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Dental mesenchymal stromal cells (MSCs) are a promising tool for clinical application

in and beyond dentistry. These cells possess multilineage differentiation potential and

immunomodulatory properties. Due to their localization in the oral cavity, these cells could

sometimes be exposed to different bacteria and viruses. Dental MSCs express various

Toll-like receptors (TLRs), and therefore, they can recognize different microorganisms.

The engagement of TLRs in dental MSCs by various ligandsmight change their properties

and function. The differentiation capacity of dental MSCs might be either inhibited or

enhanced by TLRs ligands depending on their nature and concentrations. Activation

of TLR signaling in dental MSCs induces the production of proinflammatory mediators.

Additionally, TLR ligands alter the immunomodulatory ability of dental MSCs, but this

aspect is still poorly explored. Understanding the role of TLR signaling in dental MSCs

physiology is essential to assess their role in oral homeostasis, inflammatory diseases,

and tissue regeneration.

Keywords: dental mesenchymal stromal cells, toll-like receptors, differentiation, immunomodulation,

lipopolysaccharide

TOLL-LIKE RECEPTORS

Toll-like receptors (TLRs) are a family of proteins that play a key role in recognizing pathogens
by the innate immune system [1, 2]. TLRs are type I transmembrane proteins consisting of
extracellular leucine-rich repeats (LRR) and intracellular toll/interleukin (IL)-1 receptor domains.
To date, 10 different TLRs were described in humans. Some of them, particularly TLR-1, TLR-2,
TLR-4, TLR-5, TLR-6, and TLR-10, are expressed on the cell surface, whereas TLR-3, TLR-7, TLR-8,
and TLR-9 are present only in intracellular compartments such as lysosomes, endosomes, and
endoplasmic reticulum [3].

Most TLRs function as homodimers, and only TLR-2 acts as a heterodimer with either
TLR-1 or TLR-6 [4]. The crystal structure of the extracellular LRR domain is established for
several TLRs [5]. This domain comprises 19–25 tandem LRR copies and contains hydrophobic
residues spaced at specific intervals [5, 6]. Various human TLRs differ in the number of LRR
and domain structures, leading to recognizing different ligands [5]. Each TLR recognizes specific,
highly conserved bacterial or viral structures. These structures are common for various pathogens
and are crucial for their function. The most known TLR ligands are bacterial lipopeptides
(TLR-2/TLR-1 and TLR-2/TLR-6), viral double-stranded RNA (TLR-3), lipopolysaccharide
(TLR-4), bacterial flagellin (TLR-5), bacterial or viral single-stranded RNA (TLR-7 and TLR-8),
and CpG-rich unmethylated DNA (TLR-9) [7]. The ligand and function of TLR-10 are poorly
known [8]. It was shown that, in contrast to other TLRs, TLR-10 has an anti-inflammatory
action and dampen TLR-2 response [9]. A recent study indicated that TLR-10 might sense
HIV-1 envelope protein [10]. Besides exogenous ligands, TLRs might also be activated by
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endogenous ligands released from damaged tissue or dead cells
[11]. Activation of TLRs by endogenous ligands has a crucial role
in the regulation of local tissue homeostasis.

After ligand binding, the intracellular TIR domain recruits
adaptor molecules, which initiate the response [2]. The following
adaptors are described: myeloid differentiation primary response
gene 88 (MyD88), TIR-domain-containing adaptor protein
(TIRAP), TIR domain-containing adaptor inducing interferon-
β (TRIF), and TRIF-related adaptor molecule (TRAM) [12].
Activation of almost all TLRs excepting TLR-3 results in
triggering of MyD88- or MyD88/TIRAP-dependent response,
leading to the activation of nuclear factor kappa B (NF-κB)
and proinflammatory cytokine production. Ligand binding to
TLR-3 activates the TRIF-dependent pathway and induces type
I interferon (IFN) signaling. Finally, TLR-4 activates both NF-
κB mediated by MyD88 and type I IFN pathway through
TRAM/TRIF [3].

DENTAL MESENCHYMAL STROMAL
CELLS

The International Society for Cell and Gene Therapy (ISCT)
defines mesenchymal stromal cells (MSCs) as plastic-adherent
fibroblast-like cells; expressing mesenchymal surface markers
CD73, CD90, and CD105; lacking hematopoietic surface markers
CD11b, CD14, CD34, CD45, and HLA-DR; and possessing
the ability to differentiate into osteoblasts, adipocytes, and
chondrocytes in vitro [13, 14]. For the first time, MSCs were
isolated from the bone marrow, but later, MSCs were found
in almost all postnatal tissues [15], including dental pulp [16],
human exfoliated deciduous teeth [17], periodontal ligament
[18], apical papilla [19], dental follicle [20], gingival tissue
[21], and periapical cyst [22]. Most dental-tissue-derived MSCs
also express several neural lineage markers, presumably due to
their neural crest origin [23–25]. Sometimes, the abbreviation
“MSCs” is used as an acronym for “mesenchymal stem cells.”
There is an ongoing discussion if these cells should be classified
as “stromal” or “stem” cells mainly because of their limited
differentiation ability in vivo and lacking asymmetric division
[26, 27]. In the present review, we will adhere to the recent
recommendation of ISCT to use the term “mesenchymal stromal
cells” in combination with tissue origin [14].

Despite the high plasticity of MSCs in vitro, the differentiation
ability of transplanted MSCs in vivo is very limited [28].
Nowadays, there is a large consensus that the therapeutic effect
of MSCs is achieved through either secretion of specific trophic
factors or immunomodulatory function [29]. As reviewed by
several papers, dentalMSCs possess a strong immunomodulatory
ability and can regulate the function of different immune
cells [30–35]. The effects of dental MSCs are most often
immunosuppressive and are mediated by the production
of soluble factors and direct cell-to-cell contact [30]. The
immunomodulatory capacity of dental MSCs is usually low
and is boosted by different inflammatory cytokines like IFN-
γ, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β.
These cytokines are produced by the activated immune cells

and upregulate the expression of different immunomodulatory
factors in dental MSCs, e.g., indolamine-2,3-dioxygenase 1
(IDO-1), prostaglandin E2 (PGE2), TNF-α-stimulated gene 6
(TSG-6), programmed cell death-ligand 1 (PD-L1), and PD-L2
[36–40]. Thus, it seems that dental MSCs and immune cells
regulate each other’s activity in a reciprocal manner, which can
be implicated in various processes such as tissue regeneration and
inflammatory disease progression [30].

According to ISCT criteria, the cell population can be
defined as MSCs if more than 95% of the population expresses
mesenchymal markers and <2% of the population expresses
hematopoietic markers. However, despite these strict criteria,
MSCs usually represent rather heterogeneous than homogeneous
cell population [41]. Considerable heterogeneity is observed
even within single-cell-derived MSCs clones [42]. Besides
MSCs themselves, cell populations might comprise osteoblasts,
fibroblasts, and other cells of mesenchymal origin, which surface
markers are indistinguishable from those of MSCs [43, 44].
It should be noted that fibroblasts-like cells were isolated
from various human dental tissues, e.g., dental pulp (human
dental pulp cells, hDPCs), gingiva (human gingival fibroblasts,
hGFs), and periodontal ligament (human periodontal ligament
cells, hPDLCs). These cells share many properties of the
corresponding “stem cell” populations isolated from these tissues
and express similar surface markers [45–47]. The present review
will comprise the studies with both MSC-like cells and fibroblast-
like cells from various dental tissues, and the cell names will be
indicated as they are mentioned in the corresponding paper.

Toll-like receptors impact MSCs biology and affect their
functions such as proliferation, migration, differentiation
potential, immunomodulatory ability, and survival [48–50]. The
oral cavity is a habitat for different microorganisms [51, 52].
Host–microbial homeostasis is a crucial determinant of oral
health, and its disruption is associated with oral diseases, like
caries and periodontitis [53]. Interaction of bacteria- and viral-
derived TLR ligands might affect the functional properties of
dental MSCs and needs to be understood. This narrative review
aims to summarize state-of-the-art on the role of TLRs and their
ligands in dental MSCs.

TLRs EXPRESSION IN DENTAL MSCs

The expression of TLRs in different dental MSCs was investigated
specifically rather rarely. However, the presence of some TLRs,
like TLR-2, TLR-3, and TLR-4 in these cells is indisputable
because of their responsiveness to the corresponding ligands [54–
56]. Some studies investigated specifically the expression and
regulation of TLRs in various dental MSCs. Li et al. analyzed
the expression of different TLRs in human periodontal ligament
stem cells (hPDLSCs) and compared it with that in bone marrow
MSCs [57]. They found that in comparison to BM-MSCs,
hPDLSCs express significantly higher levels of TLR-1, TLR-2,
and TLR-5, as well as significantly lower levels of TLR-3, TLR-
4, TLR-6, TLR-8, TLR-9, and TLR-10 [57]. Zhu et al. showed
that hPDLSCs express TLR-1, TLR-2, TLR-3, TLR-4, and TLR-
6 on both gene and protein levels as shown by quantitative PCR
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(qPCR) and flow cytometry analysis, respectively [58]. El-Sayed
et al. investigated the expression of TLRs in different dental MSCs
population and its regulation by the inflammatory cytokine
cocktails consisting of IL-1β, IFN-α, IFN-γ, and TNF-α [59, 60].
Human gingival MSCs (hGMSCs) were shown to express TLR-1,
2, 3, 4, 5, 6, 7, 10 on the gene and protein levels [59]. Treatment of
these cells with the inflammatory cocktail resulted in the down-
regulation of TLR-6 and upregulation of all other TLRs [59].
Resting human dental pulp stem cells (hDPSCs) were found to
express all TLRs in different quantities [61]. Treatment of DPSCs
with inflammatory cytokines induced upregulation of TLR-2,
3, 4, 5; downregulation of TLR-1, 7, 9, 10; and abolishment
of TLR-6 [61]. MSCs derived from alveolar bone were found
to express all TLRs except TLR-9 [60]. The highest expression
levels were found for TLR-2 and the lowest one for TLR-6 [60].
Thus, there are some differences in the TLRs expression and
regulation between dental MSCs of different origins, but their
physiological importance for a particular specific tissue should
still be established.

EFFECT OF TLRs LIGANDS ON
DIFFERENTIATION POTENTIAL OF
DENTAL MSCs

Numerous studies investigated the effect of TLR ligands on the
differentiation potential of dental MSCs in vitro. The majority
of them focused on the impact of lipopolysaccharide (LPS) on
osteogenic differentiation, presumably because of the putative
role of dental MSCs in alveolar bone regeneration. In these
studies, osteogenic differentiation was assessed by the expression
of specific markers like alkaline phosphatase (ALP), osteocalcin
(OCN), collagen 1 (Coll-1), osteopontin (OPN), osterix (OSX),
and runt-related transcription factor 2 (RUNX-2) as well as by
mineralization assay (alizarin red staining). LPS was used as an
essential virulence factor of Gram-negative bacteria, which is
involved in the etiology of periodontitis and pulpitis [62, 63].

In contrast to LPS, the effect of other bacterial components
on the osteogenic differentiation of dental MSCs is investigated
rarely. However, such studies would be especially important
because both Gram-negative and Gram-positive bacteria
continuously secrete numerous proteins, which might activate
various TLRs and exert multiple cellular effects in MSCs.
Particularly, lipoteichoic acid, peptidoglycan, and fimbriae
activate TLR-2 [4, 64–66]; bacterial flagellin activates TLR-5
[67]. A microarray study showed that Porphyromonas gingivalis
secreted products activated several signaling pathways involved
in bone metabolism and inflammatory and immune response
[68], and therefore, identifying the potential contribution of all
TLRs in dental MSCs physiology would be very important [67].

Periodontal-Ligament-Derived MSCs
The effect of LPS on the osteogenic differentiation of periodontal-
ligament-derived MSCs is investigated most extensively. Li
et al. showed that Escherichia coli LPS (10µg/ml) decreases
osteogenic differentiation and RUNX-2 expression in human

periodontal ligament stem cells (hPDLSCs) but not that of BM-
MSCs [57]. This effect was mediated through TLR-4 induced
NF-κB activation [57]. Kato et al. reported that P. gingivalis
LPS (1–10µg/ml) inhibits mineralization and expression of ALP,
OCN, and Coll-1 by human hPDLSCs [69]. Wei et al. found
that E. coli LPS (10µg/ml) inhibits osteogenic differentiation,
alkaline phosphatase expression and activity, and gene expression
of OCN, Coll-1, and RUNX-2 in hPDLCs [70]. Kim et al.
demonstrated that E. coli LPS (2µg/ml) inhibits osteogenic
differentiation of hPDLCs and the expression of BMP-2, OSX,
and RUNX-2 [71]. Zhu et al. showed that E. coli LPS (1–10µg/ml)
inhibits ALP activity and mineralization of hPDLSCs, and this
effect was partially reversed by MyD88 and TRIF silencing [58].
Wang et al. reported that E. coli LPS (0.1–10µg/ml) inhibits
osteogenic differentiation, ALP activity, and RUNX-2 expression
of hPDLSCs through TLR-4 dependent mechanism [72]. Yu et al.
showed that P. gingivalis LPS (10µg/ml) inhibits the osteogenic
differentiation of hPDLSCs and decreases the expression of OCN,
RUNX-2, and Coll-1 [73]. Blufstein et al. found that P. gingivalis
LPS (1µg/ml) in combination with soluble CD14 inhibits the
basal and vitamin-D3-induced expression of OCN and OPN in
hPDLCs [74].

Some studies did not confirm the inhibitory effect of LPS on
the osteogenic differentiation of periodontal-ligament-derived
MSCs. Jönsson et al. showed that E. coli LPS (0.5–10µg/ml)
does not affect Coll-1 production by hPDLCs [75]. Li et al.
did not find any significant effect of E. coli LPS (1µg/ml) on
the osteogenic differentiation, ALP activity, gene and protein
expression of ALP, RUNX-2, and Coll-1 by hPDLCs [76].
Albiero et al. did not observe any influence of P. gingivalis LPS
(1µg/ml) on the osteogenic potential of hPDLSCs [77]. Jia et al.
reported that P. gingivalis LPS (10µg/ml) does not affect the
expression of ALP, Coll-1, RUNX-2, OCN, OPN, and OSX in
hPDLCs but inhibits it when the cyclic stress was applied to the
cells [78].

Some studies reported the stimulatory effect of LPS on
osteogenic differentiation. Albeiro et al. showed that E. coli
LPS (1µg/ml) stimulates osteogenic differentiation as well as
the expression of ALP, OCN, and RUNX-2 [79]. Xing et al.
observed that E. coli LPS (0.5µg/ml) stimulates osteogenic
differentiation, ALP activity, and the expression of ALP, RUNX-2,
OCN, and Coll-1 presumably throughWnt/β-catenin-dependent
mechanism [80]. Thus, it seems that the effect of LPS on
the osteogenic differentiation of periodontal-ligament-derived
MSCs depends on the concentration and, to a lesser extent,
on LPS source. High LPS concentrations inhibit osteogenic
differentiation, whereas low LPS concentrations have no effect or
even stimulate it.

Only two studies addressed the effect of other TLRs ligands on
the osteogenic potential of periodontal-ligament-derived MSCs.
Zhu et al. found that TLR-2/1 ligand Pam3CSK4 and TLR-2/6
ligand FSL-1 inhibit mineralization and ALP activity of hPDLSCs
in a concentration-dependent manner, and this effect was
partially reversed after MyD-88 knockdown [58]. TLR-3 ligand
Poly I:C enhanced osteogenic differentiation and ALP activity at
low concentration (0.1µg/ml) and inhibited these parameters at
higher concentration (10µg/ml) [58]. Blufstein et al. showed that
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both basal and vitamin-D3-induced expression of OCN andOPN
are inhibited by TLR-2/1 ligand Pam3CSK4 [74].

Besides participating in alveolar bone metabolism,
periodontal-ligament-derived MSCs participate in the
cementogenesis [81]. Kim et al. showed that E. coli LPS
(2µg/ml) inhibited the expression of CEMP-1, which is involved
in cementogenesis [71].

Dental-Pulp-Derived MSCs
Some contradictory data are reported regarding the effect of
LPS on osteogenic differentiation of dental-pulp-derived MSCs.
Yamagishi et al. found that P. gingivalis LPS (5–20µg/ml) induces
a dose-dependent inhibition of OCN expression in hDPSCs
[82]. Yuan et al. showed that E. coli LPS (10µg/ml) inhibits
the mineralization and expression of ALP, OCN, OPN, OSX,
and RUNX-2 in rat dental pulp stem cells [83]. In contrast,
Huang et al. reported a dose-dependent increase in ALP activity
and mineralization of human dental pulp cells (hDPCs) by E.
coli LPS (0.1–10) [84]. He et al. found that the stimulatory
effect of E. coli LPS (1µg/ml) on mineralization of hDPSCs and
expression of ALP and OCN is mediated by TLR-4 activation
[85]. Chung et al. demonstrated that P. gingivalis LPS (1µg/ml)
in combination with soluble CD14 stimulates the expression of
OCN andmineralization of hDPSCs [86]. Wildbiller et al. did not
observe any significant effect of E. coli LPS (0.01–1µg/ml) on the
expression of OCN and Coll-1 in hDPSCs [87].

Besides common trilineage differentiation potential, dental-
pulp-derived MSCs can differentiate into odontoblast and
assumed to participate in dentin regeneration [88]. The effect of
TLR ligands on the odontogenic differentiation of dental-pulp-
derived MSCs is differently discussed in the literature. Yamagishi
et al. reported that the expression of dentin sialophosphoprotein
(DSPP) in hDPSCs is inhibited by P. gingivalis LPS (5–20µg/ml)
in a concentration-dependent manner [82]. Wildbiller et al.
showed that E. coli LPS (0.01–1µg/ml) suppress the expression
of DSPP and dentin matrix protein 1 (DMP-1) in hDPSCs
induced by extracted dentine matrix proteins but does not affect
their basal expression [87]. Huang et al. found that E. coli LPS
(0.1–10µg/ml) enhances the expression of DSPP and DMP-1
in hDPCs in a dose-dependent manner [84]. He et al. showed
that E. coli LPS induces DSPP and DMP-1 in hDPSCs through
the mitogen-activated protein kinase signaling pathway [85].
Finally, the exosomes from LPS preconditionedDPSCs promoted
proliferation, migration, and odontogenic differentiation of
Schwann cells [89].

Apical Papilla and Dental-Follicle-Derived
MSCs
Apical-papilla-derived MSCs (stem cells from apical papilla,
SCAP) reside in the apical papilla of permanent teeth. They
possess osteogenic, adipogenic, chondrogenic, neurogenic, and
odontogenic differentiation potential [90]. Lei et al. found
that P. gingivalis LPS (5µg/ml) inhibited mineralization and
expression of ALP, RUNX-2, and DMP-1 in SCAP by inducing
autophagy [91]. Kukreti et al. showed that the culture of SCAP
on Pseudomonas aeruginosa-coated dentin strongly inhibits
mineralization and expression of DSPP and DMP-1 [92].

Human dental follicle stem cells (hDFSCs) are isolated from
follicle tissue surrounding the tooth germ [20, 93]. Morsczeck
et al. found that E. coli LPS (1µg/ml) and P. gingivalis LPS
(1µg/ml) stimulates ALP activity but inhibits the mineralization
of human hDFSCs [94]. The effect of E. coli LPS was more
pronounced than that of P. gingivalis LPS [94].

Gingiva-Derived MSCs
Gingiva-derived MSCs are unique MSCs that possess
multilineage differentiation potential and are considered to
be promising cells for oral tissue regeneration [95]. Karlis et al.
showed that TLR-2/1 ligand Pam2CSK4, ultrapure P. gingivalis
LPS, and standard P. gingivalis LPS (all 0.01µg/ml) do not affect
the mineralization (calcium deposition) and the expression of
ALP and osteonectin in chronically stimulated human GFs [96].
The same study found that GFs chronically stimulated with
TLR-2 and TLR-4 ligands slightly attenuate osteoclastogenesis
activity in coculture experiments [96].

TLR LIGANDS AND THE
IMMUNOREGULATORY ROLE OF DENTAL
MSCs

MSCs produce a plethora of various factors involved in
regulating the inflammatory response [97]. The production of
these factors is usually upregulated by inflammatory cytokines
and TLRs ligands [48, 97]. One group of these factors
includes proinflammatory cytokine and chemokines like IL-1β,
TNF-α, IL-6, IL-8, MCP-1, etc. These proteins usually have
a proinflammatory action, promote immune cell migration,
and induced tissue destruction. The second group of factors
comprises different immunosuppressive proteins like IDO-1,
PGE2, TSG-6, PD-L1, PD-L2, and TGF-β. These proteins
have immunosuppressive anti-inflammatory effects related to
“immunomodulatory properties of MSCs” [30, 98]. Activation of
MSCs with TLR ligands usually activates both proinflammatory
and anti-inflammatory responses, and the balance between them
depends on the type and concentration of TLR ligand [49].

The Proinflammatory Response of Dental
MSCs to TLR-4 Ligand Lipopolysaccharide
LPS is a cell wall component of Gram-negative bacteria and
is a well-known TRL-4 ligand [99]. Numerous studies dealt
with the effect of different LPS preparations on the production
of various proinflammatory factors by dental MSCs. In these
studies, MSC-like cells from various dental tissues were with LPS
at concentrations ranging from 0.01 to 50µg/ml. The resulting
production of various proinflammatory factors was detected [e.g.,
[100, 101]]. For the sake of clearness and due to space limitation
reasons, only some critical aspects of LPS-induced response in
dental MSCs will be mentioned without the detailed overview of
all existing data.

LPS is recognized by TLR-4 in complex with MD-2. The
binding of LPS to the TLR-4/MD-2 complex is facilitated
by lipopolysaccharide-binding protein and CD14 [102, 103].
The binding of LPS to CD14 enhances the sensitivity of
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host cells to endotoxin and enables sensing it even at
picomolar concentrations [104]. Besides, CD14 is required for
the internalization of TLR-4 and activation of TRIF-dependent
signaling [105]. Membrane-bound CD14 (mCD14) is a GPI-
anchored protein, which is expressed by various immune cells
[106]. However, MSCs, by definition, do not express mCD14 on
their surface [13]. Besides the membrane-bound form, there is
also a soluble form of CD14 (sCD14) [107]. Our group showed
that sCD14 increases the sensitivity and amplitude of hPDLSCs
to P. gingivalis LPS and E. coli LPS [100]. sCD14 is present in
serum, saliva, and gingival crevicular fluid, and therefore, it might
be implicated in dentalMSCs response to LPS in in vivo situations
[108–110]. However, the majority of studies on the effect of LPS
on dental MSCs does not use sCD14.

An increase in the production of IL-6, IL-8, and MCP-1
by periodontal-ligament-derived MSCs is most often reported
[69, 75, 100, 111–113]. Some studies also reported that LPS
increases the production of IL-1β and TNF-α by periodontal-
ligament-derived MSCs [70, 71, 79], whereas one study did not
confirm this finding [113]. Additionally, a stimulatory effect of
LPS on the expression of IL-12, intercellular adhesion molecule
1, vascular adhesion molecule 1, and macrophage colony-
stimulating factor is described [71, 113, 114]. The responsiveness
of periodontal-ligament-derived MSCs to LPS might be modified
by the inflammatory environment. Early studies suggest that
hPDLCs are unresponsive to LPS from E. coli andAggregatibacter
actinomycetemcomitans (0.1µg/ml) [115]. Pretreatment with a
low concentration of IL-1β induced the responsibility of these
cells to both LPS [115]. LPS-primed hPDLSCs were shown to
promotemacrophage polarization toward a proinflammatoryM1
phenotype [116].

In gingiva-derived MSCs, bacterial LPS induced the
production of IL-6, IL-8, and MCP-1 [117–120]. The data
on the production of IL-1β and TNF-α by hGFs upon LPS
stimulation are contradictory: it is supported by some studies
[121, 122] and denied by other studies [123, 124]. Additionally,
GFs produced CCL5 [125], macrophage inflammatory protein-
3 upon stimulation with LPS [126]. Pretreatment of hGFs
with IFN-γ enhanced the expression of CD14, TLR-2, and
TLR-4; induced surface expression of CD14; and increased
responsiveness to LPS stimulation [127].

Several studies investigated the proinflammatory response
of other dental-derived MSCs to bacterial LPS. Porphyromonas
gingivalis LPS induced IL-6 and IL-8 and inhibited TGF-β
production by hDPSCs [86]. In hDPCs, E. coli LPS enhanced the
gene expression of IL-6, IL-1β, and TNF-α [128]. Stimulation of
SCAP with LPS resulted in the upregulation of IL-6, IL-8, IL-
1β, and TNF-α [129, 130]. In DFSCs, both E. coli LPS and P.
gingivalis LPS induced the production of IL-6, IL-8, and MCP1,
and the effect of E. coli LPS was markedly higher than that of P.
gingivalis LPS [94]. In another study on dental follicle progenitor
cells, P. gingivalis LPS could not induce IL-6 production but
changed the expression of TLR-2 and TLR-4 and stimulated cell
migration [131].

It should be noted that several factors could influence
the response of dental MSCs to LPS. Our recent study
showed that LPS purity is an essential factor influencing
the response of hPDLSCs and hGMSCs to bacterial LPS

[119]. Commercially available LPS preparations are usually
contaminated by lipoproteins (about 2%). When LPS is
applied at a concentration of 50µg/ml, the concentrations
of contaminating lipoproteins might reach 1µg/ml. At this
concentration, lipoproteins can induce a robust inflammatory
response [66, 132], and therefore, it is difficult to discriminate if
the response originates from LPS or lipoproteins. Contaminating
lipoproteins also account for the ability of some P. gingivalis LPS
preparation to activate TLR-2 response [119, 133]. Stimulation
time is another factor influencing the response to LPS. For
example, Widbiller et al. showed that E. coli LPS does not affect
IL-6 production by hDPSCs after a short time (1 day) but
increases it after 4–7 days [87].

The Proinflammatory Response of Dental
MSCs to Other TLR Ligands
The effect of TLR-2 and TLR-3 ligands on the production
of proinflammatory cytokines by dental MSCs is investigated
relatively rarely. Some studies of our group showed that TLR-
2/1 ligand Pam3CSK4, TLR-2 ligand lipoteichonic acid (LTA),
and TLR-3 ligand Poly I:C induce the production of IL-6, IL-
8, and MCP-1 by hPDLSCs by a much greater extent than LPS
[56, 66, 100, 134]. The response of hPDLSCs to TLR-2 ligands is
enhanced by sCD14 [66], which is not surprising because CD14
serves as an assessor molecule for TLR-2 [103]. Pam3CSK4, Poly
I:C, and TLR-2/6 ligand FSL-1 activated NF-kB and increased
the gene expression of IL-6, IL-8, TNF-α, and IL-1β in hPDLSCs
[58]. In GFs, Poly I:C, FSL-1, TLR-7/8 ligand ssPolyU, and TLR-
9 ligand CpG DNA significantly induced the production of IL-
6, IL-8, and MCP-1 [135]. In contrast, another study on hGFs
showed that IL-8 production was enhanced by LPS, Poly I:C, and
TLR-5 ligand flagellin but not by TLR-7, 8, and 9 ligands [136].
Different bacterial LTA and Pam3CSK4 induced IL-6 and IL-8
production in hGFs [137, 138]. TLR-2-primed hGFs stimulated
the proliferation of CD3+-positive T cells [139].

Immunomodulatory Activity of TLR-Primed
Dental MSCs
The role of different TLRs in the immunomodulatory ability
of MSCs in general is still not entirely understood. Earlier
studies suggested that the priming of MSCs with TLR-2- or
TLR-4-primed MSCs stimulate the immune response, whereas
TLR-3-primed MSCs exhibit immunosuppressive properties
[49, 140]. However, some studies challenged this conception
[141, 142]. Thus, the immunomodulatory role of different
TLRs in MSC-mediated immunomodulation still needs to be
investigated. Unfortunately, there are only a limited number
of studies in which the effects of different TLR ligands on the
immunomodulatory activity of dental MSCs are investigated.

Tomic et al. found that TLR-3 ligand poly I:C enhanced
the inhibitory effect of MSCs derived from dental pulp and
dental follicle on peripheral blood mononuclear cells (PBMCs)
proliferation [143]. However, TLR-4 ligand LPS augmented
immunosuppression only in dental follicle MSCs and abrogated
it in dental pulp MSCs [143]. The anti-TGF-β antibody strongly
abrogated the immunosuppressive effect of both cell types.
Moreover, the effect of TLR ligands on TGF-β expression
showed a similar pattern as for immunosuppressive properties.
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FIGURE 1 | Effects of toll-like receptor (TLR) agonists in dental mesenchymal stromal cells (MSCs).

Similarly, TLR-3 ligand enhanced TGF-β production in both
MSCs types, whereas TLR-4 ligand LPS enhanced TGF-
β production in dental follicle MSCs and inhibited it in
dental pulp MSCs. Priming hPDLSCs with LPS decreased the
frequency of CD33+ and CD14+ myeloid cells within the
PBMCs population but did not affect their immunosuppressive
activity on T cell proliferation and differentiation [112]. GFs
pretreated with P. gingivalis-derived LPS stimulated the ability
of the GFs to suppress PBMCs proliferation and enhanced the
IFN-γ-induced immunosuppressive ability [136]. However, the
immunomodulatory effect of P. gingivalis LPS was relatively
small compared with that of IFN-γ [136].

TLR ligands were shown to affect the expression of
some immunomodulatory proteins in dental MSCs. MSC-
mediated immunosuppression in humans is largely mediated
by indoleamine-2,3-dioxygenase-1 (IDO-1), which catalyzes
the catabolism of L-tryptophan into L-kynurenine [144],
and the resulting depletion of tryptophan leads to the
immunosuppression [145]. The majority of existing reports
suggest that TLR ligands enhance IDO-1 gene expression in
dental MSCs. The enhanced IDO-1 gene expression was induced
in hPDLs by E. coli LPS [146]; in hPDLSCs by Pam3CSK4 and
Poly I:C [147, 148]; in hDPSCs by E. coli LPS [149]; in hGFs
by P. gingivalis LPS, E. coli LPS, and flagellin [40, 136]; and
in hGMSCs by Poly I:C [150]. No stimulatory effect on IDO-
1 gene expression was observed in hPDLSCs upon E. coli LPS
stimulation [147] and in hGMSCs upon stimulation with TLR-1,
2, 4, 6, and 7 ligands [150]. In contrast to the gene expression data,
the effect of various TLRs ligands on IDO-1 protein expression
and enzymatic activity in dentalMSCs is somewhat controversial.
Intracellular IDO-1 expression was not affected by Pam3CSK4
and E. coli LPS in hPDLSCs [147], by P. gingivalis and E. coli
LPS in hDPSCs and hDFSCs [143], and PamsCSK4 and E. coli
LPS in hDPSCs [39]. In contrast, IDO-1 protein expression was

enhanced in hPDLSCs by Poly I:C and in hDPSCs by E. coli LPS
[149]. The enzymatic activity of IDO-1 in conditioned media
was reported to be increased by Pam3CSK4 and Poly I:C in
hPDLSCs [148] and by E. coli LPS in hPDLs [146]. In contrast,
no effect of P. gingivalis LPS on IDO-1 activity was observed
in GFs [40]. Several studies reported that IDO-1 expression and
activity induced by TLR-3 ligand Poly I:C is substantially higher
than those induced by other TLR ligands [147, 149, 150]. This
observation suggests a superior role of TLR-3 signaling in the
immunomodulatory properties of dental MSCs, which should be
confirmed by future functional studies.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVE

Resident dental MSCs are involved in both inflammatory
response and dental tissue repair after trauma. The clinical
protocols for applying dental MSCs for the treatment of
periodontal and endodontic defects are currently developing
[151–153]. Besides, due to their accessibility and functional
properties, dental MSCs have an enormous potential for
application beyond the dental field [23]. Numerous preclinical
researches imply an enormous perspective of dental MSCs for
the application in bone and cartilage repair and the treatment
of immunological disorders [30, 154, 155]. The mechanisms
underlying in vivo regenerative potential are based mainly
on modifying the environment [30, 156]. Furthermore, the
exosomes of dental MSCs are considered to be a promising tool
for the regeneration of oral and extraoral tissues [157, 158].

Dental MSCs express all human TLRs, and the effects of
TLRs ligand in dental MSCs are summarized in Figure 1. The
differentiation capacity of dental MSCs can be either diminished
or enhanced by various TLR ligands. This effect might depend
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on the concentration and type of TLR ligand. Stimulation of
dental MSCs with different TLR ligands induces the production
of various proinflammatory mediators, mainly IL-6, IL-8, and
MCP-1. This fact suggests that dental MSCs might play an
important role in the progression of different inflammatory
diseases. However, the exact role of dental MSCs in oral diseases
such as pulpitis and periodontitis is still to be clarified. The
role of TLRs in the immunomodulation by dental MSCs is
investigated rather poorly to date. Some reports suggest that TLR-
primed MSCs promote immune response, whereas other reports
indicate an immunosuppressive effect of TLR-treated dental
MSCs. Future well-designed studies are necessary to clarify the
role of TLRs in the immunomodulatory ability of dental MSCs.
Understanding the role of MSCs in the inflammatory processes
could open new perspectives for dental tissue regeneration and
treatment of the inflammatory diseases.
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