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Abstract: Acute phase proteins (APPs), such as plasminogen activator inhibitor-1 (PAI-1), serum
amyloid A (SAA), and C-reactive protein (CRP), are elevated in type-2 diabetes (T2D) and are routinely
used as biomarkers for this disease. These APPs are regulated by the peripheral mediators of stress
(i.e., endogenous glucocorticoids (GCs)) and inflammation (i.e., pro-inflammatory cytokines), with
both implicated in the development of insulin resistance, the main risk factor for the development of
T2D. In this review we propose that APPs, PAI-1, SAA, and CRP, could be the causative rather than
only a correlative link between the physiological elements of risk (stress and inflammation) and the
development of insulin resistance.

Keywords: acute phase response; acute phase proteins; insulin resistance; type II diabetes;
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1. Introduction

Diabetes mellitus (DM) is one of the leading public health challenges worldwide.
The global prevalence of diabetes is projected to increase from 537 million in 2021 to
783 million by 2045, a net increase of 46% [1]. In addition, it is among the ten leading
causes of death worldwide [2]. Diabetes mellitus is classified as either: (i) gestational DM,
(ii) type-1 DM (T1D) or (iii) type- 2 DM (T2D). The latter is the predominant form, com-
prising 90% of all DM cases. Therefore, a better understanding of T2D pathophysiology
is of great importance. Although current treatments for T2D are often effective, they are
linked to various side effects [3–5]. For example, metformin, a biguanide, commonly pre-
scribed in patients diagnosed with T2D is linked to gastrointestinal side effects [6]. The
usage of rosiglitazone, once widely prescribed to treat T2D, is currently restricted in most
countries due to cardiovascular complications [6]. Therefore, novel therapeutic approaches
are warranted.

T2D, a major non-communicable disease, is traditionally considered a metabolic
disorder, which is mainly attributed to the initial development of insulin resistance [7,8].
The term ‘insulin resistance’ implies a reduced sensitivity of peripheral target tissues,
which include adipose, muscle, and liver tissues, to normal circulating concentrations
of insulin [9]. Although it is well established that insulin resistance is central to the
pathogenesis of T2D [7,8], it remains unclear how this abnormality arises at a molecular
level. Contrasting data exist on what the principal molecular perturbations are which
lead to insulin resistance [10], although it does involve the insulin signaling pathway,
an integrated network of signaling proteins and secondary messengers. A defect of or
disruption to any of the signaling proteins or production of secondary messengers results
in deficient insulin action, setting the scene for developing T2D [11,12].

Although numerous factors contribute to the development of T2D, including obe-
sity, a common thread throughout the literature identifies inflammation and stress as
key role players [13–15], with a close link between chronic inflammation and insulin re-
sistance [16,17]. For this reason, T2D is regarded as a chronic, low-grade inflammatory

Cells 2022, 11, 2163. https://doi.org/10.3390/cells11142163 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11142163
https://doi.org/10.3390/cells11142163
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-3786-6452
https://doi.org/10.3390/cells11142163
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11142163?type=check_update&version=2


Cells 2022, 11, 2163 2 of 20

state [18]. Inflammation is regulated by several biochemical mediators, of which cy-
tokines are the most important. Pro-inflammatory cytokines such as tumor necrosis-alpha
(TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6), which are increased in response to
obesity, induce insulin resistance at a molecular level by modulating the insulin signaling
pathway [19–27]. Similarly, glucocorticoids (GCs), steroidal stress hormones, also cause
insulin resistance in vivo [28,29]. Stress via GC signaling, like the above-mentioned pro-
inflammatory cytokines, can trigger the acute phase response (APR), a part of the innate
immune response, which has been reported to be activated in an insulin-resistant state (40).

TNF-α and IL-6, as well as GCs, induce the expression of several acute phase proteins
(APPs), including plasminogen activator inhibitor-1 (PAI-1), serum amyloid A (SAA), and
C-reactive protein (CRP) [30–37]. These APPs are routinely used as biological markers for
T2D as their levels are significantly increased in the serum of T2D patients [38–44]. How-
ever, although associated with insulin resistance and thought to predict the development
of T2D [45–51], whether these APPs could lead to the development of T2D remains to be
elucidated. As an association exists between increased PAI-1, SAA, and CRP levels and the
development of insulin resistance, it is possible that these APPs may be the causative link
between inflammation and insulin resistance, however, evidence supporting this hypothesis
is limited. In this review, the link between APPs and insulin resistance will be reviewed as a
novel approach to understanding the development of GC- and inflammation-induced T2D.

2. Insulin Resistance

The characteristic attenuated effect of insulin in peripheral tissues, indicative of insulin
resistance, precedes the development of hyperglycemia [10,52,53]. Defective insulin action
manifests itself as reduced glucose uptake in skeletal muscle and adipose tissue and
increased glucose production in the liver, amongst other outcomes [54,55]. More specifically,
insulin-induced glucose uptake via the glucose transporter type 4 (GLUT4) is restricted
in both skeletal and adipocytes in an insulin-resistant state [56]. Additionally, glycogen
synthesis in response to insulin is no longer promoted in the insulin-resistant liver and
skeletal tissue and glycogenolysis is not suppressed [52]. This all leads to the inability of
insulin to decrease blood glucose concentrations. In order to compensate for this effect,
pancreatic β-cells increase the secretion of insulin, which results in hyperinsulinemia
observed in insulin-resistant states and that is a primary contributor to the development
of T2D [10,57,58], in addition to hyperglycemia [4]. Finally, when the β-cells, due to β-cell
dysfunction, fail to produce the excess amounts of insulin needed, T2D emerges [59–61].

At the molecular level, two underlying mechanisms of insulin resistance have been
proposed, both involving defective insulin signal transduction [52,62,63]. The first mech-
anism describes decreased activation of key nodes within the insulin signaling pathway,
which include the insulin receptor (IR), insulin receptor substrate (IRS) proteins, and the
central signaling protein, Akt [64–68]. For example, knockout of the IR as well as IRS
proteins in rodent livers lead to hepatic insulin resistance, resulting in hyperglycemia
and glucose intolerance [64,66,67]. Additionally, reduced tyrosine phosphorylation (and
therefore reduced activation) of the IR and IRS proteins have been observed in insulin-
resistant states [21,22,69,70], and hepatic inactivation of phosphoinositide 3-kinase (PI3K),
phosphoinositide-dependent kinase-1 (PDK1), and mammalian target of rapamycin com-
plex 2 (mTORC2). This results in the inactivation of Akt, which induces hyperglycemia and
hyperinsulinemia in mice [71–73]. The second mechanism involves an imbalance between
two pathways mediating insulin action: the PI3K/Akt pathway and the mitogen-activated
protein kinase (MAPK) pathway. Under normal conditions, there is a balance between the
PI3K/Akt pathway, responsible for the metabolic function of insulin and the mitogenic
signaling by insulin controlled by components of the MAPK pathways, p38, ERK1/2, and
JNK. However, dysregulation of insulin signal transduction shows an imbalance in this
system [62,63,74,75]. Herein the PI3K/Akt pathway is inactivated, which disrupts nutrient
homeostasis, while the activation of the MAPK pathway is sustained, promoting mitogen-
esis as well as increased serine/threonine phosphorylation (thus inactivation) of the IRS
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proteins, leading to the inhibition of the PI3K/Akt pathway [54,62,63]. This dysregula-
tion can be caused by various factors, including the activation of inflammatory pathways,
increased pro-inflammatory cytokines as well as stress and obesity [13,20–22,70,76–84].

Furthermore, insulin insensitivity in the different peripheral target tissues presents
different phenotypes [53,85]: in the liver, hepatic glucose production is increased due to
the inhibition of Akt-induced FoxO1 suppression as well as other transcription factors
regulating glucose and lipid metabolism [52,54,63]. In adipose tissue, fat cell development
is retarded and there is an increase in lipolysis [62,74]. The excessive free fatty acids travel
to the liver and skeletal muscle, promoting gluconeogenesis and inhibiting glucose uptake,
respectively, thus worsening hyperglycemia [62]. Additionally, hyperlipidemia, which
is a key feature of insulin resistance, develops as a result of altered lipid metabolism,
specifically in the liver, in which lipogenesis is increased [54,62]. Overall, insulin resistance
is multifaceted and involves cross-talk between the peripheral target tissues [53,86–90] as
well as various nodes within the insulin signaling pathway.

Pickup and Crooke discussed how T2D may be considered a disease of the innate
immune system [91]. The authors propose that T2D is an acute-phase disease, in which
increased concentrations of pro-inflammatory cytokines and APPs are secreted, under
the influence of various stimuli such as overnutrition [91,92]. In support, Rehman and
Akash proposed that overnutrition is a major causative factor contributing to chronic
inflammation [16]. APPs are evolutionary conserved proteins produced mainly in the liver
in response to infection and inflammation [93] and their plasma levels have been associated
with the complexities of T2D [38,91,92], leading to the question of whether they may play a
more active role in development of the disease itself.

3. Acute Phase Response (APR)

Homeostasis in mammals is ensured by several physiological mechanisms. When
homeostasis is disturbed as a result of tissue injury, infection, and immunological disorders,
the body responds by inducing a number of systemic and metabolic changes known as the
APR [94,95].

The APR is a manifestation of the innate immune system [96] that comprises two
reactions: local and systemic reactions [97]. The local reaction is initiated at the site of
invasion or injury, which results in the release of pro-inflammatory cytokines, also known
as early acute phase reactants [98]. These include IL-6, IL-1, and TNF-α, of which IL-6
is considered the main regulator of the APR in the liver [97,99]. The pro-inflammatory
cytokines activate receptors on different target cells, which leads to intracellular signaling,
resulting in the systemic reaction characterized by various physiological responses in
different tissues. These include fever, leukocytosis, increased levels of GCs, activation
of complement, changes in metabolism including increased gluconeogenesis, and finally
synthesis of several plasma proteins, known as APPs [95,97,98,100]. The concentrations of
APPs can either be increased (known as positive APPs) or decreased (known as negative
APPs) in response to inflammatory stimuli [95,100]. Positive APPs are further classified into
three categories, dependent on the magnitude of their response [101]. Upon stimulation,
major APPs increase 10–1000-fold in concentration within 48 h followed by a rapid decline
due to their short half-life [98,100,101]. In contrast, the increase in levels of moderate
and minor APPs are much less pronounced, however, due to their longer half-life and,
depending on the stimuli, have a longer duration (3–5 days) in circulation [98,100–102].
Thus, on average, the APR shows a rapid response that peaks within the first 48 h but can
last up to 3–5 days. The biological functions of the different positive APPs are vast and
involve activating the complement system (which also plays a role in T2D progression [103]),
modulating the host’s immune response as well as wound healing and tissue repair [96,100].

Overall, the APR involving various APPs (each with a unique set of biological activ-
ities) is important to restore homeostasis [95] and lack of resolution of the inflammatory
stimulus results in chronic inflammation [98]. A chronic APR has various disease implica-
tions: including T2D [104]. In fact, T2D is suggested to be an “acute phase disease” [91] and
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in support of this, numerous studies have reported increased levels of APPs; such as PAI-1,
SAA, and CRP; in diabetes, [92,105,106]. Whether a chronic APR leads to the development
of T2D is, however, unclear. It does, nevertheless, beg the question of whether these APPs
play a role in the development of T2D during a sustained APR.

4. Acute Phase Proteins
4.1. Plasminogen Activator Inhibitor-1 (PAI-1)

PAI-1, also named Serpin E1, belongs to a superfamily of serine-protease inhibitors
(SERPINs). It is produced and released into circulation primarily by endothelial cells but
also by other cell types, including hepatocytes and adipocytes [107]. The latter explains
why PAI-1 is a well-known adipocytokine, as its levels are markedly increased along with
the accumulation of fat [45–47,108]. This possibly explains the correlation between elevated
PAI-1 levels and obesity, a risk factor for T2D.

The main physiological role of PAI-1 is as key negative regulator of fibrinolysis through
its role as the principal inhibitor of both urokinase- (u-PA) and tissue-plasminogen activator
(t-PA) [109]. Under normal conditions, u-PA and t-PA are able to convert plasminogen
to its active form, plasmin, which can degrade many blood plasma proteins, including
fibrin clots in a process known as fibrinolysis. PAI-1 is therefore capable of inhibiting
intravascular fibrinolysis, which leads to blood clotting or coagulation (hemostasis). Addi-
tionally, plasmin is able to degrade extracellular matrix (ECM) components, and therefore
PAI-1 indirectly regulates ECM degradation [110], which is an important factor to consider
when understanding the role of PAI-1 in different disease states. In addition to PAI-1’s
role in hemostasis, it is thought to be involved in cell migration and remodeling of body
tissues [107,111]

Circulating PAI-1 levels vary more than any other component of the fibrinolytic system,
possibly due to PAI-1 production being stimulated by a wide variety of signaling molecules,
including IL-1, TNF-α, and insulin [112,113]. In addition, PAI-1 has been identified as
a major stress-induced gene [114]. The activation of the hypothalamic-pituitary-adrenal
axis by stressors, lead to an increase in the secretion of GCs, which are also able to induce
PAI-1 expression [107,115]. In fact PAI-1 follows a similar circadian pattern as that of
the endogenous GC, cortisol [110]. In healthy individuals, normal active PAI-1 plasma
concentration ranges from 5–20 ng/mL [116]. This concentration range is suggested to be
sufficient to control fibrinolysis [116]. However, under pathological conditions, several
tissues produce substantial amounts of PAI-1 (15–36 ng/mL) in response to inflammatory
cytokines. For example, elevated PAI-1 concentrations have been consistently observed in
blood from T2D patients [39,40,117,118] to which hypofibrinolysis and atherothrombosis
in individuals with T2D is attributed [110,111,119,120]. In addition, obese individuals,
many of whom exhibit insulin resistance, were found to exhibit a three-fold elevation
of PAI-1 in their blood, compared to lean individuals [121]. Elevated PAI-1 levels and
hyperinsulinemia are also correlated [118,122]. The high expression levels of PAI-1 in
these disease states raises the question of its contribution to the phenomenon. Indeed,
PAI-1 was shown to be overexpressed in the adipose tissue of obese mice [123–125] and
humans [117,126] and is considered a biological marker of obesity [127]. In obesity, PAI-1
affects adipocyte differentiation by inhibiting the degradation of ECM components (an
important process during adipocyte differentiation) [110].

Clinically, improved control of hyperglycemia in patients with T2D decreases PAI-1
activity. Improving insulin resistance by diet, exercise, or oral antidiabetic drugs results in
decreasing plasma PAI-1 levels [87,128]. For example, troglitazone, an antidiabetic drug
was shown to decrease plasma PAI-1 antigen levels and activity in diabetic patients [129].

The Insulin Resistance Artherosclerosis study (IRAS) has found that the development
of T2D could be predicted by high PAI-1 levels independently from other risk factors [39,40].
Whilst elevated PAI-1 levels are a core feature of obesity and insulin resistance, some stud-
ies have also linked PAI-1 to a direct causal role in these disease states (Table 1). Mice
with PAI-1 deficiency, either through gene knockout or the use of a PAI-1 inhibitor, are
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protected from obesity including hyperglycemia and hyperinsulinemia and demonstrate
improved insulin sensitivity [45–47,130,131]. Furthermore, PAI-1-deficient murine primary
adipocytes exhibit enhanced insulin-stimulated glucose uptake and adipocyte differentia-
tion is promoted [132]. In contrast, however, overexpression of PAI-1 in transgenic mice
exhibited lower adipose tissue mass and total body weight [131,133] and PAI-1-deficient
mice on a high-fat diet showed rapid adipose tissue development [134]. The differences
observed in these mice studies could be attributed to the different genetic backgrounds of
the mice as well as different protocols to induce obesity. Nonetheless, PAI-1 appears to play
a role in obesity-related insulin resistance.

Furthermore, PAI-1 has been shown to directly affect key nodes within the insulin
signaling pathway. Balsara et al., [135] reported an increase in AktSer473 phosphorylation in
PAI-1 deficient endothelial cells, isolated from mice aortic tissues, which could be attenuated
in response to PAI-1 treatment. In agreement, Tamura et al. [48] showed a decrease in
insulin-induced AktSer473 phosphorylation by PAI-1 in HepG2 cells, a liver hepatoma cell
line. Furthermore, the authors also showed that downstream of Akt, PAI-1 increased the
mRNA levels of two key gluconeogenic enzymes, G6Pase and PEPCK, suggesting PAI-1
could affect hepatic glucose metabolism [48].

Thus, in addition to being increased in response to T2D, insulin resistance, and obesity,
evidence exists (Table 1) that PAI-1 may also contribute to the development of these conditions.

Table 1. Studies supporting the role of PAI-1 in the development of obesity, insulin resistance, and
type-2 diabetes.

Disease State Model System Supporting Data Reference

Obesity

In vivo
Primary cultured adipocytes from
PAI-1-deficient (PAI−/−) mice and
overexpressed (PAI+/+) mice

PAI-1 deficiency:

• Enhanced adipocyte differentiation
• Enhanced insulin-stimulated glucose uptake

PAI-1 overexpression:

• Adipocyte differentiation inhibited
• Reduced PPARγ expression.

Liang et al., 2006 [132]

In vivo
High-fat diet-induced obesity in PAI-1
knockout mice

PAI-1 deficiency:

• Fat accumulation prevented
• PPARγ expression in adipocytes maintained

Ma et al., 2004 [46]

In vivo
Diet-induced obesity in mice, administered
the PAI-1 inhibitor, PAI-039
In vitro
Human pre-adipocytes treated with the PAI-1
inhibitor, PAI-039

PAI-1 inhibition:

• Dietary fat-induced obesity attenuated
• Lower glycemia and triglyceride level showed

PAI-1 inhibition:

• Human pre-adipocyte differentiation attenuated

Crandall et al., 2006 [130]

In vivo
Genetic model of obesity and diabetic mice
lacking the PAI-1 gene

PAI-1 deficiency:
Murine adiposity reduced Schäfer et al., 2001 [45]

In vivo
Diet-induced obesity in PAI-1 deficient mice

PAI-1 deficiency:

• Faster weight gain in PAI-1 deficient mice Morange et al., 2000 [134]

In vivo
Transgenic mice with overexpression of PAI-1
in adipose tissue, administered the PAI-1
inhibitor, PAI-039

PAI-1 overexpression:

• Adipose tissue growth impaired

PAI-1 inhibition:

• Adipose tissue development unaffected
• Improved insulin sensitivity in wildtype mice

Lijnen et al., 2005 [131]
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Table 1. Cont.

Disease State Model System Supporting Data Reference

Insulin Resistance

In vivo
PAI-1 knockout mice fed a high-fat diet

PAI-1 deficiency:

• Decreased the plasma glucose, insulin and
cholesterol levels that were markedly increased
by the high-fat diet

Tamura et al., 2014 [47]

In vitro
HepG2 cells were treated with 20 nM PAI-1
for 24 h

PAI-1 treatment:

• Hepatic insulin signaling affected
• Decreased insulin-induced glucose uptake
• Gluconeogenesis affected through the increase

of G6Pase and PEPCK mRNA levels

Tamura et al., 2015 [48]

In vitro
PAI-1 knockout endothelial cells treated with
10 ng/mL PAI-1 for 24 h

PAI-1 deficiency:

• Increased Akt activation

PAI-1 treatment:

• Decreased Akt activation

Balsara et al., 2006 [135]

In vivo
High-fat diet-induced obesity in PAI-1
knockout mice

PAI-1 deficiency:

• Glucose uptake increased
• Plasma glucose and insulin levels maintained

Ma et al., 2004 [46]

In vivo
Genetic model of obesity and diabetic mice
lacking the PAI-1 gene

PAI-1 deficiency:

• Hyperglycemia and hyperinsulinemia
associated with insulin resistance improvement

Schafer et al., 2001 [45]

In vitro
3T3 adipocytes treated with 100nM PAI-1 in
the presence of insulin and vitronectin

PAI-1 treatment:

• Decreased Akt activation López-Alemany et al., 2003 [136]

T2D

Epidemiological study
The IRAS—measured PAI-1 levels in
non-diabetic patients in relation to incident
diabetes within 5 years

Elevated levels of PAI-1 (±24 ng/mL) were associated
with incident T2D. Festa et al., 2002 [39]

Epidemiological study
Follow up study to Festa et al. 2002.

Progression of PAI-1 levels over time, in addition to
high baseline levels (23.7 ng/mL), was associated with
the onset of T2D

Festa et al., 2006 [40]

4.2. Serum Amyloid A (SAA)

SAA is a well-characterized APP that is predominantly synthesized in the liver [96,137].
It is an apolipoprotein that can bind and transport lipids in the blood and is mainly
associated with high-density lipoproteins (HDLs) [137,138]. The important functional role
of SAA during the APR, in host defense, has made it a sensitive marker of inflammation, in
addition to CRP [102,139]. Indeed, during the APR, the plasma levels of SAA increase up
to 1000-fold, from 1-5 µg/mL in healthy individuals, to exceeding 1 mg/mL in diseased
patients [138,140]. Like PAI-1, SAA levels are increased in response to pro-inflammatory
cytokines and GCs [30–32,35,36,141].

There are four different isoforms of the SAA gene (SAA1-4) of which SAA1 and SAA2 encode
acute-phase SAA proteins and SAA4 is a constitutively expressed protein [138,140,142,143]. In
humans, SAA3 is a pseudogene, but is functionally expressed in the adipose tissue of mice [143],
particularly obese mice [144].

During the APR, SAA is secreted into circulation as a free protein and rapidly as-
sociates with HDLs, its physiological carrier [138]. The amphipathic structure of SAA
facilitates its binding to HDLs and its ubiquitous diffusion via the circulation to all organs
and tissues, to perform its biological function [96]. The association of SAA to HDLs during
acute inflammation may also alter HDL metabolism and cholesterol transport [137,138,145].
The immune-related functions of SAA include acting as a chemoattractant for monocytes,
leukocytes, and polymorphonuclear cells to inflammatory sites, resulting in the augmen-
tation of inflammation [137,143,145]. These inflammatory functions of SAA are due to its
ability to bind to various cell surface receptors [137,146], which results in the activation of
various inflammatory signaling pathways, such as the MAPK pathways [146,147].
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Like PAI-1, SAA, is a marker of obesity [148] and has been extensively studied with
relation to this inflammatory condition (Table 2). Increased circulating levels of SAA
have been observed in obese individuals, which positively correlates with an increased
body mass index and decreased weight loss [148–150]. Additionally, like PAI-1, SAA
has been shown to affect adipocyte differentiation in vitro by reducing the expression of
adipogenic transcription factors [144,151]. SAA also induces the dysregulation of lipid
metabolism, which is also associated with obesity, by increasing lipolysis [144,148,151] and
decreasing lipid synthesis [151]. Mice fed a high-fat diet were protected from weight gain
when treated with an anti-sense oligonucleotide that inhibits SAA mRNA expression, in
addition to preventing adipose tissue expansion as well as macrophage infiltration into
adipocytes [152]. Thus, not only are SAA levels increased in obesity, they also appear to
play an active role in the development thereof.

SAA is also a marker of T2D and insulin resistance [153]. Indeed, serum SAA con-
centrations of T2D patients are significantly increased, ranging from 2.1-24 µg/mL, which
is comparable to levels observed in obese individuals [150,154–156]. Additionally, ele-
vated plasma SAA levels (as well as other markers of inflammation including TNF-α,
IL-6, and CRP) were observed in previously healthy individuals, who presented with
onset T2D [43,44]. In diabetic mice, increased SAA mRNA levels correlate with chronic
hyperglycemia [157]. Treatment of T2D patients with troglitazone not only inhibited hyper-
glycemia but also significantly reduced SAA levels [155]. These findings raise the question
of whether SAA is more than just a biological marker for T2D or whether it could also con-
tribute to its development. Scheja and colleagues investigated this hypothesis and found
that in insulin resistance prone mice that were fed a high-fat diet, liver SAA1 and SAA2
mRNA levels, and adipose tissue SAA3 mRNA levels were increased. They also found
that SAA decreased IRS-1 and GLUT-4 mRNA expression in 3T3-L1 adipocytes [153]. In
accordance, others showed decreased IRS-1 tyrosine phosphorylation as well as decreased
GLUT-4 protein expression and insulin-stimulated glucose uptake in 3T3-L1 adipocytes
treated with SAA [144,158]. Taken together, these studies support the hypothesis that SAA
may play a role in the development of insulin resistance, which could consequently lead
to T2D. However, most of the studies investigated the effect of SAA in adipose tissue,
and little research exists on how the liver or skeletal muscle is affected by SAA (Table 2).
Additionally, the effect of SAA on other nodes of the insulin signaling pathway such as the
IR and Akt is yet to be established.

Table 2. Studies supporting the role of SAA in the development of obesity, insulin resistance, and
type-2 diabetes.

Disease State Model System Supporting Data Reference

Obesity

In vitro
3T3-L1 adipocytes

SAA treatment:

• Decreased adipocyte differentiation: by
decreasing adipogenic transcription factors
(PPARγ, C/EBPα)

• Increased lipolysis

Filipin-Monteiro et al., 2012 [144]

In vivo
SAA mRNA inhibition in mice fed a high-fat diet

SAA inhibition:

• Adipose tissue expansion inhibited
• Macrophage infiltration into adipose tissue

inhibited

De Oliveira et al., 2016 [152]

In vivo
Serum SAA levels in obese individuals
In vitro
Human adipocytes treated with SAA (2.34
µg/mL) for 24 h

SAA levels increased in obese individuals.
SAA levels decreased after weight loss.
SAA treatment:

• Increased lipolysis

Yang et al., 2006 [148]
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Table 2. Cont.

Disease State Model System Supporting Data Reference

In vitro
Human adipocytes treated with SAA for 24 h

SAA treatment:
Increased lipolysis

• Reduced mRNA expression of transcription
factors (PPARγ and C/EBPα) involved in
adipocyte differentiation

• Reduced mRNA expression of SREPB-1c which
is involved in lipid synthesis

Faty et al., 2012 [151]

In vivo
Gene expression in obese individuals

Increased expression of SAA1 and SAA2 mRNA and
protein expression in obese individuals. Poitou et al., 2005 [149]

Insulin
resistance

In vitro
3T3-L1 adipocytes

SAA treatment:

• Insulin-stimulated glucose uptake decreased
Filipin-Monteiro et al., 2012 [144]

In vitro
3T3-L1 adipocytes

SAA treatment:

• Decreased mRNA expression of Glut4 and IRS-1
Scheja et al., 2008 [153]

In vitro
3T3-L1 adipocytes

SAA treatment:

• Reduced insulin-stimulated glucose uptake
• Decreased IRS-1 activation
• Decreased GLUT4 expression

Ye et al. 2009 [158]

In vivo
SAA mRNA inhibition in mice fed a high-fat diet

SAA inhibition:

• Protected mice from weight gain and insulin
resistance.

De Oliveira et al., 2016 [152]

T2D

In vivo
Diabetic (ob/ob) mice.
Measured SAA3 mRNA in adipose tissue

Isolated adipose tissue of T2D mice showed drastically
increased SAA3 mRNA levels. Lin et al., 2001 [157]

Epidemiological study
Patients with T2D who received daily treatment
with troglitazone (anti-diabetic drug)

SAA levels were above the range for healthy subjects
(approx. 6.2 µg/mL).
Troglitazone reduced SAA levels (by 25% down to 4.0
µg/mL).

Ebeling et al., 1999 [155]

Epidemiological study
Measured SAA levels in patients with individuals
with impaired glucose tolerance in comparison
with individuals with and without T2D

Plasma levels of SAA were significantly higher in
patients with T2D and impaired glucose tolerance
(approx. 6 µg/mL).

Müller et al., 2002 [43]

Epidemiological study
Measured SAA levels in non-diabetic individuals
who participated in a 7-year follow-up

SAA levels were significantly associated with the onset
of T2D (approx. 4.0 µg/mL). Marzi et al., 2013 [44]

Epidemiological study
Measured SAA levels in T2D patients

Insulin resistance and T2D was significantly correlated
with SAA levels (approx. 24 µg/mL). Leinonen et al., 2003 [156]

4.3. C-Reactive Protein (CRP)

Discovered in 1930 in the serum of patients with acute pneumococcal pneumo-
niae [159], CRP was the first described APP. It was named for its capacity to bind the
C polysaccharide of Streptococcus pneumoniae [100,139,160,161] and subsequently played
a significant role in the identification of the APR [161]. CRP, also named pentraxin 1,
is a member of the highly conserved pentraxin family of proteins, which include other
structurally related molecules such as SAA. Like SAA, CRP is primarily synthesized by
hepatocytes [162].

The main physiological role of CRP lies within the innate immune system, where
it acts as an early defense system against foreign infectious pathogens. CRP exhibits
anti-inflammatory activities including: (i) activation of the classical complement pathway,
through binding to the C1q molecules, (ii) promoting apoptosis or phagocytosis of damaged
cells and lastly (iii) displaying an anti-inflammatory effect by inhibiting neutrophil (leuko-
cytes) action [162]. CRP participates in the systemic response to inflammation, increasing
up to 1000-fold. Its levels start to rise after six to eight hours and peak by 48 h, after an
inflammatory event [163]. CRP serum concentrations increase dramatically during acute
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and chronic inflammation, in response to a variety of inflammatory cytokines, including
TNF-α and IL-6, and in some non-inflammatory conditions such as stress [164]. For this
reason the measurement of CRP levels is widely used to monitor various inflammatory
states [164]. Variable plasma levels, ranging from 0.8–3 µg/mL, are found in healthy indi-
viduals [162]. Factors such as polymorphisms in the CRP gene, could contribute to these
variations [162]. However, CRP concentrations between 2 and 10 µg/mL are considered
to indicate metabolic inflammation, which could lead to the development of insulin resis-
tance [139]. This is supported by Festa and colleagues, who found a significant correlation
between increased CRP levels and the development of T2D, with diabetic individuals
having higher baseline levels of CRP (1.3–5.9 µg/mL) compared to the control group
(0.8–3.4 µg/mL) [39].

Like PAI-1 and SAA, circulating levels of CRP have been studied in relation to in-
sulin resistance and T2D, due to its role as a sensitive inflammatory marker. Several
cross-sectional studies have shown that CRP levels are associated with obesity [165,166],
increased fasting blood sugar levels [166], and impaired insulin sensitivity [167,168], all
components of insulin resistance. These findings increased speculation that elevated CRP
levels might be able to identify individuals in a prediabetic, insulin-resistant state [169].
In addition, several epidemiological studies have shown that increased CRP levels may
predict the development of future T2D. For example, the Women’s Health Study (WHS) [42]
demonstrated an association between CRP and insulin-resistant states, showing that among
healthy women, high levels of IL-6 and CRP were associated with an increased risk for
the development of T2D. In addition, the Cardiovascular Health Study (CHS) [41] also
demonstrated that in a population of elderly men and women, elevated baseline CRP levels
predicted the development of T2D. Finally, the IRAS, showed that high CRP baseline levels
(>2.4 mg/L) amongst patients diagnosed with insulin resistance were associated with a
higher risk of developing T2D [39] and recognized a significant correlation between CRP
and components of insulin resistance [38].

In addition to establishing CRP as a predictive risk factor for insulin resistance and the
development of T2D, numerous studies also investigated whether CRP could play a role in
the development of the disease state (Table 3). Alessandris and colleagues demonstrated,
using rat skeletal muscle cells, that high concentrations of CRP impaired insulin signaling
by increasing IRS-1 serine phosphorylation and reducing the activation of Akt [50]. Addi-
tionally, this resulted in reduced glycogen synthesis and glucose uptake, thus, showing that
CRP has an overall effect on the regulation of glucose metabolism. In agreement, Xu et al.
showed a similar effect of CRP on insulin signaling in endothelial cells, reporting increased
IRS-1 serine phosphorylation and decreased Akt activation [49]. Similarly, decreased IRS-1
tyrosine phosphorylation and its association with PI3K, as well as increased serine phos-
phorylation of IRS-1 in response to CRP was reported in primary rat hepatocytes as well as
in vivo [51].

In summary, like the previously mentioned APPs, CRP is described as a strong pre-
dictor for the development of T2D [41,42,169,170]. Additionally, the role of CRP in the
development of insulin resistance by affecting the insulin signaling pathway in hepatocytes,
skeletal muscle, and endothelial cells has been described (Table 3) [49–51]. However, the
effect of CRP on other key nodes in the insulin signaling pathway such as the IR have not
been researched to fully elucidate its role in insulin resistance.
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Table 3. Studies supporting the role of CRP in the development of insulin resistance and type-2 diabetes.

Disease State Model System Supporting Data Reference

Insulin resistance

In vitro
Rat skeletal muscle (L6) cells
treated with 10 mg/l CRP

CRP treatment induced insulin
resistance in skeletal muscle cells by:

• Increasing serine phosphorylation
of IRS-1

• Reducing activation of Akt
• Reducing glycogen synthesis
• Impairing glucose uptake

Alessandris et al., 2007 [50]

In vitro
Mouse endothelial cells treated
with recombinant CRP at various
doses and times

Overall CRP impaired insulin signaling
in endothelial cells by:

• Increasing serine phosphorylation
of IRS-1

• Decreasing activation of Akt

Xu et al., 2007 [49]

In vitro
Primary cultured rat hepatocytes
treated with 30 mg/L CRP
In vivo
Rats treated with CRP

CRP induced hepatic insulin resistance
both in vivo and in vitro by:

• Reducing the activation of IRS-1
and Akt

• Impairing the association of IRS-1
with PI3K

• Inducing the inhibition of IRS-1
(through serine phosphorylation)

Xi et al., 2011 [51]

Type-II diabetes

Epidemiological study
The IRAS study—measured CRP
levels in non-diabetic patients in
relation to incident diabetes
within 5 years

Elevated CRP levels (>2.4 mg/L) was
associated with incident T2D. Festa et al., 2002 [39]

Epidemiological study
Measured insulin sensitivity and
CRP levels in the non-diabetic
population of the IRAS study

Elevated CRP levels (>3.53 mg/L) was
strongly associated with components of
insulin resistance and T2D.

Festa et al., 2000 [38]

Epidemiological study
Women’s Health Study

High CRP levels were associated with
increased risk for development of T2D. Pradhan et al., 2001 [42]

Epidemiological study
Cardiovascular Health Study

High baseline levels (2.8 mg/L) of CRP
predicted T2D. Barzilay et al., 2001 [41]

5. Regulation of the Acute Phase Proteins

The regulation of each APP is uniquely complex, with pro-inflammatory cytokines,
GCs, and growth factors being some of its main mediators. Both in vitro and in vivo studies
have reported the regulation of PAI-1, SAA, and CRP expression to be closely influenced
by the pro-inflammatory cytokines, TNF-α, IL-1β and IL-6, as well as hormones such as
GCs which are also associated with insulin resistance and T2D [107,171–179]. For example,
patients diagnosed with Cushing’s syndrome, which is associated with GC excess, often
also present with insulin resistance and T2D [180]. GCs impair insulin signaling, and
long-term exposure also negatively affects pancreatic beta-cells from secreting insulin [28].
Likewise, low-grade chronic inflammation associated with obesity and the subsequent
increase in pro-inflammatory cytokine secretion is associated with insulin resistance [181],
with TNF-α, IL-1β, and IL-6 directly impairing insulin signal transduction [16,23,24,26,27].



Cells 2022, 11, 2163 11 of 20

IL-6 and IL-1 have been reported to enhance PAI-1 transcription in hepatoma cell lines
and whereas IL-6 induced a modest increase in PAI-1 mRNA levels, IL-6 in combination
with IL-1 had a much greater effect on PAI-1 mRNA expression [182,183]. TNF-α enhanced
PAI-1 mRNA and protein expression in endothelial cells [184,185], but seems to affect
PAI-1 mostly in adipose tissue, both in vitro and in vivo [186–188] by increasing mRNA
levels [186] as well as PAI-1 activity and protein expression [187,188]. Interestingly, TNF-
α-induced PAI-1 protein expression is enhanced in combination with insulin [188], which
also stimulates PAI-1 transcription and protein synthesis in a number of different cell
models [185,188–190]. These studies suggest that TNF-α (which is related to obesity) might
be the key inducer of PAI-1 expression in adipose tissue in obesity-related insulin resistance.

As markers of inflammation and major positive APPs, SAA and CRP expression are
mainly regulated by IL-6, IL-1β, and TNF-α. However, several in vitro studies investigating
SAA and CRP mRNA and protein expression in hepatoma cell lines, show differential
regulation by these cytokines. For instance, SAA mRNA expression is induced by all
three cytokines, however to different extents [30–32,36,191–194]. IL-1β was shown to be
a strong inducer of SAA mRNA expression [36,193], whilst IL-6 and TNF-α stimulates
SAA mRNA expression to a lesser extent [32,194,195]. TNF-α and IL-6 in combination,
however, enhanced SAA mRNA expression [32]. Furthermore, TNF-α, IL-1β, and IL-6 in
combination were able to enhance the transcription of SAA to a greater extent compared
to any single treatments [195]. CRP synthesis, on the other hand, was shown to be mainly
regulated by IL-6 in the hepatoma cell lines [33,192]. In primary human hepatocytes, IL-1β
was able to upregulate CRP synthesis, via inducing the synthesis of IL-6, strengthening the
argument that CRP levels are mainly upregulated by IL-6 in the liver [33]. Interestingly,
TNF-α alone, or in combination with IL-6, had no effect on CRP synthesis [30].

The induction of SAA and CRP is not limited to the liver. CRP production was
induced by IL-1 and IL-6, alone, and in combination in human adipocytes [196], whereas
SAA3 mRNA expression was increased in response to IL-1β, TNF-α, and IL-6 in 3T3-L1
adipocytes [34,197]. It was found that the positive effect on SAA3 mRNA expression
induced by IL-6 and IL-1β was mediated by JNK and NFκB, respectively [34,197] two
proteins which negatively regulate insulin signaling [198,199].

The anti-inflammatory GCs also regulate PAI-1, SAA, and CRP expression [37,48,200–202].
Several studies have shown an increase in PAI-1 mRNA and protein expression in response to
the synthetic GC, dexamethasone [37,201–203]. Interestingly, dexamethasone potentiates TNF-α-
induced PAI-1 mRNA expression in epithelial cells [37]. However, it is not yet known whether
this combinatorial effect is cell specific or if dexamethasone can enhance IL-6 or IL-1β-induced
PAI-1 expression. Furthermore, corticosterone, the endogenous GC in rodents, increased both
PAI-1 mRNA and protein levels in vivo [48].

Like PAI-1, the cytokine-driven production of SAA and CRP in hepatoma cell-lines can
be potentiated by GCs [31–35,191,204,205]. Dexamethasone treatment in combination with
TNF-α, IL-1β, or IL-6 increased SAA and CRP production to a greater extent in comparison
to the respective cytokine alone [30–33,35,141,206].

The fact that the levels of these APPs are induced by both pro-inflammatory cytokines
and GCs is interesting considering that GCs are mostly known for their anti-inflammatory
properties [207]. Traditionally GCs and the majority of pro-inflammatory cytokines an-
tagonize each other’s activity [208]. However, current knowledge suggests that GCs
selectively regulate gene expression [204]. When it comes to innate immune responses such
as the APR, GCs display pro-inflammatory behavior, converging their signal with that of
pro-inflammatory cytokine signaling, to further increase the expression of certain APPs.
Ultimately, by doing so, GCs reinforce the innate immune system and the APR [209].
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6. Conclusions

Numerous factors contribute to the development of insulin resistance and subse-
quently T2D, such as obesity and stress, with inflammation a key role player. APPs, which
are markers of inflammation, have been closely associated with T2D as their serum levels
are elevated in T2D patients [44,92,150,154–156]. These include PAI-1, SAA, and CRP,
which all play different roles in response to inflammation such as opsonization, activating
the complement system modulating the host’s immune response, and aiding in repairing
damaged tissue thereby establishing homeostasis during the APR [210].

Whether these APPs are just biological markers for T2D or actually influence the develop-
ment of insulin resistance (and are not just correlative) is still unclear. Some studies support the
possibility that PAI-1, SAA, and CRP impair insulin signaling directly [45–51,135,144,153,158],
whilst others believe that APPs are only correlated with T2D [54,111,211–213].

As the levels of these APPs are also regulated by pro-inflammatory cytokines and GCs,
both of which are also associated with T2D development [16,29], we speculate that APPs
may be the causative link between the physiological risk factors (stress and inflammation)
and the development of insulin resistance (Figure 1). Thus, APPs could contribute to the
manifestation of pro-inflammatory cytokine and GC-induced insulin resistance, adding to
the complexity of inflammatory- and GC-induced insulin resistance. This also suggests a
cumulative effect of stress- and inflammatory mediators together with circulating APPs
to induce insulin resistance. Therefore, understanding the role of these APPs in insulin
resistance and T2D progression could provide insight into novel mechanisms of action that
lead to the development of insulin resistance and towards the development of innovative
drug targets.
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