephrine use, n (%) 212 (19.8)

Amiodarone use, n (%) 179 (16.7)

Lidocaine use, n (%) 38 (3.5)

Calcium use, n (%) 196 (18.3)

Defibrillation at ED, n (%) 93 (8.7)

PCI, n (%) 86 (8.0)

ECMO, n (%) 18 (1.7)

Table 1: Continued.

Variables All patients (n = 1071)
Outcome, n (%)

CPC class 1 or 2 86 (8.0)

Survival-to-discharge 216 (20.2)

30-day survival 249 (23.2)

CCI: Charlson comorbidity index; PCI: percutaneous coronary intervention;
ECMO: extracorporeal membrane oxygenation; CPC: cerebral performance
category.
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were 0.875 and 0.751 in LR, 0.687 and 0.793 in SVM, and
0.875 and 0.904 in XGB. Table 4 presents the comparison
of prediction ability for survival-to-discharge and 30-day
survival. The AUC was 0.766 and 0.732 in LR, 0.749 and
0.725 in SVM, and 0.866 and 0.831 in XGB, for survival-
to-discharge and 30-day survival, respectively. Figure 2
depicts the ROC curve for the prediction performance of
the three ML models.

4. Discussion

Using in-hospital data available within ED, we developed
and validated different ML algorithms to stratify neurologi-
cal outcomes after cardiac arrest. The AUC was 0.819,
0.771, and 0.956 in LR, SVM, and XGB, respectively. The
sensitivity and specificity were 0.875 and 0.751 in LR,
0.687 and 0.793 in SVM, and 0.875 and 0.904 in XGB. The
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Figure 1: Forward stepwise feature selection of machine learning models based on AUC: (a) logistic regression; (b) support vector machine;
(c) extreme gradient boosting.

Table 2: Rank of parameter importance after stepwise parameter selection.

Rank LR SVM XGB

1st PCI Troponin I Troponin I

2nd Diabetes mellitus CCI Total epinephrine dose

3rd Hemoglobin Dementia Heart failure

4th Troponin I Diabetes ketoacidosis PCI

5th Dementia PCI Amiodarone use

6th CCI Norepinephrine use Calcium use

7th Norepinephrine use ECMO Dementia

8th Liver cirrhosis Pulmonary embolism Sodium bicarbonate use

9th Hypokalemia Amiodarone use Band neutrophil

10th Tumor metastasis Pneumothorax Malignancy

11th Tumor metastasis Acute myocardial infarction

12th Acidosis

LR: logistic regression; SVM: support vector machine; XGB: extreme gradient boosting; PCI: percutaneous coronary intervention; CCI: Charlson comorbidity
index; ECMO: extracorporeal membrane oxygenation.
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ML algorithm possessed suitable calibration and high dis-
crimination in predicting favorable neurologic outcomes.
For survival-to-discharge and 30-day survival prediction,
the AUC was 0.766 and 0.732 in LR, 0.749 and 0.725 in
SVM, and 0.866 and 0.831 in XGB, respectively. With
acceptable outcome prediction ability, ML approaches are
expected to improve clinician prognosis, earlier identifica-
tion of outliers, information provision assistance, and
physician-family communication.

In most of the current outcome prediction score and ML
algorithms for OHCA, prehospital data are often implanted
for predicting the variation in survival-to-discharge. The
OHCA score, composed of five parameters, including no-
flow and low-flow intervals, achieved an AUC of 0.82 in
the development cohort and 0.88 in the validation cohort
for neurological recovery outcome prediction [10]. Aschauer
et al. discovered that using 21 variables, an LR model
obtained an average AUC of 0.827 for survival probability,
with key predictors being prehospital variables, such as the
number of minutes to sustained restoration of spontaneous
circulation and the first rhythm [29]. Another study cohort
with 2639 patients, comparing several ML models (including
decision tree, random forest (RF), k-nearest neighbors, XGB,
light gradient boosting machine (GBM), and neural net-
works), stated that an embedded fully convolutional network
model has the best average class sensitivity of 0.825 for neu-
rological outcome prediction [18]. However, the above
models required knowledge of the periods of time with cir-
culatory no-flow and low-flow, limiting its use when prehos-
pital data are unknown or recalled incorrectly. In our ML
models, XGB exhibited the best performance with AUC of
0.956 for neurological outcome prediction, 0.866 for sur-
vival-to-discharge, and 0.831 for 30-day survival. The LR
and XGB obtained a sensitivity of 0.875 for neurological out-

come prediction. Without using prehospital data, the result
of XGB was not inferior to previous models.

Nanayakkara et al.’s study from the Australian and New
Zealand Intensive Care Society included 39,566 OHCA cases
without prehospital data, and five ML approaches (GBM,
SVM, RF, artificial neural network, and an ensemble) were
compared for predicting mortality. With a combination of
demographic, physiologic, and biochemical information, an
ensemble and GBM could reach AUC of 0.87 (95% CI
0.86–0.88) for predicting in-hospital mortality [30]. Simi-
larly, the AUC for XGB reached 0.866 and 0.831 for
survival-to-discharge and 30-day survival prediction in our
study, respectively. However, Nanayakkara et al.’s study
did not discriminate survival from neurological outcomes.
In contrast, we also found that XGB exhibited satisfactory
performance in neurological outcome prediction. To our
knowledge, this is the first study using ML models to predict
functional neurological outcomes post-OHCA using only in-
hospital variables.

We determined the order of importance among features
and the best subsets of features using forward stepwise
regression. A forward selection begins with no explanatory
features and then adds features alternately, in each step,
based on which feature is the most statistically significant,
until all statistically significant features have been tested.
The process selects explanatory variables for multiple regres-
sion models and develops the best combination of feature
subsets. Although it has been criticized for misapplying
single-step statistical tests to a multistep procedure, stepwise
regression is efficient at narrowing down a long list of plau-
sible explanatory variables to a manageable number of pre-
dictors [31]. Although different ML models disagreed on
feature importance in our study, troponin I and PCI
remained among the top five features among all three

Table 3: Area under the receiver operating curve, positive predictive value, sensitivity, and specificity between different machine learning
models for neurologic outcome.

LR SVM XGB

AUC 0:819 ± 0:017 0:771 ± 0:017 0:956 ± 0:003
PPV 0:229 ± 0:021 0:220 ± 0:044 0:437 ± 0:029
Sensitivity 0:875 ± 0:036 0:687 ± 0:005 0:875 ± 0:030
Specificity 0:751 ± 0:010 0:793 ± 0:004 0:904 ± 0:005
LR: logistic regression; SVM: support vector machine; XGB: extreme gradient boosting; AUC: area under the receiver operating curve; PPV: positive predictive
value.

Table 4: Area under the receiver operating curve, positive predictive value, sensitivity, and specificity between different machine learning
models for survival-to-discharge and 30-day survival.

LR SVM XGB
Discharge 30 days Discharge 30 days Discharge 30 days

AUC 0:766 ± 0:020 0:732 ± 0:009 0:749 ± 0:013 0:725 ± 0:010 0:866 ± 0:006 0:831 ± 0:006
PPV 0:345 ± 0:016 0:354 ± 0:010 0:404 ± 0:018 0:368 ± 0:014 0:600 ± 0:029 0:564 ± 0:020
Sensitivity 0:780 ± 0:047 0:762 ± 0:019 0:720 ± 0:029 0:593 ± 0:021 0:840 ± 0:026 0:745 ± 0:018
Specificity 0:637 ± 0:012 0:579 ± 0:013 0:740 ± 0:009 0:692 ± 0:016 0:862 ± 0:005 0:825 ± 0:007
LR: logistic regression; SVM: support vector machine; XGB: extreme gradient boosting; AUC: area under the receiver operating curve; PPV: positive predictive
value.
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models. Because AMI is a common cause of OHCA, some
studies have demonstrated that short-term outcomes after
OHCA due to AMI can be better than that due to other
causes of OHCA [32, 33].

Furthermore, our study faced several limitations. First,
we did not include prehospital features in our study.
Although many prehospital factors can improve survival fol-
lowing OHCA [6–8], the ML algorithms incorporate the
result of mediation before the time when measurements
were taken. In other words, the models had computed a vec-
tor component triggered by earlier intervention. Second, the
dataset used in this study only included patients from a ter-
tiary medical center in southern Taiwan. The findings of this
study must be validated in a different region with a more
ethnically diverse patient population.

5. Conclusion

Prognostic models trained using ML technique demon-
strated appropriate calibration and high discrimination for
survival and neurological outcome of OHCA, without the
use of prehospital data, with XGB providing the best
performance.
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Figure 2: Receiver operating characteristic curve of three machine learning models: (a) favorable neurologic outcome; (b) survival-to-
discharge; (c) 30-day survival.
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