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Background. Understanding the mechanisms underlying generation of neuronal variability and complexity remains the
central challenge for neuroscience. Structural variation in the neuronal genome is likely to be one important mechanism for
neuronal diversity and brain diseases. Large-scale genomic variations due to loss or gain of whole chromosomes (aneuploidy)
have been described in cells of the normal and diseased human brain, which are generated from neural stem cells during
intrauterine period of life. However, the incidence of aneuploidy in the developing human brain and its impact on the brain
development and function are obscure. Methodology/Principal Findings. To address genomic variation during development
we surveyed aneuploidy/polyploidy in the human fetal tissues by advanced molecular-cytogenetic techniques at the single-cell
level. Here we show that the human developing brain has mosaic nature, being composed of euploid and aneuploid neural
cells. Studying over 600,000 neural cells, we have determined the average aneuploidy frequency as 1.25–1.45% per
chromosome, with the overall percentage of aneuploidy tending to approach 30–35%. Furthermore, we found that mosaic
aneuploidy can be exclusively confined to the brain. Conclusions/Significance. Our data indicates aneuploidization to be an
additional pathological mechanism for neuronal genome diversification. These findings highlight the involvement of
aneuploidy in the human brain development and suggest an unexpected link between developmental chromosomal
instability, intercellural/intertissular genome diversity and human brain diseases.
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INTRODUCTION
The human genome seems to represent a highly dynamic and

relatively instable system at interindividual and intercellular levels.

The variation of chromosome numbers between individual

organisms or cells of an organism is among the main types of

genomic instability [1–4]. The biological consequences of genetic

instability manifested as loss or gain of whole chromosomes

(aneuploidy) usually are devastative and hallmark numerous

pathological conditions in humans. Aneuploidy arisen from

meiotic errors is the leading genetic cause of morbidity and

mortality in humans [5]. A cascade of abnormal mitotic divisions

accompanied by formation of aneuploidy is a consistent finding in

virtually all cancers [6–8]. Moreover, abnormal functioning of

mitotic machinery associated with aneuploidy formation is

suggested to underlie aging [9]. Stochastic (or spontaneous)

chromosomal variations in somatic cells appearing as low-level

mosaic aneuploidy can be registered in all somatic cell popula-

tions. However, usually being considered insignificant, low-level

somatic chromosomal mosaicism is frequently overlooked, prob-

ably, because of unapparent phenotypic effects [4,10].

The genetic complexity of the brain is employed to explain the

fascinating abilities of humans such as speech, consciousness, tool

use, symbolic thought, cultural learning, and self-awareness. This

can be naturally affected by different genetic and environmental

factors during the intrauterine period, leading, thereby, to

individual differences in brain organization and function after

birth [3]. A number of attempts at the assessment of chromosome

variations in the adult human brain have indicated that mosaic

aneuploidy do present in the normal and diseased brain [11–15].

The murine brain, considered as an adequate model of human

brain diseases [16], has been documented to possess aneuploid

developing and adult neurons [17]. Murine aneuploid neurons are

functionally active and may be integrated into the brain circuitry

[18]. However, the nature, magnitude, and significance of

aneuploidy in the developing and adult human brain are a matter

of conjecture. To the best of our knowledge, aneuploidy in the

developing human brain has not been experimentally assessed. To

fill this gap in our knowledge about chromosomal (genomic)

variations during human development, we have performed the

study of aneuploidy in the developing human brain.

RESULTS

Stochastic aneuploidy frequency in the developing

brain
Aneuploidy was surveyed in 12 post-mortem fetal brain samples by

molecular cytogenetic techniques specially elaborated for precise

identification of low-level chromosomal mosaicism at the single-
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cell resolution: interphase multiprobe fluorescence in situ hybrid-

ization (mFISH) with quantification of FISH signals (QFISH) [19],

primed in situ labeling (PRINS) and interphase chromosome-

specific Multicolor Banding (MCB) [15]. Interphase mFISH with

arbitrary selected chromosome enumeration DNA probes for six

different autosomes (chromosomes 1, 9, 15, 16, 17, 18) and the sex

chromosomes (X and Y) has shown high hybridization efficiency

(over 99.5%). This was considered to diminish possible misinter-

pretations of aneuploidy scoring (Figure 1, A to C). Analysis of

more than 420,000 cells from twelve samples of the fetal brain and

85,000 chorionic villi cells was performed by interphase mFISH

(Table 1). No fewer than 5000 nuclei from each brain tissue and

no fewer than 1000 nuclei from chorionic villi sample were scored

per chromosome. Loss of the Y chromosome was detected in 0.2%

of brain cells in male fetuses, while no evidences for loss of

chromosome X and simultaneously both autosomes have been

obtained. One FISH signal per interphase nucleus for autosomal

DNA probes was detected in 6–12% of nuclei scored in different

brain tissue samples. Since quantification of FISH signals have

been applied, it was possible to differ between true hypodiploid

(monosomic) and euploid cells featured by associated FISH signals

(a signal appearance similar to monosomy). We have determined

1.03% of the brain cells and 0.51% of chorionic cells to be true

monosomic, while the most part of cells with one signal showed

associated signals suggesting two homologous chromosomes in

a cell (Table 1). The frequency of cells with chromosome losses in

the brain was found to increase significantly versus chorionic

tissues (p,0.001). The frequency of hyperdiploid cells with

chromosome gains including autosomal trisomy, trisomy of the

X chromosome (female fetuses), disomy of the X chromosome

(male fetuses), and tetrasomy in the fetal brain was similar to that

in chorionic tissue (0.42 and 0.46%, respectively, p = 0.08).

Polyploidy (tetraploidy) was detected in 0.04% of fetal brain cells

and in 0.06% of chorionic cells (p = 0.026). Multiple numerical

chromosome imbalances involving more than one chromosome

pair in one cell (i.e. simultaneous losses or gains of several non-

homologous chromosomes) were not registered at all. Simulta-

neous gain of the chromosome X and chromosome Y was detected

in 0.02% of cells in one brain sample only. We have observed

significant difference in the frequency of aneuploidy (losses + gains)

between the brain and chorionic villi (1.45 and 0.98, respectively,

p,0.001; Table 1). The mean stochastic (or background)

aneuploidy rate involving individual chromosomes (M), standard

deviation (SD), the threshold levels (M+3SD) for chromosome

losses and gains were calculated (Table 2). Stochastic chromosome

losses and gains (the rates calculated without outliers) in fetal brain

cells were registered with the mean frequency 0.91% (SD 0.37)

and 0.34% (SD 0.19) per individual chromosome pair, re-

spectively. Cut-of levels (M+3SD) were determined as 0.44–

3.38% for losses and 0.40–2.68% for gains affecting different

chromosomes (Table 2).

Figure 1. Molecular cytogenetic analysis of aneuploidy in the fetal
human brain. (A to C). Interphase FISH with chromosome-enumeration
DNA probes: (A) two nuclei characterized by additional chromosomes Y
and X and a normal nucleus; (B) a nucleus with monosomy of
chromosome 15 and a normal nucleus; (C) a nucleus with monosomy of
chromosome 18 and a normal nucleus. (D to G) interphase
chromosome-specific MCB: nuclei with monosomy, disomy, trisomy
and G-banding ideograms with MCB color-code labeling of a chromo-
some (from left to right), (D) - chromosome 9, (E) - chromosome 16, and
(F) - chromosome 18. (G) interphase QFISH: (1) a nucleus with two
signals for chromosomes 18 (relative intensities: 2058 and 1772 pixels),
(2) a nucleus with one paired signal mimics monosomy of chromosome
18 (relative intensity: 4012 pixels), (3) a nucleus with two signals for
chromosomes 15 (relative intensities: 1562 and 1622 pixels), (4)
a nucleus with one signal showing monosomy of chromosome 15
(relative intensity: 1678 pixels).
doi:10.1371/journal.pone.0000558.g001

Table 1. Comparison of aneuploidy frequency in the fetal brain cells and chorionic villi cells detected by interphase mFISH analysis
(12 fetuses analyzed).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tissue Number of cells scored Normal diploid cells Aneuploid Cells (loss) Aneuploid cells (gain) Aneuploid cells (loss+gain) Polyploid cells

Brain 424674 418356 (98.5%) 4361 (1.03%) 1774 (0.42%) 6135 (1.45%) 183 (0.04%)

Chorion 85123 84241 (98.97%) 438 (0.51%) 392 (0.46%) 830 (0.97%) 52 (0.06%)

P-values P,0.001 P = 0.08 P,0.001 P = 0.026

Eight arbitrary selected chromosomes (chromosomes 1, 9, 15, 16, 17, 18, X and Y) were analyzed for each fetus. No less than 5000 cells were scored for each
chromosome for the brain tissue and 1000 cells for chorionic tissue.
doi:10.1371/journal.pone.0000558.t001..
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Confined chromosomal mosaicism in the developing

brain

Four fetal brain samples were characterized by chromosome-

specific aneuploidy inasmuch as the rate of aneuploidy involving

single chromosome pair in these samples was significantly higher

than the cut-off level (Figure 2, Table 2). The chromosomal

mosaicism confined to the fetal brain was referred to aneuploidy

manifested as (i) chromosome X gain (2.8% versus 1.2% of cells in

chorion; p = 0.004) and chromosome Y gain (5.9% versus 1.8% of

cells in chorion; p,0.001), (ii) chromosome X loss (5.4% versus

1.1% of cells in chorion; p,0.001), (iii) chromosome 15 loss (6.2%

versus 1.2% of cells in chorion; p,0.001); (iv) chromosome 18 loss

(6.5% versus 3.2% of cells in chorion; p,0.001). These outliers

were detected in the fetal brain only and were observed neither in

chorionic cells nor in skin fibroblasts of the same fetuses as was

Table 2. Stochastic aneuploidy frequency (%) involving chromosome loss and gain and the average chromosome instability index
(losses and gains summed per individual chromosome pair) in the human fetal brain

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chromosome; Number of scored cells (n) Mean (SD) without outliers Threshold level (M+3SD) Min(Outliers), Max (Outliers) Mean with outliers (SD)

Chromosome 1 loss and gain; n = 60745 1.04 (0.44) and 0.28 (0.11) 2.36 and 0.61 0.3; 1.7 and 0.1; 0.4

Chromosome 9 loss and gain; n = 60922 0.69 (0.46) and 0.20 (0.14) 2.07 and 0.62 0.2; 1.6 and 0.1; 0.6

Chromosome 15 loss and gain; n = 60554 0.97 (0.56) and 0.20 (0.10) 2.65 and 0.40 0.3; 2,2 (6.2) and 0.1; 0.4 1.41 (1.60)

Chromosome 16 loss and gain; n = 60714 1.08 (0.57) and 0.23 (0.13) 2.79 and 0.62 0.3; 2.0 and 0.1; 0.4

Chromosome 17 loss and gain; n = 60558 0.75 (0.35) and 0.18 (0.10) 1.8 and 0.48 0.3; 1.3 and 0.1; 0,4

Chromosome 18 loss and gain; n = 60791 0.92 (0.64 and 0.33 (0.16) 2.84and 0.81 0.3; 2.2(6.5) and 0.1; 0.5 1.39 (1.72)

Chromosome X loss and gain; n = 26436
(female fetuses); n = 33954 (males fetuses)

1.60 (0.59) and 0.73 (0.65) 3.37 and 2.68 0.8; 2.2 (5.4) and 0.0; 2.0 2.36 (1.77) 0.90 (0.84)

Chromosome Y loss and gain; n = 33954 0.20 (0.08) and 0.58 (0.70) 0.44 and 2.68 0.0; 0.3 and 0.1; 2.0 (5.8) 1.32 (2.07)

Mean (SD), loss and gain; n = 424674 0.91 (0.37) and 0.34 (0.19) 1.03 (0.59) and 0.42 (0.38)

Average Chromosomal Instability Index;
(Loss+Gain); n = 424674

1.25 1.45

doi:10.1371/journal.pone.0000558.t002..
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Figure 2. The frequency of chromosome losses and gains in the fetal human tissues exhibiting chromosomal mosaicism confined to the fetal
brain. Aneuploidy frequency involving chromosomes 1, 9, 15, 16, 17, 18, X and Y was determined by interphase mFISH, MCB and PRINS techniques.
(A) demonstration of selective chromosome X and chromosome Y gains, (B) demonstration of selective chromosome 15 loss, (C) demonstration of
selective chromosome X loss, and (D) demonstration of selective chromosome 18 loss.
doi:10.1371/journal.pone.0000558.g002
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additionally documented by QFISH, PRINS, and MCB (Figure 1,

G, and Fig. 2). Only one fetus had low-level chromosome specific

mosaicism confined to the chorionic villi, i.e. trisomy of

chromosome 18 in 2.3% (cut-off level is 0.8%), while only 0.4%

of fetal brain cells had trisomy 18 (p,0.001). The application of

PRINS and MCB for evaluation of random fluctuation of

aneuploidy rate (chromosomes 1, 9, 15, 16, 18, X and Y) scoring

more than 180,000 cells has confirmed the results obtained by

interphase mFISH (Figure 1, D to F). Average chromosome

instability quantitative index was calculated as 1.25 (without

outliers) and 1.45 (with outliers) in the fetal brain (Table 2). Since

molecular cytogenetic studies using DNA probes for randomly

selected arbitrary chromosomes have exhibited similar pattern of

involvement in autosomal aneuploidy and multiple aneuploidy has

not been detected, we assumed that extrapolating the data towards

the entire chromosome set (or entire genome) would not be

exceedingly speculative. Cumulative frequency of stochastic

aneuploidy or the overall percentage of aneuploid cells in the

developing brain, calculated for 22 pairs of autosomes and two sex

chromosomes, is, therefore, 30% (without outliers). Taking into

account the existence of chromosome-specific brain-confined

mosaic aneuploidy, the overall percentage of aneuploid cells in

the developing human brain tends to approach 35%. Average

chromosome instability quantitative index in chorionic tissues and

fetal skin was estimated as 0.98% and 0.82% corresponding to the

overall aneuploidy frequency of 24% and 19%, respectively.

Studying over 600.000 individual neural cells, we have concluded

that the developing human brain exhibits increased level of

stochastic aneuploidy and is frequently affected by chromosome-

specific mosaicism confined to the brain. Therefore, the de-

veloping human brain has mosaic nature as both euploid (,70%)

and aneuploid (,30%) neural cells are present.

DISCUSSION
Somatic mosaicism makes an important contribution to genetic

and phenotypic variation among humans. Somatic chromosomal

mosaicism producing intercellular genomic variations simulta-

neously involving from hundreds to thousands genes possesses the

potential to produce the most dramatic changes of cellular

physiology and behavior [10]. Interphase FISH technique is

known as a powerful approach to assess intercellular chromosome

variations at the single cell level [3,4]. However, FISH is affected

by potential artefactual problems that might interfere with analysis

of chromosome gain and loss in a cell. To avoid considering FISH

artifacts as false-positive chromosome losses or gains, we have

introduced two independent approaches: QFISH and interphase

chromosome-specific MCB, allowing accurate definition of the

normal thresholds of aneuploidy in human somatic cells [15,19].

The first documented tissue-specific chromosomal mosaicism in

normal human pregnancies was confined placental mosaicism

exclusively expressed in extraembryonic tissues, which is not

considered a chromosomal abnormality directly affecting fetus

[20]. The developing human brain is, probably, the first embryonic

tissue demonstrating confined chromosomal mosaicism. The

chromosomal mosaicism confined exclusively to embryonic somatic

tissue has the potential to possess primary effect on the intrauterine

development. Therefore, chromosomal mosaicism confined to the

fetal brain can be considered a possible cause of alterations in

prenatal brain development, leading to fetal loss or abnormal brain

functioning after birth.

Most postmitotic cells populating the brain are formed from

neuronal and glial precursor cells originated from the embryonic

neural stem cells. Chromosomal segregation defects during mitosis

can occur in rapidly proliferating stem cells and, thereafter, in

neuronal/glial progenitor cells with limited self-renewal ability.

Aneuploid proliferating progenitor cells can be precursors of

aneuploid neurons and glial cells. Previous studies indicate that the

mean rate of aneuploidy per chromosome pair is, probably,

ranged between 0.1 and 0.7% with the overall frequency of

aneuploidy approaching 10% in the adult human brain [14,15]

and is exactly three times less than during the early brain

development. Coincidental with early developmental processes of

proliferation, migration and differentiation, 20–50% of fetal brain

cells normally undergo programmed cell death (PCD) [21].

Ontogenetic decrease of aneuploidy rate indicates that the

clearance of aneuploid cells in the developing brain could be

one of the main functions of PCD. This agrees with the

speculation assuming PCD as a mechanism for neural cell

quantity and, probably, quality control during the development

of the CNS. The data obtained suggest a new role of PCD in the

developing human CNS that could be the protection of the brain

against devastating consequences of developmental genomic

instability. It was hypothesized that genetic and epigenetic

alterations in the apoptotic machinery may result to failed

clearance of abnormal neuronal and glial cells leading, thereby,

to the persistence of aneuploid cells throughout ontogeny [4].

Furthermore, increased developing chromosome instability affect-

ing neuronal and glial cells could be a possible factor predisposing

to brain tumors, which are highly incident among children.

Although these inferences may appear speculative, the link

between PCD, developmental chromosomal instability (aneuploi-

dy) and normal/abnormal CNS development seems to exist.

Most part of neurons and glial cells in the adult human brain

are generated during intrauterine period of life. The adult human

brain consists of 95–100 billions of neurons and as much as one

trillion of glial cells [22]. A typical human mature neuron has

approximately 5,000–200,000 synapses [3]. Aneuploid neurons

are functionally active and may be integrated into the brain

circuitry [18]. As aneuploidization is a pathogenic mechanism that

alters gene expression, the presence of chromosomally abnormal

neurons in the neuronal network should negatively affects neuron-

neuron or neuron-glia interaction and, therefore, the normal

functioning of the brain. Therefore, chromosome variations in the

developing human brain should be ultimately involved in the

pathogenesis of common mental disorders. This speculation is in

accordance with the experimental data suggesting that Alzheimer’s

disease, schizophrenia and autism are likely to associate with

increased level of aneuploidy and polyploidy in different tissues,

including, probably, the brain [11,12,23]. In conclusion, mosaic

aneuploidy affecting the developing brain represents a specific type

of intercellular genomic variations contributing to the generation of

the neuronal diversity and to genetic diseases of the brain [3,4,24].

MATERIALS AND METHODS

Sample Preparations
Post-mortem brain tissue of 12 human fetuses (gestational age 8–

11 weeks) were provided by the Brain and Tissues bank of Medical

University of Rostov-on-Don, Russia. The Ethical Committees of

Institutions involved approved all interventions, and tissue was

collected with proper consent. The written consents of mothers of

the fetuses were obtained. The study using human fetal tissues

performed according to the ethical guidelines of medical research

that are in accordance with Russian Federation laws and the rules

for manipulation with human embryonic and fetal neuronal tissues

accepted by European Commission [25]. Ultrasonic and neuro-

pathological examination found no evidences of disease or

developmental abnormalities. A cytogenetic study of chorionic

Aneuploidy in the Human Brain
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villy cells demonstrated normal karyotypes in all fetuses. The

telencephalic regions of the fetal brains were subjected to analysis.

Additionally, autopsy tissues of chorionic villi and fetal skin of

these specimens were selected for molecular cytogenetic studies.

The tissue were collected and stored at 270uC. The processing of

the fetal brain tissue for molecular cytogenetic analysis is described

in detail elsewhere [26]. Shortly, the samples were processed

through disaggregating by homogenizer, treatment with acetic

acid solution (45–60% w/v), and fixation with methanol/acetic

acid mixture (3:1). The suspensions obtained were dropped onto

wet slides similarly to the preparation of metaphase chromosome

spreads. The slides were then dried overnight at room tempera-

ture, dehydrated through ethanol series and processed for FISH.

Multiprobe Fluorescence in Situ Hybridization

(mFISH)
Interphase multiprobe fluorescence in situ hybridization (mFISH)

assay using chromosome enumeration DNA probes was used

[12,14]. Chromosome 1 (D1Z1)-, 9 (D9Z1)-, 15 (D15Z1)-, 16

(D16Z3)-, 17(D17Z1)-, 18 (D18Z1)-, X (DXZ1)-, and Y (DYZ3)-

specific probes labeled either by FluorX (green), Cy3 (red), or

diethylaminocoumarine (blue) were used for multiprobe FISH as

described in details earlier (14). The following probe combinations

have been used: (1+X+Y), (1+9+16), (1+15+17), (1+9+18). Epifluor-

escence microscopy analysis was performed using a Leitz Orthoplan

microscope (Leica Mikroskopie und Systeme, Leitz-Wetzlar; Wet-

zlar, Germany) as well as filter sets for 4,6-diamidino-2-phenylindole

(DAPI), fluorescein isothiocyanate, Spectrum Orange or Cy3. For

each tissue sample and each chromosome enumeration probe no

fewer than 5000 interphase nuclei were scored.

Quantitative FISH technique (qFISH)
Since the specifity of chromosome positioning in interphase nuclei

do not allow the precise identification of chromosome loss due to

FISH signal associations, the fraction of nuclei demonstrating one

hybridization signal was analyzed additionally by a quantitative

FISH technique [15] to discriminate single paired signals from

true single signal (true monosomy). Each interphase nuclei

showing one hybridization signal was captured for quantification

of the signal intensity. The numerical values of the signal relative

intensity in the nuclei with one (true monosomy and two associ-

ated signals) and two separate signals (disomy) were compared.

The relative intensity of FISH signals was obtained by digital

capturing of microscopic image by CCD camera (Cohu, 4910

series, Cohu Inc., San Diego, CA), LG-3 grayscale scientific PCI

frame grabber (Scion Corp., NIH, Frederick, MD), and measuring

signal intensity by Scion Image Beta 4.0.2 (Scion Corporation,

National Institute of Health, Frederick, MD) acquired from www.

scioncorp.com (accessed 12/07/2001). The quantification of FISH

signals from each digital image was processed by the macros

supplied by the manufacturer.

Primed in Situ Labeling (PRINS)
An alternative molecular cytogenetic techniques allowing aneu-

ploidy estimation-primed in situ labeling (PRINS) for chromo-

somes 1, 9, 15, 16, 18, X and Y was applied to analyze the

phenomenon of confined chromosomal mosaicism revealed by

mFISH. The PRINS labeling was performed by using chromo-

some-specific primers for the centromeric alpha-satellite DNA

motifs of aforementioned chromosomes. PRINS protocol and

primers used were described in details earlier [27].

Multicolor Banding (MCB)
Finally, to achieve the highest resolution in aneuploidy scoring,

a multicolor banding (MCB) assay generated on the interphase

nuclei [28], shown to be among the most efficient cytogenetic

approach for studying chromosomes in the human brain [12], was

applied. High resolution multicolour-banding (MCB) patterns

were generated with human microdissection-derived probe-sets

specific for chromosomes 1, 9, 15,16, 18, X and Y. MCB is a three

to five color FISH approach producing a reproducible fluoro-

chrome profile along the chromosomal axis of interphase and

metaphase chromosomes. The methodology was described ealier

by Dr. Thomas Liehr and coworkers [28]. Epifluorescence

microscopy analysis was performed using an Axioplan II

microscope (Zeiss, Jena, Germany) equipped with a CCD camera

(Sony), an HBO 100 mercury lamp, as well as filter sets for 4,6-

diamidino-2-phenylindole (DAPI), diethylaminocoumarine

(DEAC), fluorescein isothiocyanate, Spectrum Orange, Texas

Red, and Cy5. Images were captured and analyzed using the ISIS

digital imaging system (MetaSystems, Altlussheim, Germany).

Data Analysis
No fewer than 5000 nuclei were scored per chromosome and per

sample in multiprobe FISH and PRINS studies and no fewer than

3000 nuclei were assessed per sample per chromosome for

interphase chromosome-specific MCB assay for the brain tissue

samples, and 1000 nuclei for fetal skin and chorionic villi cells. The

mean frequencies of aneuploidy (M), standard deviations (SD),

thresholds levels for gains and losses for outliers of the respective

chromosomes (M+3SD), and statistical significance were de-

termined. The chromosome instability quantitative index (the

fraction of cells with abnormal chromosome number accounted

per individual chromosome pair) was calculated according to

Lengauer and associates [29].
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