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Abstract RNA viruses cause a multitude of human diseases, including several pandemic events in the past
century. Upon viral invasion, the innate immune system responds rapidly and plays a key role in activating the
adaptive immune system. In the innate immune system, the interactions between pathogen-associated molecular
patterns and host pattern recognition receptors activate multiple signaling pathways in immune cells and induce
the production of pro-inflammatory cytokines and interferons to elicit antiviral responses. Macrophages, dendritic
cells, and natural killer cells are the principal innate immune components that exert antiviral activities. In this
review, the current understanding of innate immunity contributing to the restriction of RNA viral infections was
briefly summarized. Besides the main role of immune cells in combating viral infection, the intercellular transfer of
pathogen and host-derived materials and their epigenetic and metabolic interactions associated with innate
immunity was discussed. This knowledge provides an enhanced understanding of the innate immune response to
RNA viral infections in general and aids in the preparation for the existing and next emerging viral infections.
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Introduction

An RNA virus is a virus that uses RNA as its genetic
material; it could be single-stranded RNA (ssRNA) or
double-stranded RNA (dsRNA) [1]. Retroviruses are not
generally considered RNA viruses because they use DNA
intermediates to replicate. However, they have a single-
stranded RNA genome. Notable human diseases caused by
RNA viruses include coronavirus disease 2019, severe
acute respiratory syndrome (SARS), Ebola virus disease,
common cold, influenza, hepatitis C, hepatitis E, rabies,
polio, and measles. RNA viruses generally have higher
mutation rates than DNA viruses due to the lack of
proofreading ability of the RNA polymerases in contrast to
DNA polymerases, hindering the development of optimal
vaccines to prevent the diseases caused by RNA viruses.
Upon viral infection, the innate immune system acts as

the first line to prevent the spread of the invading
pathogens and plays a crucial role in triggering the
adaptive immunity. The innate immune cells could
recognize the conserved features discriminately expressed

by the virus but not on the host cells as pathogen-
associated molecular patterns (PAMPs). Through interac-
tions with PAMPs, the pattern recognition receptors
(PRRs) expressed by innate immune cells activate several
intracellular signaling pathways and induce the production
of type I interferons (IFNs) and pro-inflammatory
cytokines to initiate the antiviral responses of the host
[2,3]. In a prototypical response to an acute viral infection,
the clearance of viral-infected cells is expected to be
achieved within a few weeks. However, some viruses
develop strategies to inhibit or evade the host immune
responses that favor their replication and cause persistent
infection in the host. The molecular mechanisms, under
which the viruses evade the antiviral immune responses
and establish their persistence in the host, remain to be
further investigated.
The interactions between the invading virus and the

innate immunity are complex, and they consist of multiple
layers. This review highlighted the recognition and defense
mechanisms adopted by innate immune cells against RNA
viral infection, with a focus on cell type-specific cellular
responses. The intercellular transfer of pathogen and host-
derived material, which is a newly discovered mechanism
affecting the innate immune signaling, was also discussed.
Moreover, the epigenetic interactions between the host and
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the RNA viruses were briefly introduced. These interac-
tions are also new to the field, and they broaden the
understanding of antiviral responses in innate immunity.
Finally, the cellular metabolic alterations affected by the
IFN-generated antiviral state, as indicated by recent
evidence and previous observations, were explored.

Viral recognition and initiation of antiviral
responses

Upon the invasion of viruses, the innate immune system is
the first line of host defense and is rapidly activated. The
innate immune cells sense the viral invasion through
multiple types of ligand–receptor interaction [4]. PAMPs
are conserved structural motifs that could activate innate
immunity to protect against infections through recognition
of properties derived from viruses or bacteria that
distinguish the pathogen components from the host,
including nucleic acids, peptides, and lipoproteins. During
viral infection, PAMPs could be recognized by host PRRs
expressed not only in innate immune cells, such as
macrophages, dendritic cells (DCs), and natural killer
(NK) cells but also in other cell types, such as epithelial
cells. PRRs consist of the membrane-bound type and the
cytoplasmic type. The former includes Toll-like receptors
(TLRs) and C-type lectin receptors (CLRs), while the latter
includes retinoic acid-inducible gene 1 (RIG-I)-like
receptors (RLRs), nucleotide oligomerization domain-
like receptors (NLRs), and cyclic GMP-AMP synthase
(cGAS). This section focused on the PRRs that mediate the
signaling responses in innate immune cells during RNA
viral infection.
TLRs are a class of transmembrane receptors expressed

by antigen-presenting cells (APCs), such as DCs and
macrophages, and some types of T cells (Table 1). Unlike
the TLRs recognizing bacterial components mainly
expressed on plasma membrane, the human TLRs, such
as TLR3, TLR7, TLR8, and TLR9, that could recognize
viral nucleic acids are expressed exclusively in the
endosomal compartment. Double-stranded viral RNA
taken up into the endosomes of sentinel cells are sensed
by TLR3 [5–8] to recruit the cytoplasmic adaptor protein
TIR domain-containing adaptor inducing IFN-β (TRIF)-
dependent downstream signaling pathways. ssRNAs are
sensed by TLR7 and TLR8, which utilize MyD88-
dependent downstream signaling pathways [9]. TLR9 is
the only known DNA sensor that recognizes the
unmethylated CpG DNA of DNA viruses [10]. However,
TLR9-mediated signaling may also play a role during
RNA viral infection, as revealed by the recent finding that
dengue virus (DENV) infection could induce a release of
mitochondrial DNA into the cytosol and activate TLR9
signaling pathways [11].
RLRs are a group of cytosolic RNA helicases that detect

RNA species in the cytoplasm of infected cells [12]. To
date, three receptors have been identified: RIG-I, mela-
noma differentiation-associated gene 5 (MDA5), and
laboratory of genetics and physiology 2 (LGP2). These
RLR proteins are distinct in their RNA recognition
capacities and signaling properties. Functional domains
shared by these proteins are the DExD/H box RNA
helicase domain, which could bind to dsRNA and induce
ATP hydrolysis, and the C-terminal domain (CTD), which
is associated with binding to RNA termini and autoregula-
tion [13]. Only two N-terminal tandem caspase recruitment
domains (CARDs) are presented by RIG-I and MDA5 but
not by LGP2, and they are crucial for the activation of
downstream signaling. MDA5 senses long dsRNAwithout
unpaired bulged nucleotides, while RIG-I senses short 5′
tri- and dephosphorylated dsRNA with base-paired
terminal 5′ and 3′ nucleotides [14–16]. Then, oligomeriza-
tion of mitochondrial antiviral signaling protein (MAVS) is
triggered [17,18]. LGP2 functions as regulators for the
other two receptors, inhibiting RIG-I-mediated responses
while enhancing MDA5 signaling [19]. This differential
effect was recently found to be dependent on a direct
protein–protein interaction between the regulatory CTD of
LGP2 and the IFN-inducible, double-stranded RNA
binding protein PACT [19]. LGP2 is at low levels in
uninfected cells but accumulates after the viral infection or
due to the treatment of poly(I:C) and IFN [20,21].
CLRs could recognize various carbohydrate ligands

with their carbohydrate recognition domains. In addition to
the initiation of inflammatory mediator production, patho-
gen sensing by CLRs may initiate phagocytosis or innate
killing depending on the specific CLR and cell type [22].
The mannose receptor (MR) is one type of CLR expressed
on macrophages and DCs to recognize mannose, fucose,
and N-acetylglucosamine on the surfaces of viruses,
bacteria, and parasites [23]. Through its activation, the
pathogen could be internalized and targeted to lysosomes
for degradation. However, evidence also suggested that
DENV utilizes MR to evade the degradation after
internalization [24]. Thus, the role of CLRs could either
be routing for the degradation or the dissemination of
viruses.
The signaling pathways downstream of PRRs lead to the

expression and/or activation of transcription factors, such
as NF-kB, AP-1, and interferon regulatory factors (IRFs),
which all induce the expression of downstream anti-viral
genes, including types I and III IFNs, pro-inflammatory
cytokines, and chemokines. These target genes could
enhance the adaptive immune response, inhibit pathogen
replication, and adapt the host cells to environmental
changes [25–29]. Type I IFNs, which are mainly produced
by macrophages and DCs [30–32], induce an anti-viral
state in the neighboring cells by stimulating the expression
of hundreds of genes that are collectively known as IFN-
stimulated genes (ISGs). The chemokines produced at the
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location of infection could recruit additional immune cells,
including neutrophils, monocytes, and NK cells (Fig. 1).
NLRs could detect a wide range of PAMPs and DAMPs.

NLR family pyrin domain containing 3 (NLRP3) is an
important component of the inflammasome system and the
most well-studied NLR. It could be detected in myeloid
cell types, including monocytes, macrophages, DCs, and
neutrophils [33]. Many pathogens, including DNA and
RNA viruses, fungi, and protozoa, could activate the
NLRP3 inflammasome and induce the maturation of
inflammatory cytokines IL-1β and IL-18 [34–36], resulting
in inflammatory pyroptotic cell death and the formation of
phagosomes. Some viruses even induce abnormal activa-
tion of the inflammasome and aggravate the diseases.
SARS coronavirus (SARS-CoV) is an enveloped positive-
strand RNA virus that encodes a number of accessory
proteins, including open reading frame (ORF) 8a, 8b, and
9b. SARS-CoV triggers robust NLRP3 inflammasome
activation and IL-1β release by direct binding of ORF8b to
the LRR domain of NLRP3. The aberrant inflammasome
activation and cytokine storm lead to excessive inflamma-
tion and enhanced disease [37]. ORF8b and 8ab are also
confirmed as novel IFN antagonists that limit IRF3

activation and/or promote proteasome-mediated degrada-
tion of IRF3 [38].
A major breakthrough in 2013 discovered cGAS could

bind directly to viral DNA, trigger conformational
rearrangement, and catalyze cyclic GMP-AMP (cGAMP)
synthesis, which activates stimulator of IFN gene
(STING)-dependent TBK1-mediated IRF3 axis or IKKs-
mediated NF-kB axis [39,40]. DNAviruses are targeted by
this pathway, while some RNA viruses could manipulate
the DNA sensors, such as cGAS/STING, in turn. For
example, Zika virus-encoded NS1 protein is able to recruit
caspase-1 activation and induce proteolysis of cGAS [41].
This interplay between inflammasome and cGAS/STING
pathways facilitates the immune escaping strategy of Zika
virus.

Important components shaping innate
immune responses: macrophages, DCs,
and NK cells

Within minutes to hours upon the detection of pathogens,
tissue-resident macrophages and DCs are activated. Then,

Fig. 1 Schematic of RNA viral signaling pathway. Endosomes expose viral RNAs to TLR3, 7, and 8. The TLR signaling pathways
consist of two major cascades, namely, MyD88 and TRIF, depending on TLR domain-containing adaptors. RIG-I and MDA5 could sense
RNA in the cytoplasm and trigger the oligomerization of MAVS. These transduction cascades result in IRF3/7 and NF-kB activation,
which induces IFN secretion. Types I and III IFNs are sensed by distinct membrane-bound receptor complexes and stimulate similar
signaling pathways. IFNs could activate the transcription of ISGs through intracellular kinases JAK1 and TYK2 and induce signaling
pathways through STAT1/STAT2/IRF9 binding to the IFN-stimulated response elements (ISREs) in target gene promoters. Subsequently,
a large number of ISGs is activated.
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the inflammatory cytokines, chemokines, biogenic amines,
and eicosanoids produced by these two types of cells
recruit additional innate immune cells, including NK cells,
neutrophils, and monocytes, to the infection locations.

Macrophages

Macrophages evolve in the innate immune system and play
important roles in the regulation of inflammation and
phagocytosis of viruses [48–50]. However, they are also
well-known for their “double-edged sword” role in the
immune system due to their versatile polarization states,
which depend on the converging signals from inflamma-
tory stimuli in the environment. The versatile states exert
multiplex functions, including pathogen elimination, pro-
inflammation, and tissue destruction and repair [51,52].
M1 type macrophages, such as M(IFN-g), M(LPS+ IFN-
g), and M(LPS) subtypes, present as proinflammatory,
tissue-destructive, antitumoral, antimicrobial, and immu-
nogenic macrophages. By contrast, M2 type macrophages
such as M(IL-4), M(Ic), M(IL-10), M(GC+ TGF-β), and
M(GC) subtypes, are associated with viral persistence and
could promote tissue repair in some cases [49,50,52–54].
Macrophages express receptors for all three types of

IFNs, which are produced by several innate immune cells
during viral infection to induce gene expression in the
infected and neighboring uninfected cells. Types I and III
IFNs are sensed by the receptors of IFNAR1/IFNAR2 and
IFNRl1/IL-10R2, respectively, leading to the activation
and dimerization of STAT1 and STAT2 [55]. Afterward,
IRF9 is recruited to form an IFN-stimulated gene factor-3

complex. This canonical signaling pathway induces ISGs
and pro-inflammatory responses featuring an M1 status. In
addition, type I IFNs could signal through STAT3 and
STAT6 homodimers to induce an M2 status [56,57]. Non-
canonical signaling pathways, including mitogen-activated
protein kinase cascade and PI3K/Akt/mTOR signaling,
could be regulated by either type I or type III IFNs [58–63].
Besides IFNs, some RNA viruses themselves affect the

macrophage polarization status and compromise their
functions. Some coronaviruses could over-activate macro-
phages to incite M1-associated inflammation, which
causes macrophage depletion via apoptosis and necrosis
[64–66]. Meanwhile, the incited acute cytokine storm may
also harm the host [67]. Targeting the signaling pathways
to moderate the virus-induced cytokine storm protects
patients from infection, even without suppressing viral
replication [68]. RNA viruses, such as hepatitis C virus
(HCV), could upregulate IL-10 expression, which induces
M2 polarization of macrophages and shows immunosup-
pressive effects [69–71]. Therefore, these viruses could
suppress the anti-viral responses of the hosts and develop
persistent and systemic infections [72,73]. In sum, the
future therapeutic strategy against viral diseases could be
expanded to regulating the polarization status of macro-
phages rather than solely focusing on killing the viruses
[74–76].

DCs

As unique immune sentinels, DCs play a crucial role in
sensing pathogens and inducing immune responses. They

Table 1 PRRs in innate immune cells and PAMPs
PRRs 　 PAMPs References

TLRs (transmembrane) TLR1 Lipoproteins (bacteria) [42,43]

TLR2, TLR4 Structural proteins (capsid, envelope
proteins)

[42–45]

TLR3 dsRNA [5–8]

TLR5 Flagellin (bacteria) [46]

TLR6 Lipoproteins (bacteria) [42]

TLR7 ssRNA [9]

TLR8 ssRNA [9]

TLR9 CpG motif (bacteria, virus) [10]

TLR10 Not determined

RLRs (cytoplasm) RIG-I RNA [17,18]

MDA5 RNA [17,18]

LGP2 RNA [20,21]

NLRs (cytoplasm) NLRP3 DNA, RNA, protein [33]

NLRP1 ssRNA [47]

NLRP9b dsRNA [47]

CLRs (membrane bound) MMR Mannose, fucose [23]

Others STING DNA [39,40]
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are the major APCs in the immune system, and they have
different subtypes on the basis of their location, phenotype,
and function [77,78]. Human DCs can be divided into two
groups: myeloid DCs (mDCs) and plasmacytoid DCs
(pDCs) [79]. mDCs mainly reside in lymphoid tissues,
such as in spleen, thymus, and secondary lymph nodes.
They express myeloid antigens (CD11c, CD13, CD33, and
CD11b) and can be further classified into CD1c+ and
CD141+ DCs. In tissues and lymph nodes, a third
subgroup of mDCs has been detected, and it is defined
as interstitial DCs on the basis of CD14 expression.
Interstitial DCs were first identified in the interstitium of
non-lymphoid organs, and they are closely related to
lymphoid DCs. pDCs are a small subset of DCs entering
the lymph nodes from the circulatory blood. They do not
have myeloid antigens expressed on their membrane.
Instead, pDCs express CD123, CD303, and CD304
[79,80].
When exposed to viruses, human DCs sense the

molecular patterns through specific receptors, including
TLR7 and TLR9, and become mature with the upregula-
tion of CCR7 and MHC molecules. Then, these mature
DCs migrate to local-draining lymph nodes and interact
with naïve T cells in the secondary lymphoid organs to
elicit the adaptive immune response [81].
pDCs play a key role in the early anti-viral responses,

primarily because they could produce types I (IFN-α and
IFN-b) and III (IFN-l/IL-28/IL-29) IFNs. In addition,
activated pDCs produce proinflammatory cytokines, such
as tumor necrosis factor α (TNF-α), IL-6, IL-8, immuno-
modulatory cytokines, and chemokines. pDCs could also
promote the maturation of APCs and activate T cells and
NK cells [82]. For some viruses, the resolution of infection
is highly correlated with the functions of pDCs. In patients
infected with DENV, viral load and disease severity are
inversely associated with the number of circulating pDCs
and their IFN responses [83].
The role of DC-NK interaction is important in inducing

the adaptive immune response to viral infections. MHC
class I-related chains A and B (MIC-A/B) expressed on
DCs could activate NK cells by transducing positive
signals to NK cells. However, chronic HCV-infected DCs,
for instance, have decreased MICA/B expression on DCs
and production of IL-15. Therefore, patients with chronic
HCV infection also have low NK cells [84,85].

NK cells

NK cells were originally identified by their ability to lyse
tumor cells in vitro [86]. The antiviral activities of NK cells
consist of the production of proinflammatory cytokines,
such as IFN-g, and directing lysis of infected cells [87].
NK cells act as a crucial and early source of IFN-g, which
helps the host defend against viruses by improving the
antiviral T cell responses and increasing the non-cytolytic

control of viral replication [88,89]. In addition, other
cytokines (e.g., TNF-α), inflammatory chemokines (e.g.,
RANTES), and growth factors could be generated by NK
cells [90,91]. Through secreting chemokines and cyto-
kines, NK cells communicate with their neighboring cells
in several immunological processes, including viral
defense and immunological homeostasis. The direct lysis
of infected cells by NK cells is mediated by antibody-
dependent cellular cytotoxicity (ADCC). Most NK cells
express immunoglobulin G receptor Fcg RIII (CD16),
which mediates the interaction with antibody-coated target
cells and activates ADCC.
During viral infection, NK cells recognize inflammatory

signals using several strategies. The cytokine–cytokine
receptor axis plays an important role in the activation of
NK cells. The expression of cytokine receptors for IFN-α,
IL-12, IL-15, and IL-18 are upregulated early after the
infection [92]. The above cytokines could provide stimuli
to imprint the stable expression of IFN-g in NK cells. The
IFN-g expression in NK cells represents their expansion
capacity [93,94] and increased cytotoxicity [95]. More-
over, the activation of cytokine receptors protects NK cells
from “fratricidal” killing via NK cell population expansion
and defense against viruses [96].
The balance between inhibitory and activating receptors

expressed on NK cells is modulated during viral infection.
The major inhibitory receptors include killer cell immu-
noglobulin-like receptors (KIRs) and CD94/NKG2A. The
binding of these inhibitory receptors to MHC class I
molecules maintains the tolerance of NK cells in healthy
host cells [97]. During tumor development or viral
infection, NK cells detect modified host cells through a
“missing self” mechanism (MHC class I protein down-
regulation), which represents a central regulatory pathway
during NK cell activation [98]. NK cells also have
activating receptors (e.g., NKG2D, NKG2C, and
DNAM-1) expressed on their membrane [97,99–101]
that could initiate rapid killing of target cells [102,103].
NKG2D could be upregulated by various viral infections
and provide an activating signal upon recognition of stress-
induced ligands on infected cells [104]. This “induced-
self” recognition helps NK cells to clear harmful host cells.
However, some viruses could evade the host’s immune
system by preventing the upregulation of NKG2D ligands
expressed on the infected cells [105,106]. NKp46
activates NK cells in response to viral ligands encoded
by parainfluenza [107], influenza A virus [108],
metapneumovirus [109], and reovirus [110]. NKG2C is
only expressed on a specific population of NK cells, which
recognize pathogen-derived antigens. Compared with
conventional NK cells, NKG2C-positive NK cells expand
in patients with HCV infection or dengue viral infection
only when the patients are HCMV-seropositive and
display different transcriptomic signatures (Fig. 2)
[111–114].
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Intercellular innate immune signaling

Intercellular communication and secretion of cytokines/
chemokines ensure fast and efficient responses to the
threats from the environment surrounding the host cells.
Besides the classical innate immune signaling, the transfer
of PAMPs and host-derived signaling molecules from the
infected host cells to the neighboring non-infected cells
serves as an important alternative pathway. This process is
an essential component in viral uptake, especially during
the inhibition of innate immunity induced by persistent
infection. It also helps the virus evade the host immune
system through immunoregulatory mechanisms [115,116].
Intercellular communication mainly occurs through the

cellular release of extracellular vesicles (EVs). Exosomes
are a type of EVs ranging from 30 nm to 100 nm in
diameter; they contain host (or pathogen)-derived nucleic
acid, protein, and lipid cargos. These contents could be
captured in the cytosol via endosomal membrane invagi-
nation and enriched by interacting with endosomal sorting
complexes required for transport (ESCRTs) [117]. In the
context of viral infections, exosomes containing viral
mRNAs and microRNAs (miRNAs) could be released into
extracellular spaces and detected in biological fluids, such

as blood, cerebrospinal fluid, urine, semen, and breast
milk. These exosomes mediate immune responses by
regulating the production of type I IFNs in the surrounding
uninfected cells and control the viral dissemination [118–
120].
HCV is an ssRNA virus. HCV-infected cells induce the

production of type I IFNs of uninfected pDCs through a
cell-to-cell RNA transfer mechanism rather than virus–
particle assembly and virus–particle release [121]. A
follow-up study showed that this process was mediated
by the release of exosomes, which could be suppressed by
exosome release inhibitors [122]. Therefore, exosomal
RNA transfer is an important mechanism for the activation
of innate immunity during infection.
Besides the PAMP exportation during infection, host

PRR proteins can also be transferred via cell-to-cell
interaction. The inflammasome is a cytoplasmic protein
complex responding to pathogens and warning signals. It
contains the innate immune sensor and the adaptor
molecule apoptosis-associated speck-like protein contain-
ing a CARD (ASC), which generates a “speck” in the
cytoplasm. Caspase-1 is then recruited to cleave and
activate IL-1β and IL-18 [123,124]. The inflammasome
complex can remain stable and last for up to 72 h in vitro

Fig. 2 NK cell surface receptors. NK cell surface receptors are broadly classified into four types: cytokine receptors, antibody receptors,
activating receptors, and inhibitory receptors. When viral infection occurs, NK cells could be activated by cytokines, such as type I IFNs or
IL-18 secreted by accessory cells. They could also be activated by antibody-coated cells that crosslink immunoglobulin G receptor CD16.
KIRs and CD94/NKG2A are the major inhibitory receptors on NK cells. In addition, NK cells have activating receptors (e.g., NKG2D and
NKG2C) expressed on their membrane that could initiate rapid killing of target cells.
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[125]. If there is proIL-1β and proIL-18 available
extracellularly, they will activate the inflammasome
complex and induce inflammation [126,127]. Moreover,
the infected and dying cells can transfer these signals, such
as inactive substrates, to neighboring cells. It indicates that
the pathogen is detected through the extracellular ASC
specks phagocytosis followed by activation of an addi-
tional anti-microbial immune response by neighboring
cells. However, some pathogens also destroy these
mechanisms to benefit their survival and prolong their
presence in host cells [118,128] (Fig. 3). It is still unclear
how far these intercellular communications can spread and
how to control it. Nonetheless, this type of communication
in the innate immune system may also provide potential
therapeutic strategies for viral infectious diseases.

Metabolic changes in innate immunity after
viral invasion

Viruses generally do not have their own metabolism as
they are not living entities. They could induce alterations in
cellular metabolism, such as increasing glycoproteins for
the envelope of the virus, nucleotides for viral genome

replication, and amino acid for virion assembly, to gain
specific materials required for virion production. In
addition, the altered cellular metabolism may improve
the survival of infected cells aiding the persistence of the
virus [129–133]. The altered core cellular metabolic
pathways include glycolysis, fatty acid synthesis, and
glutaminolysis. HCV infection in Huh7 cells increases
glucose requirement and decreases host cell oxidative
phosphorylation [134]. Increased expression of many
glycolytic enzymes in Huh7 cells with HCV infection
was shown in a global proteomic screen [131]. In addition,
transcriptomic studies suggested that HCV microRNA
miR-146a-5p could upregulate the transcription of genes
related to fatty acid metabolism [135].
These alterations in host cells are mainly driven by IFNs

to form an antiviral state and elicit subsequent immune
responses. IFNs could affect the amino acid metabolism of
cells by depleting polyamines and stimulating arginine-
dependent nitric oxide (NO) production. Polyamine, which
is generated from amino acid ornithine decarboxylation,
consists of three molecules: putrescine, spermidine, and
spermine [136]. It is associated with the process of
deacetylation, transcription, and translation and affects
cell proliferation, autophagy, and apoptosis. Putrescine is

Fig. 3 Intercellular transfer of virus-derived RNAs, microRNAs (miRNAs), and inflammasome complex leading to bystander activation
of innate immunity. Virus-derived RNAs, including miRNAs, are produced in the infected cells and packaged into exosomes, which are
released into the extracellular space. Then, the RNAs are internalized by the uninfected cells via endocytosis and activate TLRs and RIG-I
to induce the production of type I IFN. Inflammasome activation could induce IL-1β and IL-18 production and pyroptosis, which is a type
of cell death that causes inflammasome complex release and phagocytosis by neighboring cells to induce inflammasome activation.
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generated from ornithine, which is processed from L-
arginine by arginase [137]. Putrescine could also generate
spermine. Type I IFN induces the spermidine-spermine
acetyltransferase (SAT1) expression and decreases the
expression levels of spermidine and spermine by acetylat-
ing them [136,138]. This reduction could inhibit RNAviral
replication, as polyamines are essential for the transcrip-
tion and translation of viral RNA and protein.
Moreover, IFNs stimulate the production of NO, which

mediates the inhibition of viral replication and leads to
enhanced clearance of the pathogen [139]. NO synthase
(NOS) type 2 (iNOS) is induced by IFN-g and regulates
the switch from L-arginine to L-citrulline to produce NO
[139,140]. One of the antiviral activities of NO is the
nitrosylation of viral molecules [141]. For instance, NO
inhibits the activity of Coxsackievirus protease 3C by
nitrosylating cysteine residue and disturbing the viral life
cycle [142]. In addition, the NO generated by iNOS could
deplete L-arginine and then reduce polyamines. Therefore,
iNOS induced by IFN has antiviral effects through a shift
from polyamine synthesis to NO production [143].
However, types I and II IFNs could also result in tissue

damage due to the overproduction of reactive oxygen
species and an increase in the apoptosis of overactivated
immune cells [144–146]. In addition, large amounts of
IFN-activated macrophages generate large amounts of NO,
which also contributes to tissue damage [147]. In
summary, the IFN-induced metabolic effects constitute
one of the central antiviral mechanisms and suggest
potential novel metabolic therapies for viral infectious
diseases.

Epigenetic changes in innate immunity
after viral invasion

Some viruses have developed several epigenetic strategies
to replicate and survive in hosts, including taking
advantage of pathogen-specific gene products to modify
host proteins and chromatin, repressing PRR sensing and
signaling pathways, and adjusting the expression of
activators and repressors in innate immunity. Hosts also
antagonize pathogen-induced changes in epigenomes to
maintain an effective antipathogen immunity. Epigenetic
regulation consists of DNA modifications, histone post-
translational modifications, chromatin remodeling, and
non-coding RNAs. These epigenetic regulations involve
the host and the virus.
Besides the epigenetic changes in innate immune

signaling pathways and effector molecules driven by
these main epigenetic regulators, pathogen-mediated
epigenetic dysregulation to the host chromatin could help
the virus with immune evasion, infection persistence, and
inflammation [148]. Viruses mediating host chromatin
modifier changes or encoding epigenetic regulators could

cause the dysregulation of host chromatin in the infection.
Respiratory syncytial virus (RSV) infection induces the
upregulation of H3K4 demethylase KDM5B and represses
type I interferons and the production of other innate
cytokines [149]. The RNA viruses of the Flaviviridae
family could change the m6A levels in host mRNAs [150].
These viruses use different mechanisms to alter the host’s
epigenome by targeting regulators for DNA and RNA
methylations. Viruses could modify chromatin at a specific
host gene locus. SETDB2, an H3K9me3 methyltransferase
that triggers H3K9me3 at gene promoters, could be
induced by the influenza virus and inhibit neutrophil
attractant CXC-chemokine ligand 1 and a subset of NF-
κB-inducible genes [151]. Moreover, the epigenetic
dysregulation in immune-related diseases promotes viral
infection. Airway diseases, such as asthma, upregulates
TGFβ expression, which mediates the epigenetic
reprogramming of lung epithelium known as epithelial-
to-mesenchymal transition. The transition induces the
ZEB1 silencing of IRF1 expression, which leads to
type III interferon silencing and enhanced RSV infections
[152].
Chronic infection of some oncogenic viruses also

interacts with epigenetic dysregulation to persist in the
host and intensify infectious diseases and cancer patho-
genesis. For instance, the microbial signals of chronic
inflammation could induce pre-leukemic myeloprolifera-
tion in a host with TET2 mutations by inhibiting cytokine
expression [153,154].
These chromatin modifiers affect the host and pathogen

genes, which in turn affects the host’s effective clearance
and the pathogen’s immune evasion. Thus, targeting these
epigenetic modifiers represents potential novel therapies
for viral infectious diseases.

Conclusions and perspectives

This review briefly discussed the role of the innate immune
response in combating RNA viral infection and how
several aspects of the innate cellular responses contribute
to host protection. Different immune cells in the innate
immune system have unique characteristics, and they
utilize various mechanisms to eliminate viruses. This
review did not focus on each aspect in depth but rather
highlighted their commonality, differences, and interde-
pendence. Clarifying the underlying mechanisms of how
viruses evade innate immunity is considerably important
for the understanding of viral pathogenesis and the
preparation for the next emerging viral disease. Knowledge
regarding mediators, such as signaling, metabolism, and
epigenetics of the innate immune system, adds to the
understanding of their contribution to innate immune
responses and may lead to novel targets for the treatment of
human viral infectious diseases.
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